
Bounded Bundled Data

Willem Mallon
Asynchronous Research Center

Portland State University
w.c.mallon@gmail.com

Abstract

Bundled data channels provide a control signal often
called ”request” to confirm validity of data on a bundle
of data wires. To make the request certify data va-
lidity, the traditional bundling convention insists that
data precede the request signal.

The generalization of the bundling convention outlined
here permits any calculable timing relationship between
data and request. I call this generalization “Bounded
Bundled Data”(BBD).

When the data precedes the request signal, the request
signal can be used to generate a data capture signal.
When the request signal precedes the data signal, the
request signal can be used to set up the appropriate mul-
tiplexers on the data path.

By relaxing the bundled data convention, we create
a framework that allows the designer to balance data
and control delays on computation paths. It also al-
lows CAD tools to avoid unnecessary synchronization.
Avoiding unnecessary synchronization reduces delay in-
sertion in CAD.

BBD also offers an abstraction to reason about control
and data delay. The abstraction allows the computa-
tion of control overhead on critical paths, and can be
used to optimize those paths. The insight offered by the
abstraction allows the designer to reorganize his high-
level design for better performance.

Keywords: self-timed designs, asynchronous circuits,
CAD, dataflow networks.

1 Introduction1

In this paper I formalize the Bounded Bundled
Data(BBD) convention. BBD is similar to bundled
data in that it connects precisely one control and one
data valid event, but in the BBD convention, the rela-
tion in time between the two events varies throughout
the design.

At various point in a design, data must be sampled or
stored. This requires synchronization of control and
data events. When the bundled data convention is
used, synchronization occurs always on each data path.
Using the BBD convention, we can postpone synchro-
nization until it is absolutely necessary, and reduce the
amount of delay insertion required by taking the entire
control path into account. This reduces significantly
the amount of control delay insertion required.

The BBD convention requires global static timing anal-
ysis, but this analysis can be implemented using the
standard static timing tools. Furthermore, the anal-
ysis divides into a global part that follows the design
structure, and a local part that requires analyses of
short timing paths.

The BBD convention offers a powerful abstraction
of components when analyzing their data-delay and
control-overhead behavior within the design, and for
frequently used paths of the design.

I present an analysis method that is simple and ef-
fective. It also appears suitable for automatic opti-
mization. The kind of optimizations that are enabled
by BBD are complementary to optimizations such as
slack-matching [2] or canopy analysis [4].

1This is ARC report ARC2011-WM-09. This document con-
tains information developed at the Asynchronous Research Cen-
ter at Portland State University. You may disclose this informa-
tion to whomever you please. You may reproduce this document
for any not-for-profit-purpose. Reproduction for sale is strictly
forbidden without written consent by the author. Copies of the
material must contain this notice

1

Figure 1 The bundled data convention states that
the control event occurs after the data have become
valid. This is appropriate if the control event creates
a data capture signal

The idea to have a looser bundled data convention is
not new. Various forms have been reported, e.g. [7].
My contribution formalizes and extends the concept.
This allows a complete implementation in CAD tools.
This is in contrast to the approach of [7], that uses
ad-hoc approximations. The implementation of BBD
presented here also applies to system such as Teak[1].

I have implemented BBD in the CLICK backend of the
ARCwelder compiler. The compiler compiles dataflow
networks that are annotated with functions and types
into gate-level netlists. It also generates a global timing
engine for that netlist.

2 Asynchronous Dataflow Networks

Let us treat an asynchronous design as a dataflow net-
work.

A dataflow network connects nodes with edges. Nodes
are controllers and edges are channels. Nodes com-
municate with each other by sending packets of data
through channels. A channel connects precisely two
nodes: a sender and a receiver. A channel is either
empty or full. If a channel is empty, the sender can
send a packet into it, thereby making the channel full.
If the channel is full , the receiver can accept the packet,
thereby making the channel empty again. When a
channel is full, the receiver can inspect the data in the
packet on the channel without emptying the channel.

The nodes are typical asynchronous controllers, such
as MERGE, JOIN, FORK, etc. Every node connects
to one or more channels.

The nodes communicate with each other in a Delay-
Insensitive manner[8]. If packets are sent simultane-
ously through different channels, the design must avoid

Figure 2 The Bounded Bundled Data convention
allows the control event to precede the data valid
event. Static timing analysis can compute a bound
for the difference in time between the two events.

making assumptions about the relative arrival times of
these packets.

2.1 Channel Timing Properties

The ARCwelder compiler maps the dataflow net-
work to a circuit implementation. It maps channels
to a data-path, a request wire and an acknowledge
wire. The current back-end uses predefined CLICK
templates[7] for all the controller components.

The compiler compiles each node in the network sepa-
rately. In order to facilitate this separate compilation,
it allows the node to use certain timing properties of
the channels through which the node connects to the
rest of the network. These properties are computed by
the global timing analysis engine.

An example of a channel property is the channel re-
sponse time. Channel response time is a lower bound
of the time between the component accessing a channel
and the response by the network.

The channel response time can be used to guarantee
minimum delays along certain paths in the compo-
nent. This in turn may guarantee the correctness of
the component through relative timing without delay
insertion[9].

Another channel property is the ControlLag. Let inct

be the time at which a control event arrives through
channel in. Let indt be the time at which the accom-
panying data are valid on channel in. Then:

ControlLag(in) ≤ inct − indt (1)

If the ControlLag is positive, the data arrive first. This

2

means that the channel adheres to the traditional bun-
dled data protocol, and the control signal can be used
unmodified to capture the data; c.f. Figure 1. If the
ControlLag is negative, the control could arrive first;
c.f. Figure 2. In that case, we need to delay the con-
trol signal by at least ControlLag to capture the data
safely. The ControlLag property is an implementation
of the BBD convention.

The main reason for choosing a bound in BBD is that
a bound allows us to collapse multiple values into one.
If a point in the design has multiple incoming paths,
with different ControlLag values, there might be mul-
tiple different ControlLag values on its output chan-
nel. A bound allows us to pick a single number. We
pick the least number because it is safe to compen-
sate for the least number when synchronizing control
and data. The least number occurs when the control
is most ahead of the data. Thus it requires the largest
amount of control delay insertion to synchronize the
control signal with the data.

The timing properties of the channels are made avail-
able at the channel interface of the component. This
allows the component to take its own internal delays
into account as well. If it takes, for instance, at least
8 units of time for a storage element to generate the
flipflop positive clock edge from the control signal, it
can reduce the amount of necessary delay insertion by
8.

Similar to the ControlLag property is the ReleaseLag
property. This property uses BBD to bundle the Ac-
knowledge signal with the virtual event that permits
release of data. This property is necessary to optimize
dataflow graphs where one of the Acknowledge signals
is a bottleneck on the critical path. Although this is
also a relevant property in control overhead optimiza-
tion, we will not discuss this further in this paper.

3 Computing ControlLag

ARCwelder uses a global timing engine to compute the
channel properties for the channels in the design. The
compiler generates code that delegates computation of
the properties to the responsible parties. These re-
sponsible parties may in turn request channel timing
properties of other channels in the network. In essence
the code traverses the dataflow network recursively to
compute the properties.

To make this work, every node must be able to compute
the ControlLag on its output channels based on the
ControlLag at its input channels. It may use local static
timing analysis to compute timing paths in its own

implementation as well. For these local timing paths
we use an ordinary timing analysis tool. In ARCwelder
we use an in-house timing tool tpshell that uses unit
delays for gate delays, but tools such as PrimeTime[11]
or Encounter[3] can perform this analysis as well.

In order for channel property computations to termi-
nate, every possible computation path in the design
must eventually reach a controller that produces a con-
stant value for that channel property. The storage com-
ponent is such a component for the ControlLag prop-
erty. The storage component synchronizes data and
control, and issues the new output control event with
a constant ControlLag. This ControlLag is usually a
small number, for instance if there is a reset gate on
the control path.

If a design fails to provide termination for these prop-
erties, there is something wrong with the design. For
instance, it may contain a cycle with no storage ele-
ments.

Design changes, such as delay insertion, may cause
many channels to change their timing properties. It
is important that the timing properties at all chan-
nels can be recomputed easily. Thus, rather than per-
forming a static timing analysis, the compiler generates
(TcL) code that can recompute the timing properties
at the channels.

Sometimes it is necessary to insert delays in the de-
sign to guarantee proper functionality. These delays
may be necessary for proper synchronization, but also
to guarantee relative timing constraints, or to guaran-
tee minimal pulse-widths. If the global timing engine
is used to compute required delays, then global tim-
ing has to be recomputed after delay insertion. It is
possible that the new global timing would require new
delay insertions. Furthermore, it is possible that the
recompute-insert cycle would never terminate. We can
formulate constraints in such a way that this cannot
happen. A full explanation falls outside the scope of
this paper.

The order of delay insertion has an impact on the
amount of delay insertion required. This is left for
future investigation.

4 Dataflow Example with BBD

In this section I show a partial dataflow design. I will
use this design to illustrate the power of the BBD con-
vention in optimization of the design.

The design in Figure 3 shows a network composed of
controllers. Figure 3 also shows the functions and the

3

types that are relevant to this network. The edges are
annotated with their associated types.

The controllers are described informally, using a pseudo
DI-algebra[5] description, in Figure 4.

The example design shows a filter with two inputs. One
input contains a tuple of Words. The other input con-
tains a unary encoded Boolean that will be used (by D)
to decide which path to take. The upper path adds the
two inputs, the lower path just copies the tuple. The
merge (M) merges the two paths, after which both el-
ements in the tuple are incremented by 1. Finally, the
data are stored in the storage element, which is marked
with an X. The storage produces both an acknowledge
that travels back to the input, and the data to the
output.

The first number on every edge is the ControlLag that
was computed by the tool. We used a timing analysis
tool that measures time in integer units.

The negative ControlLag at the input of the storage
element indicates that if we want to capture the data,
the time between the arrival of the control signal and
the actual capturing of the data has to be at least 29.

The positive ControlLag on the lower input of the
MERGE indicates that the data have been valid at
least 16 units of time before the control signal arrives
at that input.

Note that there are only two places in this design that
require full data/control synchronization. The DIS-
TRIBUTOR must have the data on the select chan-
nel to send the appropriate output control signal, and
hence has to synchronize. It has to synchronize on the
select channel only. The STORAGE has to synchronize
its input channel. The ControlLag values computed by
the timing engine prescribe the amount of delay inser-
tion required for these synchronizations.

The MERGE does not necessarily have to synchronize,
but the data cannot pass through it until after the
proper paths have been set.

5 BBD design analysis and optimization

Not only can we use BBD to postpone synchroniza-
tion, and reduce the amount of delay inserted, we can
also use it to analyze designs and reduce their control
overhead.

Consider the previous example design. Let us assume
that the lower path ,through the skip join, is the path
that we expect to be most used. We want to optimize
performance for that path.

5.1 Data delay analysis

Let C be a component with an input channel in and an
output channel out . Control signal in R is the control
event on channel in. Suppose that C responds to a
transition on in R, by producing a control transition
on out R.

We define the virtual data-event (x D), for any channel
x, to take place at the time that we can sample the data
safely, according to the controllag on the channel. The
time of the virtual data event on channel x is given by
equation (2).

x D = x R − ControlLag(x) (2)

That is, we replace the ≤ in equation 1 with equality,
and the actual data event with the virtual data event.

The actual data event may be earlier than the virtual
data event. However, if we base our synchronization
on controllag values, the virtual data event is the data
event that we synchronize with.

If we analyze the waveform of a run of the design, it
is easy to find the ControlDelay (CD) of a compo-
nent by finding the time between the in channel re-
quest transition and out channel request transition.
out R− in R = CD. The control delays along the crit-
ical path are given by the second values of the edges
in Figure 3. The skip join for instance, shows a CD
value of 0 on its output channel. This indicates that
the control signal is propagated without delay by this
component.

From the CD value, and the statically determined Con-
trolLag values, we can derive the virtual data-delay:

out D − in D

= { term rewriting }

((in R−in D)−(out R−out D))+(out R−in R)

= { definition (2), definition CD }

(ControlLag(in)− ControlLag(out)) + CD

Thus, based on the two ControlLag values, and the time
between the two Request transitions, we can determine
a lower bound on how much the virtual data events
are delayed. The MERGE component, for instance,
shows an input ControlLag of 16, an output ControlLag
of −9 and a CD value of 19 on the path that we want to
optimize. It follows that the virtual data-delay through
the merge is 16 + 9 + 19 = 44. Since the virtual data

4

typedef bool[2] Bool2;

typedef bool[32] Word;

typedef struct

{

Word A;

Word B;

} Tuple;

function add (Tuple tup) : Tuple

{ { tup.A + tup.B , tup.B } }

function skip (Tuple tup) : Tuple

{ tup }

function plus_one (Tuple tup) : Tuple

{ { tup.A + 32’h1 , tup.B + 32’h1 } }

Figure 3 An example ARCwelder design: Input to the ARCwelder compiler has two aspects. The dataflow graph,
that is provided through the GUI, and the descriptions of the types and functions that are provided as a text file.
The designer can modify the text-file in an editor of choice and reload it into ARCwelder. In this example, the edges
are annotated with the type of the data that they are transporting. The first number on an edge is the ControlLag.
The second number is the ControlDelay on the execution path of interest.

5

STORAGE = in?x ; (in ! || out!x) ; out ? ; STORAGE

JOIN = in?x; out! F(x); JOIN

DISTRIBUTOR = in?x;select?s;

(if (s[0]) out0!x || if (s[1]) out1!;x)

; (if (s[0]) out0? || if (s[1]) out1?)

; in!;DISTRIBUTOR

MERGE = [in0?x -> M0 , in1?x -> M1]

M0 = [in1? -> ERROR, out!x -> out?;in0!;MERGE]

M1 = [in0? -> ERROR, out!x -> out?;in1!;MERGE]

Figure 4 A pseudo DI-algebra[5] description of the various controllers that we use in the example.
A STORAGE (X) element waits until the data are available, then captures the data in a local register, and
produces a request signal on its output channel and an acknowledge signal on its input channel. The behavior of the
storage is basically that of the simple pipeline stage [10]. The storage element is depicted as a box with an X in it.
A JOIN (J) has one input channel and one output channel. Associated with a join is a function F , described in
the functional language of ARCwelder. In the tool, the Join is generalized to multiple inputs, and synchronizes on
the inputs. Hence the name Join. In the design example that we present later, we need only single-input Joins. The
function that is associated with the Join must be expressed in the ARCwelder input text. Figure 3 shows a number
of function and type definitions.
A DISTRIBUTOR (D) has two input channels. The select input channel receives a unary encoding of the
output channels to which the in channel must be copied. The distributor that we use in our example has 2 output
channels, and hence a 2-bit wide select channel.
A MERGE (M) waits for one of its input, which it will copy to the output. It is illegal to send concurrent multiple
inputs to a merge. Readers that are familiar with the DI algebra may observe that it is legal to send the next input
after an output has been produced, and before the other input is acknowledged. This is on purpose.

events are the events that we use to synchronize data
and control, this virtual data-delay is the effective data-
delay on the path.

If we combine the data-delay value with our knowledge
of the components, we can find possible optimization
areas. Consider again the example in figure 3.

The first number on the edges is the ControlLag on
those edges. The second number is the control-delay
when exercising the most frequent path. I marked the
upper path control delays surrounding the ’add’ Join
by -1 to indicate that we are not using them. Control
delays have to be positive.

For every node, we have a minimal data-delay, which is
the logic on the data-path. For instance, a merge has
a multiplexor on its data-path, and a join has compu-
tation logic on its data-path.

By analyzing the data-delay on the different nodes, we
can create the table in Figure 5 for the critical path.

We find that most of the control overhead is located
in the Merge(M). There is an operational explanation
for this. The Merge that we use is quite complex, and

node in out CD min act over
cl cl delay delay head

D 0 16 18 0 2 2
SKIP 16 16 0 0 0 0
M 16 -9 19 4 44 40
PLUS -9 -29 0 20 20 0
STORE -29 0 35 4 6 2

Figure 5 Timing properties: cl is ControlLag(),
CD is control delay

requires a long time to set up the data path. In this
case, the positive ControlLag tells us that the control
signal arrives after the data. This means that the
setup of the data path will occur after the data arrived,
and this adds an additional data delay.

5.2 Abstraction

The numbers that we need to compute the control over-
head were ControlLag (that we could determine stati-

6

Figure 6 Plot of 2-input merge ControlLag. Re-
call that negative ControlLag means that control
arrives first. The plot shows that when the control
is behind, or not far enough ahead, the controllag
of the output channel is constant. The reason is
that the control signal is now critical on the datap-
ath. Since the control signal is also critical on the
control path, the relation between the two on the
output channel is constant.

cally), and control delay, which is a value that changes
at run-time.

However, if we know which of the input control events
is causing the output control event, we can statically
determine the time between the input control event and
the output control event, and, using the method of the
previous section, we can compute the data-delay.

More concretely, let cl(in0, in1) be the statically deter-
mined function that computes the ControlLag() on the
output of a two-input component; c.f. Figure 6. Let
(ControlDelay)(CD) be the time it takes between the
control signal from in0 and the output control signal,
if in0 is the direct cause of the output control signal.

Then, if we know that in0 is the channel on the
critical path, we can determine ControlLag(in0) −
cl(in0, in1) + CD. For the merge, this results in the
function in Figure 7

Based on the considerations above, we can make the
following abstraction: for every controller, we create a
function that computes the output ControlLag based
on the input ControlLag. Figure 6 shows the graph for
the merge element.

For every controller and every input channel, we can
create data-delay functions. These data-delay func-
tions are valid only if the input channel for which they
were created is the one that actually caused the output
event. In Figure 7 we show the datadelay of the merge,

Figure 7 Plot of 2-input merge data-delay when
in0 is critical. Recall that negative ControlLag
means that control arrives first. It shows that the
points of least data-delay are found when the con-
trollag on in1 is not much more than the controllag
on in0 and the controllag on in0 should be at most
-20.

in our design, where the lower path input (in0) is the
one producing the data.

The ControlLag plots can be determined statically, and
in a first order approach do not even require knowledge
of the layout of the design.

5.3 Optimizing the example

We have already seen that the merge was causing seri-
ous control overhead. According to Figure 7, reducing
the ControlLag on its input channels will decrease con-
trol overhead. By moving the plus one join across the
merge and duplicating it, we create the improved de-
sign of Figure 8. We reduce the critical input Control-
Lag to the merge, and this reduces control overhead.

Figure 9 shows the control overhead table for the new
design.

We find that the control overhead on the Merge, and on
the whole path has reduced significantly. The MERGE
could benefit from an even smaller ControlLag on its
critical input, but this may not be achievable in this
design.

Based on the two functions in our ControlLag abstrac-
tion, we are able to quickly optimize dataflow graphs to
reduce data-delay. This is the key to control overhead
elimination. For now, we are doing this by hand. In the
future, we may add automatic optimization strategies.

7

Figure 8 Optimized design example. The
plus one Join has moved over the merge to the
two input paths of the merge

6 Conclusions and possible future work

We have presented the Bounded Bundled Data proto-
col, and have shown how it can be implemented in a
global timing analysis tool.

We showed how BBD can be used to abstract timing
properties from a design in such a way as to allow re-
organization of a design to reduce control overhead.

The current implementation of BBD is already a large
improvement over the algorithm of [7]. Both in its
structural approach as well as its impact.

It may be possible to rewrite a dataflow graph auto-
matically to reduce control overhead. We have not in-
vestigated algorithms to do so at this point, but the
characterizations in this paper are abstract enough to
implement and experiment with such algorithms with-
out having to understand the entire compiler chain. It
is very possible that the control overhead optimization
problem may be solved by existing network optimiza-
tion algorithms.

We were able to create a small micro processor tem-
plate, with branching and merging computation paths,
where the control overhead was reduced to a single digit
percentage of the performance[6]. This was done man-
ually by analyzing the graph in a way similar to that
presented in the example above.

There are many feedback and optimization mechanisms
that the ControlLag transform graphs can support. We
still have to figure out which of those are most benefi-
cial to the designer.

The analysis also suggests that certain new components
may be beneficial. In particular a storage component

node in out CD min act over
cl cl delay delay head

D 0 16 18 0 2 2
SKIP 16 16 0 0 0 0
PLUS 16 -4 0 20 20 0
ONE

M -4 -9 19 4 24 20
STORE -9 0 15 4 6 2

Figure 9 Optimized timing properties

that produces an early request, or an early acknowledge
signal. Such components cannot provide a foundation
for the analysis as a regular storage component can, but
may be inserted at key points to reduce data-delay.

The order of delay insertion that is generated by the
constraint-repair functions in the back-end can impact
performance. It is conceivable that a particular order
of insertions would guarantee an optimal result.

Acknowledgments:

This work was sponsored by a US government grant
and by industrial donations.

References

[1] Andrew Bardsley, Luis Tarazona, and Doug Ed-
wards. Teak: A token-flow implementation for
the balsa language. In In Proc. 9th International
Conference on the Application of Concurrency to
System Design, 2009.

[2] Peter A. Beerel, Mike Davies, Andrew Lines, and
Nam-Hoon Kim. Slack matching asynchronous
designs. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pages 184–194, March 2006.

[3] Cadence homepage. http://www.cadence.com.

[4] Gennette Gill and Montek Singh. Bottleneck anal-
ysis and alleviation in pipelined systems: A fast
hierarchical approach. In Proc. International Sym-
posium on Advanced Research in Asynchronous
Circuits and Systems, pages 195–205, May 2009.

[5] M. B. Josephs and J. T. Udding. An overview
of DI algebra. In T. N. Mudge, V. Milutinovic,
and L. Hunter, editors, Proc. Hawaii International
Conf. System Sciences, volume I, pages 329–338.
IEEE Computer Society Press, January 1993.

[6] (censored for anonymity).

8

[7] Ad Peeters, Frank te Beest, Mark de Wit, and
Willem Mallon. Click elements: An implementa-
tion style for data-driven compilation. In Proc. In-
ternational Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 3–14,
May 2010.

[8] Jens Sparsø and Steve Furber, editors. Principles
of Asynchronous Circuit Design: A Systems Per-
spective. Kluwer Academic Publishers, 2001.

[9] Kenneth S. Stevens, Ran Ginosar, and Shai
Rotem. Relative timing. IEEE Transactions on
VLSI Systems, 11(1):129–140, February 2003.

[10] Ivan E. Sutherland. Micropipelines. Communica-
tions of the ACM, 32(6):720–738, June 1989.

[11] Synopsys homepage. http://www.synopsys.com.

9

