
D C C E R R O R C O R R E C T O R

Asynchronous Circuits for
Low Power:

A DCC Error Corrector

KEES VAN BERKEL

RONAN BURGESS
CHIPWIDE ASYNCHRONOUS oper- m Asynchronous circuits can be
ation has the potential for very low JOEP KESSELS tested efficiently for most fab-
power consumption. Based on a MARLY RONCKEN rication defects.
programming and compilation a p
proach, the design of asynchro- FRITS SCHALIJ Low power consumption
nous circuits may prove simpler
and cheaper than the design of
clocked circuits.

To check this theory, we chose to
design an error corrector based on
digital compact cassette (DCC) spec-
ifications' to show the following:

Phil ips Research Laboratories For portable products such as
personal audio systems, mobile tele
phones, and games, a reduction in
power consumption means longer
battery life as well as lighter and
smaller products. But low power
consumption has advantages for
nonportable products as well:
cheaper and lighter powersupplies,
less expensive IC packages, and sim-
pler power distribution.

The power consumption of a dig-
ita1 CMOS circuit is directly propor-
tional to the amount of activity (the
number of wires charged and dis-
charged per unit of time). The
energy required to charge and dis-
charge a wire equals CV2, where C

Eindhoven University of

w A complex, industrially relevant
function can be realized as a ful-
ly asynchronous circuit (com-
prising 155,000 transistors).

w Such functions can be program-
med in the Tangram high-level
VLSI programming language,
which allows fully automatic
compilation into asynchronous
circuits.

w Asynchronous circuits may
have a substantial power advan-
tage over clocked circuits (80%
less power dissipation for the error
corrector).

w Systematic interfacing of asyn-

22

chronous circuits according to
existing (often synchronous) pro-
tocols can be realized (including
dynamic RAM, FIFO, and PSsound
interfaces).

0740-7475/94/$04.00 0 1994 IEEE

denotes the wire's parasitic capac-
itance (and that of the transistor gates
connected to the wire) and V repre-
sents the power supply voltage. (A
short-circuit during switching and cur-
rent leakage also dissipates some ener-

IEEE DESlON C TEST OF COMPUTERS

gy. These contributions amount to
about 20% of the total power con-
sumption, for carefully designed cir-
cuits.) Hence, we can reduce power
consumption by implementing the fol-
lowing measures.2

w Lowering the supply voltage,
which requires lower transistor
threshold voltages and/or paral-
lelism to compensate for the asso-
ciated reduction in speed.

w Reducing (parasitic) capacitances,
for example, by optimizing transis-
tor dimensions and by keeping in-
tensively used wires short.

w Reducing the number of gateoutput
transitions required for a given task.
This factor adds to the previous two
and is the link between "low-power"
and asynchronous circuits.

In many synchronous ICs clock
distribution dominates the power con-
sumption. A high ratio of clock frequen-
cy to sample frequency (as is typical in
digital audio) suggests wasted energy;
many flipflops receive new inputs dur-
ing only a small fraction of the clock cy-
cles (typically less than 10% for digital
audio). Clock frequencies are often high
because of high-throughput (low pin
count) offchip interfaces, the desire to
share onchip hardware resources, and
the need to accommodate exceptions
that may take a large fraction of the
clock cycles per sample period.

CMOS asynchronous circuits, in
contrast, only dissipate when and
where active. That is, any subcircuit
will return to standby mode (consum-
ing leakage power only) whenever not
in use. In addition, they favor distribu-
tion of control, leading to shallow con-
trol logic, as well as short status and
control wires. Furthermore, the quasi-
delay-insensitive circuits used are free
of transients on wires: Each transition
has its role. QDI circuits operate cor-
rectly independent of the delays in
gates and wires, but assume negligible

SUMMER 1994

skew in forking wires. In addition to a
lower power consumption, we also ex-
pect favorable electromagnetic com-
patibility properties because the
radiation spectra of asynchronous cir-
cuits contain less energy and show
greater spread.

VLSl programming
In general, asynchronous circuits are

difficult to design and understand. They
are prone to hazards, their reliability
may be sensitive to variations in supply
voltage and ambient temperature, and
testing for fabrication faults is often im-
possible. Hence, we require a system-
atic approach for the design of complex
asynchronous circuits, and approach
the design of such circuits as a pro-
gramming activity.

We have defined the Tangram pro-
gramming lang~age,~ inspired by
Hoare's Communicating Sequential
Processes4 and Occam.5 Essentially,
Tangram is a traditional imperative pro-
gramming language similar to Pascal or
C, with two additional features:

w statements and procedures may
execute in parallel

w parallel statements (and proce-
dures) can communicate along
fixed channels

Tangram is attractive for VLSI pro-
gramming because it allows the intro-
duction of parallelism at any grain size,
from two simple assignments to net-
works of processors. Simple primitives
(such as sequential composition, paral-
lel composition, selection, and repeti-
tion) allow concise expression of control
without any concem for the duration of
clock periods and the global synchro-
nization implied by a common clock.
Furthermore, Tangram allows sharing of
hardware corresponding to functions
and procedures. Together with a few
simple operators for creating powerful
data types, these properties make
Tangram an expressive and general-

BUFl -
a b

Figure 1.//0 structure of the one-place
buffer BUF I .

purpose VLSl programming language.
Others have also found CSP-based lan-
guages attractive for asynchronous cir-
cuit specification.M

For example, a simple Tangram pro-
cedure can describe a one-place buffer
(see Figure 1).

BUFl = (a?W&b!W).
begin x: var W I

end
forever do a?x ; blx od

W is an arbitrary type, such as a
Boolean or an integer in the range 0 to
255. The opening pair of parentheses
contains the declaration of the external
ports of BUFl. Port (I is an input of type
W, and b is an output of the same type.
The bracket pair begin . . . end delin-
eates the scope of variable x. The un-
bounded repetition forever do . . . od
comprises input statement a?x (accept
an input along a, and store the incom-
ing value in variablex) followed by out-
put statement blx (send the value of x
along b).

The DCC error corrector uses buffers
extensively to provide some slack be-
tween irregular production and/or con-
sumption of data. Cascading one-place
buffers results in economic buffers of
limited capacity. For example, the
Tangram procedure BUF2 describes a
tweplace buffer.

BUF2 = (a? W & b! W) .
begin m: chan W I

end
BUFl (a,m) II BUFl (m,b)

Channel m connects the output of
BUFl (a,m) to the input of BUFl (m,b).

23

D C C E R R O R C O R R E C T O R

Each communication along m syn-
chronizes a send and a receive action.

Another practical variation on the
one-place buffer is the Parser parallel-
toserial converter. It repeatedly accepts
a pair of messages of some type W
along input channel a and outputs the
messages sequentially along output
channel b. The output rate is therefore
twice the input rate. We express this b e
havior in Tangram as follows:

Parser = (a?(W, W) & b! w) .
begin x,y: var W I

end
forever do a?(x,y) ; b!x ; b!y od

Handshake circuits
The translation of Tangram programs

into asynchronous circuits uses so-
called handshake circuits as an inter-
mediate architect~re.~J~ A handshake
circuit is a network of components, con-
nected by point-to-point channels. The
only interaction among handshake
components is by means of handshake
signaling along these channels. There
are no global signals. A handshake
channel has an active (request) side
and a passive (acknowledge) side. A

two-phase handshake protocol form:
the basis of the handshake circuit foi
malism: The active side signals a re
quest, and the passive side respond
with an acknowledgment.

Typical examples of handshakc
components are the sequencer and thc
handshake latch. The sequencer con
trols the sequential execution of twc
Tangram statements. The handshakc
latch, corresponding to a Tangram var
able, is a handshake component with I
passive write port and a passive rea(
port. The box below explains the be
havior of these two components.

The handshake circuit of ParSe
(shown in Figure 2) consists of 10 hanc
shake components (depicted by cii
cles), 12 handshake channels, an(
three external handshake ports (I;
beled D, a, and b). The handshake con
ponents correspond one-to-one t i

primitives in Tangram. The repeater (#
implements unbounded repetitioi
(forever do . . . od): An unbounded sc
quence of handshakes along c follow
a request along D.

Accordingly, the repeater never ac
knowledges the handshake along c
Handshake latches implement Tangrar

Examples of handshake components

A sequencer is a handshake component with one passive port a and two ac-
tive ports band c (Figure A I and 2). Once activated along a, it will complete
handshakes along band c sequentially before completing the handshake along
a. The active port marked with an asterisk is activated first. The state diagram
depicts this behavior where the initial state has been marked with a fat dot. The
subscripts rand a stand for request and acknowledge.

Handshake latch Xreturns an acknowledge signal after receiving a message
along its write (input) channel wx(Figure B).
Likewise, it outputs the contents of the latch
after a request along its read channel rx.

ca cr Read and write actions may not occur con- A b c a. currently; they must be mutually exclusive.

Figure A. A sequencer (I J and
its state diagram 12).

* ’

(1) (2)

wx Figure B. Handshake latch.

variables x and y. The so-called trans-
ferers Timplement Tangram’s input, out-
put, and assignment. For instance, the
transferer connected to port a responds
to a request along d by actively fetching
a message along a and passing this mes-
sage along f. Similar to a traditional mul-
tiplexer, component “I” merges
messages coming from x and y. Finally,
component “)(“ splits messages incom-
ing along fsuch that the two parts of the
message can be passed to handshake
latches x and y.

Observe that the structure of the
handshake circuit reflects the syntactic
structure of the Tangram program. The
handshake components correspond to
basic language constructs in Tangram.
Hence, a small set of handshake com-
ponent types (less than 30) suffices to
fully implement Tangram. A few addi-
tional components implement inter-
faces to existing nonhandshaking ICs
(as described in the Track-input buffer
box). Handshake circuits are similar to
macromodules” in that they construct
VLSI circuits using weakly parameter-
ized asynchronous building blocks, and
that the wiring of these building blocks
reflects the flow of control.

We can implement handshake cir-
cuits in various ways. Four-phase hand-
shake signaling and double-rail
encoding of data form the basis of our
current Four-phase signaling
generally simplifies the implementation,
because the wires involved return to
their initial state after each handshake.
Doublerail encoding (two wires per bit)
leads to very robust designs. We discuss
the CMOS realization of a handshake
latch in the box on page 26.

Testing
The prospects for testing QDI circuits

for production defects are promising.
We based our test approach on the
stuck-at-output fault model. It takes ad-
vantage of the well-known property that
a gate output stuck at 0 (or 1) manifests
itself as a circuit deadlock when a hand-

24 IEEE DESIGN & TEST OF COMPUTERS

shake involves transitions on that wire.
Time-outs on the external output tran-
sitions can therefore detect defective
circuits.

The problem of controllability re-
mains: An acceptably short test run
must exercise all wires. Complex cir-
cuits generally require additional test
hardware to keep their test times ac-
ceptable. We still lack an overall solu-
tion for the controllability problem.
Roncken and Saeijs present a solution
for control-related circuits.13 We ex-
tended this approach for one of the
DCC ICs by adapting the scan principles
from the synchronous test world.

The Tangram toolbox
Translation of Tangram into hand-

Track-input buffer

a

b

Figure 2. Handshake circuit for Parser.

Standard ICs, such as DRAMS and microprocessors, gen-
erally do not communicate by means of handshaking, and
never use double-rail encoding for off-chip communication.
So, we must address the issue of interfacing handshake cir-
cuits to existing ICs. Three hybrid handshake components

Clock

TrackBuf
Data

Figure C. TrackBuf with communication ports.

Clock++ 1 1 1

Data ++ S b
2 wx rx

Figure D. Handshake circuit for TrackBuf.

suffice to implement most of such interfaces:

one to connect the state of a handshake latch to an

one to convert a single input transition into a full hand-

one to sample the logic levels of a bundle of wires and

output

shake

convert those levels into a handshake message

Track-input buffer TrackBuf is a nice example that pre-
sents the latter two components. It repeatedly waits for a ris-
ing edge of clock, then samples the two data wires, stores
their logical values in variable x, and sends the content of
x along handshake channel b (Figure C). We express this
in Tangram as

begin x: var (boo~,boob I forever do

end
clock t ; x:= data ; b!x od

Clock denotes an input wire, and data represents a pair of
input wires (their declarations have been omitted). Figure D
shows the handshake circuit of TrackBuf.

Handshake component 1' acknowledges a passive hand-
shake along c directly after a rising edge on wire Clock.
Component S samples wire pair Data directly after a re-
quest along d, and outputs their logical values.

SUMMER 1994 25

D C C E R R O R C O R R E C T O R

Handshake latch raising either wire w, (write zero) or
wire w, (write one), and storing this
value in a latch consisting of a pair of
cross-coupled NOR gates. The latch
then generates an acknowledgment
by making w, (write acknowledge)
high, which indicates that the new val-

A typical handshake component is
the handshake latch (see Figure E).
The circuit allows two operations: a
write handshake and a read hand-
shake. A write handshake starts by

VDD I
WO

-+ rI

~ section I section I Read section ”” ~

Figure E. CMOS circuit for a handshake latch.

ue has arrived and is consistent with
the contents of the latch (completion
detection). The four-phase write hand-
shake completes by making w, (or w,)
low again, followed by a downward
transition of w,.

Similarly, a read handshake starts
by making r, (read request) high. The
handshake latch responds by making
either r, or r, high, depending on the
value stored in the latch. Then r, be-
comes low, followed by a downward
transition of r, or r , . After each write
or read handshake all external wires
(w,, w,, w,, r,, r,, and r ,) are low
again.

Note that the handshake latch de-
pends on a single latch; implementa-
tion does not require a master-slave
operation. Hence, read and write
handshakes must not overlap.

shake circuits is syntax directed. For
each production rule of Tangram’ssyn-
tax, a similar translation rule e x i ~ t s . ~ J ~
This form of translation is highly trans-
parent and provides the VLSI program-
mer information about the circuit cost,

speed, and power on the basis of the
program text. It also means that the
compiler processes a Tangram program
directly into a specific handshake cir-
cuit. If unsatisfied with the cost or per-
formance of the compiled circuit, the

VLSI programmer

Tangram
behavior program statistics

Handshake
program circuit

11 library

ITL& layout

Silicon foundry

Figure 3. The Tangram toolbox.

26

Timed
behavior

F t *

description +I &, patterns

designer must change the correspond-
ing program. The transparency of the
compilation scheme allows the VLSI
programmer to develop a better pro-
gram, in which powerful simulation
and analysis tools provide assistance.

Figure 3 provides an overview of the
Tangram tools. Boxes symbolize design
representations, while arrows represent
tools (an asterisk identifies commer-
cially available tools). The first tool a
VLSI programmer usually encounters is
B, the translator from Tangram into be-
haviorally equivalent C code. Using sim-
ulator C, the programmer can verify the
functional correctness of a program, in-
cluding the input-output behavior and
the absence of deadlocks. The simula-
tor also provides coarse timing data to
assist in the performance analysis.

Commercially available VHDL simu-
lator F provides more accurate timing
analysis and an estimation of the pow-
er consumption. This simulator uses the
VHDL description generated by E from
the handshake circuit and a library of

IEEE DESIGN & TEST OF COMPUTERS

models of handshake components.
Standard cell layouts and layout statis-
tics form the basis of the VHDL timing
and energy consumption models, and
simulation results can be analyzed with
an interactive tool (not shown). Analysis
tool D provides feedback on circuit and
layout costs.

With feedback on functional behav-
ior, area, timing, and power, VU1 pro-
grammers can iterate on the Tangram
program. When satisfied, programmers
can expand the handshake circuit into
a netlist of standard cells, using G.
Finally, using commercially available
placement and routing tools H, the d e
signer can convert this netlist into a cus-
tom VU1 layout. Tool I converts a
Tangram program that describes a test
into a sequence of test patterns, using
the VHDL simulator.

The DCC player
Three coding modules process the

digital audio information in the DCC
system (see Figure 4). The modules en-
code data streams from left to right in
record mode. They decode data in the
reverse order in play mode. In record
mode, encoding compresses the audio
information by a factor of four. Error en-
coding then adds parity bytes to protect
the information against tape errors.
Finally, channel encoding adds timing
information by applying an &to-10 mod-
ulation. Observe that the sample rates
in Figure 4 are all different. Also, they
are almost two orders of magnitude
smaller than the dominating clock rate
of 6 MHz in the current synchronous re-
alization. This suggests ample room for
reducing power consumption.

We have designed an error corrector,
consisting of three ICs, to operate in play
mode only (see Figures 4 and 5). The
detector accepts code words and out-
puts error information indicating possi-
ble corrections. The controller performs
three simultaneous and loosely syn-
chronized data transfers: from the chan-
nel decoder to memory, from memory

Audio -
(2 x 16 bit)

(48 x 4)

Source
decoder l-

(48)

Figure 4. DCC codec in play mode (data rates in Kbytes/s).

to the detector for correction, and finally
output of the corrected information to
the source decoder. A commercially
available 256K x 4-bit DRAM provides
the memory. The rate of input data from
the channel decoder depends on the
motor speed, while a crystal oscillator
keeps the output rate constant. Memory
also serves as a buffer for motor speed
control. When the buffer is nearly full,
the motor slows down. Conversely,
when the buffer is nearly empty, the m o
tor speeds up.

We have programmed the detector
and controller ICs in Tangram. Kessels
et al.I4 provide a more detailed descrip
tion of the design. For portable DCC

Channel
decoder a tracks

players, the power consumption of the
chip set is a central concern; therefore
we aimed at a design with minimal
power usage. An experimental DCC
player, used for research in digital mag
netic recording, contains the error cor-
rector. For this purpose, the controller
collects and outputs extensive diag-
nostic information.

Error-detector IC
A crossinterleaved Reed-Solomon

code provides double protection
against tape errors for the information
on tape. Each &bit symbol is contained
in two code words of different types-
C1 and C2. C1 words contain 24 sym-

Figure 5. Photograph of the DCC error corrector, comprising a DRAM (top), the
detedor (rightj, and the controller (M). The DCC cassette beside the corrector
provides an idea of the corrector's size.

SUMMIR 1994 27

D C C E R R O R C O R R E C T O R

Detector
c -

Figure 6. Error detector with communica-
tions ports.

bols including four parity symbols; C2
words contain 32 symbols with six par-
ity symbols. Due to the timing of a DCC
player, the error detector must process
approximately 3,000 C1 and 2,300 C2
words per second.

The detector processes %bit symbols
that represent values from the Galois
field GF(28). The operations on these val-
ues differ from those on integers. For ex-
ample, we obtain the sum of two GF(28)
symbols by taking their bitwise exclusive
OR. Tangram only supports two basic
types, Booleans and integers, in a speci-
fied range. Therefore, programmers
must introduce designspecific data
types in the program. The Galois box de-
scribes four definitions of GF(28).

Figure 6 shows the detector with its

communication ports. The detector
has two input ports: T to receive the
type of the code word and C to receive
the symbols of a code word. The han-
dling of a word starts by inputing the
word type through T, after which C r e
ceives the codeword. The detector
then computes the error information
and outputs it through two output
ports: E for the error values and L for
the error status and location. Kessels et
al.'5 describe a similar but much
simpler design including a complete
Tangram program.

The detector processes words in two
phases. It computeswalled syndromes
and then uses the result to compute er-
ror information. Syndrome computation
occurs on-the-fly as the detector se-
quentially receives the symbols of the
word. The syndrome computation is the
same forall words, but the computation
in thesecond phase depends on the cor-
rectness of the code word.

If the word is correct, the syndromes
are zero and the error detection of the

Galois field arithmetic in Tangram

We can describe all the information
about type GF(27 that the design of
the detector requires in 60 lines of
Tangram text. This description con-
tains seven basic definitions introduc-
ing types, constants, and functions.
We give four definitions as an exam-
ple. The definitions are separated by
the symbol &. A tuple of eight Boole-
ans represents the new type gfsym.
Constant gkero represents the value
zero in gfsym. Function gfadd has two
parameters of type gfsym and yields
their sum, which is also of type gfsym.

We obtain the result by comparing
the corresponding elements in the
operands, where element i in tuple 5

is denoted by si. Function a multiplies
a gfsym value by the constant a. Here

a is a root of the irreducible polyno-
mial XS + X4 + Xj + F + 1. Figure F
shows the circuit multiplying symbol s
by a.

gfsym = type (bool, boo/, bool,
bool, bool, bool, bool, boot)

& gkero = const (false! false/ false
false, false, false, false, false)

& gfadd = func (5, t : gfsym):

(S.O#t.O,S. l #t.l,S.2#t.2,
s.3 # f.3, s.4 # t.4, s.5 # f.5,
s.6 + t.6, s.7 # t.7)

& alpha = func (5 : gfsym) : gfsym.
(5.7, s.0, s.1 f ~ 7 ~ 5 . 2 f 5.7,

5.3 # s.7, 5.4, s.5, 5.6)

9fsym.

word is complete. If the syndromes are
not zero, the detector must perform an
elaborate search of error values and lo-
cations. Hence, the circuit must be fast
enough to deal with this worst-case
situation.

Power simulations of the detector
chip (Figure 7) show that a correct
word requires only one third the ener-
gy of an incorrect one. Table 1 gives the
measured timing and power charac-
teristics of the fabricated IC at the nor-
mal operating voltage of 5V. it follows
from these measurements and the re-
quired throughput that our chip dissi-
pates 2.4 mW for correct words and 8.1
mW for worst-case incorrect words. As
we expect that more than 98% of the
words are correct, the average power
consumption is approximately 2.5 mW.

Figure 8 shows the measured timing
and power characteristics of the chip
as a function of the supply voltage. We
measure the time needed to process the
mix of C1 and C2 code words relative
to the value required for the DCC ap-

to their exclusive OR. Other basic
functions include multiplication and
inversion.

s.0

s.2 s.l &

s.5 s'4 a=J=K
Note that + for Booleans amounts Figure F. Multiplication of s by a.

28 IEEE DESIGN C TEST OF COMPUTERS

18 IS 900

16 16 800

900

800

14 14 700 lo0

12 I2 WO WO

IO 10 SW

8 8 4w

500

4lm

6 6 3 w 300

4 4 m

2 2 I W

0 0 0

m

100

0

(a) ib)

Figure 7. Simulated power consumption of a correct (aj and an incorrect [bj C1 word.

2 0 - ~

15
c
._
c
P .-
(I) 10
L
01

U
.-

. -1

............. ~.~ ~~~ ~~~ ~~ ~~~

, j 1, Worst case incorrect - - - - - - j i
Correct ~

.................. j ;.~. . ~~;; ~ ~ 2
, I I .

I :

. . . ~ ~ ~ ~ 1 ~ ~

I :

: I :

I . , . , .
.........i..................~...........................,.........., , I ~................ :

I , , ,

,{’
I . , ,

Worst case incorrect - - - - - -

Correct ~

I I I I

1 3.0 4.0 5.0 6.0 7.0 2.0 3.0 4.0 5.0 6.0 7.0
Supply voltage Supply voltage

ib)

Figure 8. Measured timing (a] and power (bj characteristics of the detector IC.

Table 1. Measured execution time and energy for the two types of code words.

Time (ps) Energy (14 Power (mw)
Rate (per s) Correct Worst case Correct Worst case Correct Worst case

3,000
2,300

18 48 0.44 1.33 1.3
18 64 0.49 1.79 1.1

plication. Therefore, the relative time
should be less than one to be fast
enough to deal with our worstcase sce-
nario. The timing curves indicate that
even at a supply voltage of 2V, the chip

is functionally correct and fast enough
for correct words, but too slow if all
words are incorrect. However, at 2.5V
the IC also meets the speed require-
ments under worstcase conditions and

consumes only 0.3 mW. The IC is
testable without additional hardware.
The four code words that we selected
give a stuck-at-fault coverage of 99.9%
in less than 2-ms test time on an

SUMMER 1994 29

D C C E R R O R C O R R E C T O R

I

HP82000 tester.
The detector program consists of 430

lines of Tangram text, including 60 lines
on Galois field arithmetic. Kessels'6pre
vides a derivation of the program. We
translated this program fully automati-
cally (push-button) into a handshake
circuit with 2,211 components. Basing
the design on Euclid's algorithm led to
a purely sequential program operating
on two large variables of 64 bits. The
twewires-per-bit data encoding implies
that each of the eight assignment chan-
nels to these variables requires 128
wires. This large amount of wiring leads
to a circuit layout (see Figure 9) where
the routing channels take more than
two thirds of the area. The circuit
contains 44,000 transistors, and its core
size is 11.5 mm2 in a 1.0-micron CMOS
technology.

Compared to an existing (second-
generation) clocked realization of a
similar function, we estimate the asyn-
chronous version to be about twice
as large in area but five times more
economic in power consumption. A
modified Tangram program for the de-
tector could further reduce the activity

Flagger

1% data.

Figure 9. Photograph of a bonded ver-
sion of the detector IC.

in the datapath. Switch-level simula-
tions suggest a further reduction of 50%
in power consumption with an area in-
crease of only 5%.

Controller IC
The controller is located between

four neighboring modules. Its main
function is to perform the following si-
multaneous and independent data

Diagnostics T C E L

Figure 10. Block diagram of the controller IC.

transfers between the modules:

w from the channel decoder to

from memory to the detector (and

w from memory to the source

memory

vice versa)

decoder

Since each of these transfers has its
own timing characteristics, it is natural
to have a distributed architecture in
which a separate transferer performs
each of these transfers. Figure lOshows
the global design of the controller in
which we named each of the transfer-
ers after its communication partner. It
also shows the Flagger module, which
outputs diagnostic information gath-
ered by other transferers.

The transferers operate in parallel,
where loose synchronization prevents
mutual overtaking. A memory con-
troller arbitrates among the indepen-
dent memory accesses. Each of the
transferers contains a counter that cycli-
cally generates memory addresses. One
algorithmic cycle through the memory
takes 680 ms.

Eight tape tracks store the audio in-
formation. Since the channel decoder
handles each of the tracks separately,
the controller receives eight track in-
puts, each with its own clock signal. We
therefore designed the tape transferer
as a distributed system, with eight au-
tonomous track transferers and a com-
mon module. This system merges the
eight track streams through arbitration.
The arbitrated merging of data streams
in both the tape transferer and the mem-
ory controller makes the IC nondeter-
ministic regarding the order of the
memory access.

The controller interfaces with four
modules. Only communication with
the detector goes through handshake
channels. We based the interfaces with
the channel decoder, the source de-
coder, and the DRAM on nonhand-
shake protocols that we programmed

30 IEEE DEMON & TEST OF COMPUTERS

in Tangram. (The earlier Track input
buffer box gave an example.)

Both the nondeterministic behavior
and the long algorithmic cycle time
make designing a test strategy for the
controller quite challenging. Since ex-
isting test equipment cannot deal with
nondeterminism, we must make the
test behavior deterministic. We have
done this by designing the program to
allow it to activate each transferer
singly. By adding partial scan facilities
to allow the setting of the address coun-
ters in the transferers, we have dealt
with the long cycle time problem. The
test strategy gives a 99.9% stuck-at fault
coverage in 62-rns test time with 3%
more area.

The controller program consists of
1,500 lines of Tangram text, resulting in
a handshake circuit of 5,287 compo-
nents. The distributed architecture
leads to an efficient layout where the
routing channels account for only 50%
of the area. The circuit contains 11 1,OOO
transistors, and its core size is 18 mm2
in a 0.8-micron CMOS technology. The
chip consumes 8 mW at the normal o p
erating voltage of 5V.

Because of functional differences,
we cannot precisely compare the ex-
isting DCC IC. Estimates indicate a pow-
er reduction of 80%. The savings in
power consumption comes from the
distributed design, in which each mod-
ule changes its state space at its own
rate. The designer of a clocked revision
of the same function must combine the
state spaces of all the submodules into
a large state space, which will make
transitions at a rate high enough to deal
with all events.

WE HAVE DESIGNED and fabricated
two asynchronous ICs performing error
correction on DCC specifications. Table
2 summarizes their main characteristics.
A detailed account of a previous IC corn
piled from Tangram appears in van
Berkel et al.’’

SUMMER 1994

able 2. Characteristics of error corrector ICs.

Item Detector Controller

Design effort (person-years)
Tangram lines
Handshake components
Standard cells
Transistors
Technology (micron)
Core area (mm2)
Power @ 5V (mW)

0.4
430

2,211
3,385

44,000
1 .o

11.5
2.4

0.8
1,500
5,287
1 1,474

1 1 1,000
0.8
18.0
8.0

At the gate and latch level, asynchro
ous circuits are more difficult to design
Ian clocked circuits. Therefore, we
elieve the design of complex asyn-
hronous circuits requires a high-level
rogramming language such as Tangram
nd a transparent silicon compiler,
loreover, tools providing fast feedback
n all relevant design aspects, such as
inctional behavior, timing, power, and
rea, are a prerequisite for obtaining cor-
?ct and economic solutions.
Both asynchronous ICs we designed

nd fabricated nicely demonstrate why
relldesigned asynchronous CMOS cir-
uits save power: They only dissipate
)hen and where necessary. The timing
olds for functionssuch as the detector,
rhere the worstcase work load exceeds
le averagecase load. Where dissipa-
on occurs becomes important for func-
ons such as the controller, which
llows a distributed architecture with
ibmodules running at different rates.
or example, the (second-generation)
locked realization operates at a clock
equency of 6 MHz. In both ICs, the var-
)us data rates are very low relative to
lis frequency. By accessing registers at
ieir data rates rather than at a high
lock rate, substantial savings occur.
In comparison with clocked circuits

le 70.100% area overhead occurs large
as a result of the twowires-per-bit data
ncoding. This is essentially the price
)r QDI operation.

In the ESPRIT project Exact, we are in-
vestigating less expensive alternatives to
implement handshake circuits based on
one-wire-per-bit encoding. These alter-
natives promise additional (and sub-
stantial) power savings, but require delay
matching and, therefore, introduce new
verification and test problems. @?b

Acknowledgments
We thank Peter Arts and John Sherry of

Philips Consumer Electronics for introduc-
ing us to the specification of the DCC error
corrector and its synchronous realization,
Ad Denissen and Milton Ribeiro for pro-
viding the specification of the asynchro-
nous version, Ton Kalker for explaining the
mathematics behind error correction, Jos
van Beers for assistance in testing the ICs,
and Cees Niessen and Martin Rem for ad-
vice. We also thank Erik-Jan Marinissen and
Jef van Meerbergen for reviewing our
manuscript.

The European Commission funded part
of this work under ESPRIT Contract 6143
(Exact).

31

D C C C O R R E C T O R

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

G.C.P. Lokhoff, “DCC-Digital Compact
Cassette,” IEEE Trans. Consumer Elec-
tronics, Vol. 37, No. 3, Aug. 1991, pp.

A.P. Chandrakasan, S. Sheng, and R.W.
Broderson, “Low-Power CMOS Digital
Design,” IEEEJ. Solid-State Circuits, Vol.
27, No. 4, 1992, pp. 473-483.
F. Schalij, “Tangram Manual,” Tech.
Report LR 008/93, Philips Research
Laboratories, Eindhoven, The Nether-
lands, 1993.
C.A.R. Hoare, “Communicating Se-
quential Processes,” Comm. ACM, Vol.

Occam Programming Manual, lnmos
Limited, ed., Series in ComputerScience,
Prentice-Hall Int’l, 1984.
A.J. Martin, “Syntax-Directed Trans-
lation of Concurrent Programs into Self-
Timed Circuits,” Proc. Sixth MIT Conf
Adu. Research in VLSI, MIT Press,
Cambridge, Mass., 1990, pp. 35-50.
A.J. Martin, “Programming in VLSI: from
Communicating Processes to Delay-
Insensitive Circuits,” UT Year o f Pro-
gramming: Institute on Concurrent
Programming, C.A.R. Hoare, ed.,
Addison-Wesley, Reading, Mass., 1989,

E. Brunvand and R. Sproull, “Trans-
lating Concurrent Programs into Delay-
Insensitive Circuits,” Proc. IEEE Int’l
Conf Computer-Aided Design, IEEE
Computer Society Press, Los Alamitos,
Calif., 1989, pp. 262-265.
K. van Berkel et al., “The VLSI-Prog-
ramming Language Tangram and Its
Translation into Handshake Circuits,”
Proc. European Design Automation
Conf, CS Press, 1991, pp. 384-389.

702-706.

21, NO. 8, 1978, pp. 666-677.

pp. 1-64.

10. K. van Berkel, Handshake Circuits: An
Asynchronous Architecture for VLSI
Programming, Int’l Series on Parallel
Computation 5, Cambridge University
Press, Cambridge, England, 1993.

11. S.M. Omstein, M.J. Stucki, and W.A.
Clark, “A Functional Description of
Macromodules,” Proc. Sprint Joint Com-
puter Conf, AFIPS, 1967, pp. 337-355.

32

12. C.L. Seitz, “System Timing,” Introduction
to VLSI Systems, C.A. Mead and L.A.
Conway, eds., Addison-Wesley, 1980.

13. M. Roncken and R. Saeijs, “Linear Test
Times for Delay-Insensitive Circuits: A
Compilation Strategy,” Proc. IFIP WG
I O . 5 Working Conf Asynchronous
Design Methodologies, 1993, pp. 13-27.

14. J. Kessels et al., “VLSI Programming of
a Low-Power Asynchronous Error
Corrector for the DCC Player,” Tech.
Report TN 023/94, Philips Research
Laboratories, 1994.

15. J. Kessels et al., “An Error Decoder for
the Compact Disc Player as an Example
of VLSl Programming,” Proc. European

Design Automation Conf, 1992, pp. 69-
74.

16. J. Kessels, “Derivation of a Low-Power
Reed-Solomon Decoder for the DCC
Player,” Tech. Report TN 034/94, Philips
Research Laboratories, 1994.

17. K. van Berkel et al., “A Fully Asynchro-
nous Low-Power Error Corrector for the
DCC Player, ”Proc. IEEE Int’lSolid-State
Circuits Conf, 1994, p. TA5.4.

Address questions and comments on this
article to Kees Van Berkel at Philips
Research Laboratories, Building WAY4 099,
Prof. Holstlaan 4,5656 AA Eindhoven, The
Netherlands; berkel@prl.philips.nl.

The asynchronous design team includes (from left): Joep Kessels, Kees van Berkel,
Ronan Burgess, Ad Peeters, Frits Schalij, and Mark Roncken.

The authors cooperate on the VLSI Prog-
ramming and Silicon Compilation project
at the IC Design Center of Philips Research
Laboratories, Eindhoven, The Netherlands.
Joep Kessels’ main field of interest is VLSl
programming and possible applications of
Tangram. He designed the Tangram pro-
grams for both the error detector and con-
troller. Kees van Berkel invented the
concept of handshake circuits and han-
dled their VLSl implementation. He also co-
ordinates the project. Ronan Burgess was
responsible for the chip finishing and the

handshake circuit simulator. Ad Peeters
is working toward his PhD on protocols in
asynchronous designs at the Eindhoven
University of Technology. He added the ex-
ternal interfaces to the controller. Frits
Schalij works on Tangram and its compi-
lation into handshake circuits. He built the
high-level Tangram simulator and the com-
piler into handshake circuits. Marly
Roncken researched asynchronous circuit
testing. She developed the test approach
for both ICs and handled the tests and mea-
surements.

IEEE DESIGN & TEST OF COMPUTERS

