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ABSTRACT 

A data-controlled branch module can steer data to one output or another 

according to the data content.  A tree network of data-controlled branch modules can 

steer data from a common source to many destinations.  To combine data elements 

from several sources requires a demand merge module with two inputs and one output.  

Because data may arrive at any time, the demand merge module must contain a mutual 

exclusion element.  Together data-controlled branch and demand merge modules make 

possible networks of a wide variety of topologies.   

BACKGROUND 

The last two lessons have involved branching pipelines.  The broad branch 

and merge modules can send the same data into two or more parallel paths and accept 

data from the separate branches.  The alternate branch and merge, or their 

generalization to more than two outputs, can send successive data elements down 

separate paths and gather up the data in their original sequence.  The data-controlled 

branch and demand merge modules complete our family of branch and merge modules.   
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DATA CONTROLLED BRANCH 

A data-controlled branch module chooses which successor or successors 

should get each incoming data element.  It not only captures the incoming data, but also 

uses one or more bits of the incoming data to select which outgoing channels it will 

inform about arrival of the data.  It can signal data presence to all, to some, or to none of 

its successors.  In fact, the actual data wires carry the same data value to all potential 

recipients, but the branch module fills the state wires of only the chosen recipients.  An 

exploration of the data-controlled branch must include at least the data wires used to 

control the branch.  This simulation example therefore includes some data wires and 

their latches as well as the GasP control modules involved.   

Recall the protocol of the state wires between GasP modules.  When a 

module fires it does three things: it copies the input data, it drains its predecessor state 

wire, and it fills its successor state wire.  A data-controlled branch module has several 

successor state wires from which to choose; it fills none, one, or more of them according 

to data bits contained in the incoming data value.  This is the first module we have seen 

for which a data value matters.  The other modules we have considered are completely 

agnostic to the data values they control.   

How do we know that the data bits for controlling the branch arrive in time to 

select the appropriate successor?  Do we need extra data latches in the branch module 

to capture separately data destined for different successors?  Do we need multiple 
internal fire signals like those in the alternating branch? 

The data-controlled branch module is just like the broad branch module 
except that each successor driver must be conditional.  The library called gaspL offers 

two variations of the conditional successor driver called sucConDri10 and 

sucConDri20.  As their names suggest, they differ in the strength of their P-type 

successor drive transistor.   

Recall that the regular successor driver, sucDri10, has a small inverter 

between the fire signal and the P-type successor drive transistor.  Instead, the 

conditional successor driver, sucConDri10, has a NAND gate between the fire 

signal and the P-type successor drive transistor.  The conditional successor driver fills 
its successor state wire only if the second NAND input is HI during the fire pulse.  In 

sucConDri10 this second NAND input is called cond.  Obviously the data-controlled 

branch connects the cond terminal to a data bit.   

Which set of latches holds the data bit to use as the cond signal?  A common 

mistake is to think that the latches driven by the data-controlled branch module hold the 
routing information.  The conditioning signal must be valid during the fire pulse.  Thus 

we must use the incoming data to choose a destination.  The incoming data must be 
valid during the fire pulse in order for the latches of the branch stage to copy their 

values.  The outgoing data bits captured in the branch stage!s own latches are 
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unsuitable because the latch outputs change during the fire pulse.  The outgoing data 

bits hold valid data only after the stage!s fire pulse renders their latches momentarily 

transparent.  Thus the outgoing data bits become valid too late to control a successor 

state wire.  Please avoid thinking that we can capture data and then use it to steer an 

output.  Instead, we must use the incoming data to steer the output.   

DATA CONTROLLED BRANCH MODULE 

I thought that the library called gaspL contained a data-controlled branch 

module.  Indeed it should.  However, the version of 20 September 2010, designated 

20sep10, is deficient in this regard.  I have therefore included a data-controlled branch 
called gaspConBranch10 in the homework library for this week.  It will appear in later 

versions of the standard GasP library.   

Examination of gaspConBranch10 reveals that it is a two-way branch.  Two 

conditional successor drivers, sucConDri10, each drive a separate successor wire.  

Moreover, It uses two bits of input data to control whether or not to fill each of its two 

successor state wires.  The four combinations of the two control bits allow for alerting 

neither, either, or both successors to the presence of data.  Notice that this form 

generalizes to any number of successor wires.   

Suppose, instead, we can afford only one control bit in our data.  If that bit is 

one, fill successor state wire A; if it is zero, fill successor state wire B.  Clearly an 
inverter between the two cond inputs to the conditional state wire drivers would make 

sure only one of them acts when the fire pulse happens.  This form is common and 

will work if the data arrive soon enough.   

If unsure about how soon incoming data will arrive, use the alternative circuit 
called sucConDri20inv.  This circuit uses the conditional data to control a P-type 

transistor in series with the one that fills the successor state wire.  Thus only a LO input 
will drive the successor.  Using one sucConDri10 and one sucConDri20inv together 

permits proper operation in spite of late-arriving input data.  

All of the branch modules we!ve considered can act only when all their 

successor state wires are LO meaning empty.  Thus they are all subject to delay on 

both outputs if either output is unable to accept data promptly.  A module that can 

deliver data to one output even if the other is blocked requires another stage of storage.  

It must be able to store the data for the blocked channel while delivering different data to 

the output that!s not blocked.  That!s entirely equivalent to following the branch 

described here with a pair of plain GasP modules, one for each output.   

DEMAND MERGE 

Like other merge modules, the demand merge has two predecessor state 

wires and a single successor state wire.  It drives a latch-with-multiplexed-input that can 

accept data from either source.  The demand merge decides which input to accept and 
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renders that part of its two-input latches transparent.  It must accept inputs from either 

predecessor, but how can it choose which to serve next?   

Input signals may arrive at any time; indeed two inputs may arrive arbitrarily 

close together in time.  A demand merge must accept inputs on a first-come-first-served 

basis.  It must be able to deal with inputs arbitrarily close together in time.  Of course, 

that requires a mutual exclusion element to decide cleanly who came first.  As we!ve 

seen before, a mutual exclusion element may take extra time to decide which to serve 

next if two inputs arrive at nearly the same time.   

The library called gaspL contains a demand merge module that is called 

gaspDemandMerge.  To decide which input to serve next, the demand merge module 

uses the same mutual exclusion element we saw in the proper stopper.  It uses two 

separate internal GasP modules to accept data from its two inputs.  Ordinarily the 

mututal exclusion element causes almost no extra delay.  Occasionally, however, 

difficult decisions by the mututal exclusion element may causes extra delay.   

It would be nice to generalize the demand merge to more than two inputs.  

However, I don!t know how to make a mutual exclusion element with more than two 

inputs.  One might think of using a tri-flop, a device with three rather than two stable 

states, as the basis for three-way mutual exclusion.  However, there!s controversy about 

this topic in the literature as suggested by the paper cited above by vanBerkel and 

C.E.Molnar.  I lack confidence in the meta-stability properties of the tri-flop.  For use as 

a mutual exclusion element, such a circuit must have at least three different meta-stable 

ridge lines, each between two of its stable states.   

Moreover, two-way demand merge elements suffice.  If one must merge three 

streams of data, one can merge two first and then merge in the third.  Freeway systems 

do quite nicely with two-way traffic merges; so can data networks.  Trees of two-way 

demand merge can accommodate any number of inputs.   

Examination of gaspDemandMerge reveals that each side waits for three 

things.  Obviously each waits for the mutual exclusion element to decide in its favor.  

Each side also waits for their common successor to be empty.  Because each side fills 

their common successor state wire, that might be enough to prevent further action until 

the successor stage accepts the data.  However, we have found it advisable also to wait 

for the third condition, namely that the other side has finished firing.   

Waiting for the end of the other fire pulse strengthens the circuit for a 

reason that may not be obvious.  Suppose that the successor state wire is heavily 

loaded and therefore slow to respond.  Suppose that the predecessor state wires are 
lightly loaded and thus fast to respond.  As soon as one side!s fire pulse starts, it 

drains its predecessor state wire.  The drained predecessor state wire clears the mutual 

exclusion element.   
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That whole process can happen in as little as two gate delays.  It only takes 
the same two gate delays for the fire pulse to fill the successor state wire.  A slow 

successor and fast predecessor might cause an improper fire pulse because of 

inadequate timing margin.  For safety we must be sure that the loosing side is inhibited 
throughout this brief period.  Using the winning fire signal to inhibit the loosing side 

provides extra margin.  That!s the third input to the AND function.   

SIMULATION ASSIGNMENT 

This week!s assignment involves a data-controlled branch, stage 3, followed 

by a demand merge.  The branch sends data either to the upper pipeline or to the lower 

pipeline or to both or to neither.  The two central pipelines differ in length: the lower one 

has six stages (6:11) and the upper one has two stages (4:5).  The demand merge 

module, stage 12, combines the two pipeline outputs into a single output stream.   

Each GasP stage drives three data latches.  These three latches appear as a 

single symbol in the schematic.  The indexed name above the latch symbol causes 
Electric to duplicate the latch.  For example, lat[1:3] and lat[22:24] are two 

different groups of three latches each.  Notice that the demand merge stage produces 
two fire signals, fire[12A] and fire[12B], and the three latches, lat[16:18], 

use fire[12A] and fire[12B] to control their two inputs.   

The green cables between latches each carry three data wires.  I have used 
double indexing to name the data wires so that the name “data” applies to all of them.  

The cable called data[1:3][1] is the first three-wire cable; the cable called 

data[1:3][2] is the second three-wire cable, and so on.  I have omitted names from 

some of the less important cables.   

Notice that data[1:3][3], are the three data output wires from stage 3, the 

data-controlled branch.  These three wires connect to the latch inputs in both stage 4 

and stage 6.  Their state wires, sw[3A] and sw[3B] are distinct.  Thus the data controlled 

merge actually sends data to the inputs of the latches of both its successors.  However, 

it may or not fill the two separate state wires.   

Bits 1 and 2 of the three-bit data word represent address bits that control data 

flow in this simple network.  Bit 1 of the three-bit data word controls whether or not data 

should enter the short upper pipeline.  Bit 2 of the three-bit data word controls whether 

or not data should enter the long lower pipeline.  If both bits are TRUE, data enter both 

pipelines.  If neither bit is TRUE, no data pass beyond stage 3.  Bit 3 of the three-bit 

word bit represents the “payload” bits carried through this network.   Bit 3 is TRUE for 

some data elements and FALSE for others.   

I wish there was a simple source of data synchronized with fire[1], the 

source module!s fire pulse, but there isn!t.  Instead, three timers at the left of the 

schematic change data inputs called in[1:3] from time to time to provide interesting 
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patterns of activity.  It may happen that such timed inputs would drive some data latches 

into meta-stability, but that is unlikely.  Moreover, data outputs from stage 1 are timed by 
the fire[1] pulse, and so stage 2 receives sensible data inputs.    

My simulation repeats its pattern after 25 nsec, so you should simulate at 
least that much time.  I have set the parameters of the pulse generators for in[1:2] to 

make an interesting pattern of activity.  After sending nothing out, data go first to the 

longer pipeline, then to both, and finally to only the upper pipeline.  Data collide at the 

demand merge, causing a backup in the pipelines.  You can see all that in your 

simulation, and there are some questions for you to answer about it.   

I!ve included a picture of my output so you can see the kind of pattern to 

expect.  My output will differ in detail from yours, because I changed the timers after 

making my output picture.  Answer the questions from your own simulation output.  
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ANSWER SHEET – due by beginning of class on 16 November 2010 7 

Name __________________________ 

Turned in on Date __________________________ 

Answer from simulation: 

My simulation uses  __________________________ technology – e.g. 180 MOSIS 

AT THE INPUT – stage 2 or 3 

Immediately after master clear, data[1:3][2] are all  <HI>  <LO> .  Why? 

Hint:  look inside the latches. 

100 psec before the first pulse on fire[3], data[1:3][2] are <HI>  <LO> .  Why? 

The flow rate at fire[2] is ______ GDI/s (maximum) and ______ GDI/s (average). 

WHERE DO DATA VALUES GO?  - stage 3 

The first _______ data values to reach stage 3 go nowhere. 

The next _______ data values to reach stage 3 go only to stage 6. 

The next _______ data values to reach stage 3 go to both stages 4 and 6. 

The next _______ data values to reach stage 3 go only to stage 4. 

AT THE DEMAND MERGE – stage 12 

The first data to reach the demand merge come from <stage  5>  <stage 11>  

The first _____ data elements out of stage 12 came from the <upper> <lower> pipeline.   

Pulses on fire[12A,12B] alternate when _________________________________ 

At 12, the last ______ data elements in a group came from the <upper> <lower> pipe. 

OUTPUT VS INPUT – stage 2 and 14 

The flow rate at fire[14] is ______ GDI/s (maximum) and ______ GDI/s (average). 

Why do these values differ from the values at stage 2? 

What causes the irregular pattern of pulses at stage 14?  At at stage 2? 
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ANSWER SHEET – due by beginning of class on 16 November 2010 7 

Name __________________________ 

Turned in on Date __________________________ 

Answer from simulation: 

My simulation uses  __________________________ technology – e.g. 180 MOSIS 

AT THE INPUT – stage 2 or 3 

Immediately after master clear, data[1:3][2] are all  <HI>  <LO> .  Why? 

Hint:  look inside the latches. 

100 psec before the first pulse on fire[3], data[1:3][2] are <HI>  <LO> .  Why? 

The flow rate at fire[2] is ______ GDI/s (maximum) and ______ GDI/s (average). 

WHERE DO DATA VALUES GO?  - stage 3 

The first _______ data values to reach stage 3 go nowhere. 

The next _______ data values to reach stage 3 go only to stage 6. 

The next _______ data values to reach stage 3 go to both stages 4 and 6. 

The next _______ data values to reach stage 3 go only to stage 4. 

AT THE DEMAND MERGE – stage 12 

The first data to reach the demand merge come from <stage  5>  <stage 11>  

The first _____ data elements out of stage 12 came from the <upper> <lower> pipeline.   

Pulses on fire[12A,12B] alternate when _________________________________ 

At 12, the last ______ data elements in a group came from the <upper> <lower> pipe. 

OUTPUT VS INPUT – stage 2 and 14 

The flow rate at fire[14] is ______ GDI/s (maximum) and ______ GDI/s (average). 

Why do these values differ from the values at stage 2? 

What causes the irregular pattern of pulses at stage 14?  At at stage 2? 


