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Asynchronous Circuits for 
Low Power: 

A DCC Error Corrector 
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RONAN BURGESS 
CHIPWIDE ASYNCHRONOUS oper- m Asynchronous circuits can be 
ation has the potential for very low JOEP KESSELS tested efficiently for most fab- 
power consumption. Based on a MARLY RONCKEN rication defects. 
programming and compilation a p  
proach, the design of asynchro- FRITS SCHALIJ Low power consumption 
nous circuits may prove simpler 
and cheaper than the design of 
clocked circuits. 

To check this theory, we chose to 
design an error corrector based on 
digital compact cassette (DCC) spec- 
ifications' to show the following: 

Phil ips Research Laboratories For portable products such as 
personal audio systems, mobile tele 
phones, and games, a reduction in 
power consumption means longer 
battery life as well as lighter and 
smaller products. But low power 
consumption has advantages for 
nonportable products as well: 
cheaper and lighter powersupplies, 
less expensive IC packages, and sim- 
pler power distribution. 

The power consumption of a dig- 
ita1 CMOS circuit is directly propor- 
tional to the amount of activity (the 
number of wires charged and dis- 
charged per unit of time). The 
energy required to charge and dis- 
charge a wire equals CV2, where C 
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w A complex, industrially relevant 
function can be realized as a ful- 
ly asynchronous circuit (com- 
prising 155,000 transistors). 

w Such functions can be program- 
med in the Tangram high-level 
VLSI programming language, 
which allows fully automatic 
compilation into asynchronous 
circuits. 

w Asynchronous circuits may 
have a substantial power advan- 
tage over clocked circuits (80% 
less power dissipation for the error 
corrector). 

w Systematic interfacing of asyn- 
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chronous circuits according to 
existing (often synchronous) pro- 
tocols can be realized (including 
dynamic RAM, FIFO, and PSsound 
interfaces). 
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denotes the wire's parasitic capac- 
itance (and that of the transistor gates 
connected to the wire) and V repre- 
sents the power supply voltage. (A 
short-circuit during switching and cur- 
rent leakage also dissipates some ener- 
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gy. These contributions amount to 
about 20% of the total power con- 
sumption, for carefully designed cir- 
cuits.) Hence, we can reduce power 
consumption by implementing the fol- 
lowing measures.2 

w Lowering the supply voltage, 
which requires lower transistor 
threshold voltages and/or paral- 
lelism to compensate for the asso- 
ciated reduction in speed. 

w Reducing (parasitic) capacitances, 
for example, by optimizing transis- 
tor dimensions and by keeping in- 
tensively used wires short. 

w Reducing the number of gateoutput 
transitions required for a given task. 
This factor adds to the previous two 
and is the link between "low-power" 
and asynchronous circuits. 

In many synchronous ICs clock 
distribution dominates the power con- 
sumption. A high ratio of clock frequen- 
cy to sample frequency (as is typical in 
digital audio) suggests wasted energy; 
many flipflops receive new inputs dur- 
ing only a small fraction of the clock cy- 
cles (typically less than 10% for digital 
audio). Clock frequencies are often high 
because of high-throughput (low pin 
count) offchip interfaces, the desire to 
share onchip hardware resources, and 
the need to accommodate exceptions 
that may take a large fraction of the 
clock cycles per sample period. 

CMOS asynchronous circuits, in 
contrast, only dissipate when and 
where active. That is, any subcircuit 
will return to standby mode (consum- 
ing leakage power only) whenever not 
in use. In addition, they favor distribu- 
tion of control, leading to shallow con- 
trol logic, as well as short status and 
control wires. Furthermore, the quasi- 
delay-insensitive circuits used are free 
of transients on wires: Each transition 
has its role. QDI circuits operate cor- 
rectly independent of the delays in 
gates and wires, but assume negligible 
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skew in forking wires. In addition to a 
lower power consumption, we also ex- 
pect favorable electromagnetic com- 
patibility properties because the 
radiation spectra of asynchronous cir- 
cuits contain less energy and show 
greater spread. 

VLSl programming 
In general, asynchronous circuits are 

difficult to design and understand. They 
are prone to hazards, their reliability 
may be sensitive to variations in supply 
voltage and ambient temperature, and 
testing for fabrication faults is often im- 
possible. Hence, we require a system- 
atic approach for the design of complex 
asynchronous circuits, and approach 
the design of such circuits as a pro- 
gramming activity. 

We have defined the Tangram pro- 
gramming lang~age,~ inspired by 
Hoare's Communicating Sequential 
Processes4 and Occam.5 Essentially, 
Tangram is a traditional imperative pro- 
gramming language similar to Pascal or 
C, with two additional features: 

w statements and procedures may 
execute in parallel 

w parallel statements (and proce- 
dures) can communicate along 
fixed channels 

Tangram is attractive for VLSI pro- 
gramming because it allows the intro- 
duction of parallelism at any grain size, 
from two simple assignments to net- 
works of processors. Simple primitives 
(such as sequential composition, paral- 
lel composition, selection, and repeti- 
tion) allow concise expression of control 
without any concem for the duration of 
clock periods and the global synchro- 
nization implied by a common clock. 
Furthermore, Tangram allows sharing of 
hardware corresponding to functions 
and procedures. Together with a few 
simple operators for creating powerful 
data types, these properties make 
Tangram an expressive and general- 

BUFl - 
a b  

Figure 1.//0 structure of the one-place 
buffer BUF I .  

purpose VLSl programming language. 
Others have also found CSP-based lan- 
guages attractive for asynchronous cir- 
cuit specification.M 

For example, a simple Tangram pro- 
cedure can describe a one-place buffer 
(see Figure 1). 

BUFl = (a?W&b!W). 
begin x: var W I 

end 
forever do a?x ; blx od 

W is an arbitrary type, such as a 
Boolean or an integer in the range 0 to 
255. The opening pair of parentheses 
contains the declaration of the external 
ports of BUFl. Port (I is an input of type 
W, and b is an output of the same type. 
The bracket pair begin . . . end delin- 
eates the scope of variable x. The un- 
bounded repetition forever do . . . od 
comprises input statement a?x (accept 
an input along a, and store the incom- 
ing value in variablex) followed by out- 
put statement blx (send the value of x 
along b). 

The DCC error corrector uses buffers 
extensively to provide some slack be- 
tween irregular production and/or con- 
sumption of data. Cascading one-place 
buffers results in economic buffers of 
limited capacity. For example, the 
Tangram procedure BUF2 describes a 
tweplace buffer. 

BUF2 = (a? W & b! W) . 
begin m: chan W I 

end 
BUFl (a,m) II BUFl (m,b) 

Channel m connects the output of 
BUFl (a,m) to the input of BUFl (m,b). 
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Each communication along m syn- 
chronizes a send and a receive action. 

Another practical variation on the 
one-place buffer is the Parser parallel- 
toserial converter. It repeatedly accepts 
a pair of messages of some type W 
along input channel a and outputs the 
messages sequentially along output 
channel b. The output rate is therefore 
twice the input rate. We express this b e  
havior in Tangram as follows: 

Parser = (a?( W, W) & b! w) . 
begin x,y: var W I 

end 
forever do a?(x,y) ; b!x ; b!y od 

Handshake circuits 
The translation of Tangram programs 

into asynchronous circuits uses so- 
called handshake circuits as an inter- 
mediate architect~re.~J~ A handshake 
circuit is a network of components, con- 
nected by point-to-point channels. The 
only interaction among handshake 
components is by means of handshake 
signaling along these channels. There 
are no global signals. A handshake 
channel has an active (request) side 
and a passive (acknowledge) side. A 

two-phase handshake protocol form: 
the basis of the handshake circuit foi 
malism: The active side signals a re 
quest, and the passive side respond 
with an acknowledgment. 

Typical examples of handshakc 
components are the sequencer and thc 
handshake latch. The sequencer con 
trols the sequential execution of twc 
Tangram statements. The handshakc 
latch, corresponding to a Tangram var 
able, is a handshake component with I 
passive write port and a passive rea( 
port. The box below explains the be 
havior of these two components. 

The handshake circuit of ParSe 
(shown in Figure 2) consists of 10 hanc 
shake components (depicted by cii 
cles), 12 handshake channels, an( 
three external handshake ports (I; 
beled D, a,  and b). The handshake con 
ponents correspond one-to-one t i  

primitives in Tangram. The repeater (# 
implements unbounded repetitioi 
(forever do . . . od): An unbounded sc 
quence of handshakes along c follow 
a request along D. 

Accordingly, the repeater never ac 
knowledges the handshake along c 
Handshake latches implement Tangrar 

Examples of handshake components 

A sequencer is a handshake component with one passive port a and two ac- 
tive ports band c (Figure A I  and 2). Once activated along a, it will complete 
handshakes along band c sequentially before completing the handshake along 
a. The active port marked with an asterisk is activated first. The state diagram 
depicts this behavior where the initial state has been marked with a fat dot. The 
subscripts rand a stand for request and acknowledge. 

Handshake latch Xreturns an acknowledge signal after receiving a message 
along its write (input) channel wx(Figure B). 
Likewise, it outputs the contents of the latch 
after a request along its read channel rx. 

ca cr Read and write actions may not occur con- A b c  a. currently; they must be mutually exclusive. 

Figure A. A sequencer ( I J  and 
its state diagram 12). 

* ’  

(1) (2) 

wx Figure B. Handshake latch. 

variables x and y.  The so-called trans- 
ferers Timplement Tangram’s input, out- 
put, and assignment. For instance, the 
transferer connected to port a responds 
to a request along d by actively fetching 
a message along a and passing this mes- 
sage along f. Similar to a traditional mul- 
tiplexer, component “I” merges 
messages coming from x and y. Finally, 
component “)(“ splits messages incom- 
ing along fsuch that the two parts of the 
message can be passed to handshake 
latches x and y. 

Observe that the structure of the 
handshake circuit reflects the syntactic 
structure of the Tangram program. The 
handshake components correspond to 
basic language constructs in Tangram. 
Hence, a small set of handshake com- 
ponent types (less than 30) suffices to 
fully implement Tangram. A few addi- 
tional components implement inter- 
faces to existing nonhandshaking ICs 
(as described in the Track-input buffer 
box). Handshake circuits are similar to 
macromodules” in that they construct 
VLSI circuits using weakly parameter- 
ized asynchronous building blocks, and 
that the wiring of these building blocks 
reflects the flow of control. 

We can implement handshake cir- 
cuits in various ways. Four-phase hand- 
shake signaling and double-rail 
encoding of data form the basis of our 
current Four-phase signaling 
generally simplifies the implementation, 
because the wires involved return to 
their initial state after each handshake. 
Doublerail encoding (two wires per bit) 
leads to very robust designs. We discuss 
the CMOS realization of a handshake 
latch in the box on page 26. 

Testing 
The prospects for testing QDI circuits 

for production defects are promising. 
We based our test approach on the 
stuck-at-output fault model. It takes ad- 
vantage of the well-known property that 
a gate output stuck at 0 (or 1) manifests 
itself as a circuit deadlock when a hand- 
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shake involves transitions on that wire. 
Time-outs on the external output tran- 
sitions can therefore detect defective 
circuits. 

The problem of controllability re- 
mains: An acceptably short test run 
must exercise all wires. Complex cir- 
cuits generally require additional test 
hardware to keep their test times ac- 
ceptable. We still lack an overall solu- 
tion for the controllability problem. 
Roncken and Saeijs present a solution 
for control-related circuits.13 We ex- 
tended this approach for one of the 
DCC ICs by adapting the scan principles 
from the synchronous test world. 

The Tangram toolbox 
Translation of Tangram into hand- 

Track-input buffer 

a 

b 

Figure 2. Handshake circuit for Parser. 

Standard ICs, such as DRAMS and microprocessors, gen- 
erally do not communicate by means of handshaking, and 
never use double-rail encoding for off-chip communication. 
So, we must address the issue of interfacing handshake cir- 
cuits to existing ICs. Three hybrid handshake components 

Clock 

TrackBuf 
Data 

Figure C. TrackBuf with communication ports. 

Clock++ 1 1  1 

Data ++ S b 
2 wx rx 

Figure D. Handshake circuit for TrackBuf. 

suffice to implement most of such interfaces: 

one to connect the state of a handshake latch to an 

one to convert a single input transition into a full hand- 

one to sample the logic levels of a bundle of wires and 

output 

shake 

convert those levels into a handshake message 

Track-input buffer TrackBuf is a nice example that pre- 
sents the latter two components. It repeatedly waits for a ris- 
ing edge of clock, then samples the two data wires, stores 
their logical values in variable x, and sends the content of 
x along handshake channel b (Figure C). We express this 
in Tangram as 

begin x:  var (boo~,boob I forever do 

end 
clock t ; x:= data ; b!x od 

Clock denotes an input wire, and data represents a pair of 
input wires (their declarations have been omitted). Figure D 
shows the handshake circuit of TrackBuf. 

Handshake component 1' acknowledges a passive hand- 
shake along c directly after a rising edge on wire Clock. 
Component S samples wire pair Data directly after a re- 
quest along d, and outputs their logical values. 
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Handshake latch raising either wire w, (write zero) or 
wire w, (write one), and storing this 
value in a latch consisting of a pair of 
cross-coupled NOR gates. The latch 
then generates an acknowledgment 
by making w, (write acknowledge) 
high, which indicates that the new val- 

A typical handshake component is 
the handshake latch (see Figure E). 
The circuit allows two operations: a 
write handshake and a read hand- 
shake. A write handshake starts by 

VDD I 
WO 

-+ rI 

~ section I section I Read section ”” ~ 

Figure E. CMOS circuit for a handshake latch. 

ue has arrived and is consistent with 
the contents of the latch (completion 
detection). The four-phase write hand- 
shake completes by making w, (or w,) 
low again, followed by a downward 
transition of w,. 

Similarly, a read handshake starts 
by making r, (read request) high. The 
handshake latch responds by making 
either r, or r, high, depending on the 
value stored in the latch. Then r, be- 
comes low, followed by a downward 
transition of r, or r , .  After each write 
or read handshake all external wires 
(w,, w,, w,, r,, r,, and r , )  are low 
again. 

Note that the handshake latch de- 
pends on a single latch; implementa- 
tion does not require a master-slave 
operation. Hence, read and write 
handshakes must not overlap. 

shake circuits is syntax directed. For 
each production rule of Tangram’ssyn- 
tax, a similar translation rule e x i ~ t s . ~ J ~  
This form of translation is highly trans- 
parent and provides the VLSI program- 
mer information about the circuit cost, 

speed, and power on the basis of the 
program text. It also means that the 
compiler processes a Tangram program 
directly into a specific handshake cir- 
cuit. If unsatisfied with the cost or per- 
formance of the compiled circuit, the 

VLSI programmer 

Tangram 
behavior program statistics 

Handshake 
program circuit 

11 library 

ITL& layout 

Silicon foundry 

Figure 3. The Tangram toolbox. 
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Timed 
behavior 

F t *  

description +I &, patterns 

designer must change the correspond- 
ing program. The transparency of the 
compilation scheme allows the VLSI 
programmer to develop a better pro- 
gram, in which powerful simulation 
and analysis tools provide assistance. 

Figure 3 provides an overview of the 
Tangram tools. Boxes symbolize design 
representations, while arrows represent 
tools (an asterisk identifies commer- 
cially available tools). The first tool a 
VLSI programmer usually encounters is 
B, the translator from Tangram into be- 
haviorally equivalent C code. Using sim- 
ulator C, the programmer can verify the 
functional correctness of a program, in- 
cluding the input-output behavior and 
the absence of deadlocks. The simula- 
tor also provides coarse timing data to 
assist in the performance analysis. 

Commercially available VHDL simu- 
lator F provides more accurate timing 
analysis and an estimation of the pow- 
er consumption. This simulator uses the 
VHDL description generated by E from 
the handshake circuit and a library of 
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models of handshake components. 
Standard cell layouts and layout statis- 
tics form the basis of the VHDL timing 
and energy consumption models, and 
simulation results can be analyzed with 
an interactive tool (not shown). Analysis 
tool D provides feedback on circuit and 
layout costs. 

With feedback on functional behav- 
ior, area, timing, and power, VU1 pro- 
grammers can iterate on the Tangram 
program. When satisfied, programmers 
can expand the handshake circuit into 
a netlist of standard cells, using G. 
Finally, using commercially available 
placement and routing tools H, the d e  
signer can convert this netlist into a cus- 
tom VU1 layout. Tool I converts a 
Tangram program that describes a test 
into a sequence of test patterns, using 
the VHDL simulator. 

The DCC player 
Three coding modules process the 

digital audio information in the DCC 
system (see Figure 4). The modules en- 
code data streams from left to right in 
record mode. They decode data in the 
reverse order in play mode. In record 
mode, encoding compresses the audio 
information by a factor of four. Error en- 
coding then adds parity bytes to protect 
the information against tape errors. 
Finally, channel encoding adds timing 
information by applying an &to-10 mod- 
ulation. Observe that the sample rates 
in Figure 4 are all different. Also, they 
are almost two orders of magnitude 
smaller than the dominating clock rate 
of 6 MHz in the current synchronous re- 
alization. This suggests ample room for 
reducing power consumption. 

We have designed an error corrector, 
consisting of three ICs, to operate in play 
mode only (see Figures 4 and 5). The 
detector accepts code words and out- 
puts error information indicating possi- 
ble corrections. The controller performs 
three simultaneous and loosely syn- 
chronized data transfers: from the chan- 
nel decoder to memory, from memory 

Audio - 
(2 x 16 bit) 

(48 x 4) 

Source 
decoder l- 

(48) 

Figure 4. DCC codec in play mode (data rates in Kbytes/s). 

to the detector for correction, and finally 
output of the corrected information to 
the source decoder. A commercially 
available 256K x 4-bit DRAM provides 
the memory. The rate of input data from 
the channel decoder depends on the 
motor speed, while a crystal oscillator 
keeps the output rate constant. Memory 
also serves as a buffer for motor speed 
control. When the buffer is nearly full, 
the motor slows down. Conversely, 
when the buffer is nearly empty, the m o  
tor speeds up. 

We have programmed the detector 
and controller ICs in Tangram. Kessels 
et al.I4 provide a more detailed descrip 
tion of the design. For portable DCC 

Channel 
decoder a tracks 

players, the power consumption of the 
chip set is a central concern; therefore 
we aimed at a design with minimal 
power usage. An experimental DCC 
player, used for research in digital mag 
netic recording, contains the error cor- 
rector. For this purpose, the controller 
collects and outputs extensive diag- 
nostic information. 

Error-detector IC 
A crossinterleaved Reed-Solomon 

code provides double protection 
against tape errors for the information 
on tape. Each &bit symbol is contained 
in two code words of different types- 
C1 and C2. C1 words contain 24 sym- 

Figure 5. Photograph of the DCC error corrector, comprising a DRAM (top), the 
detedor (rightj, and the controller (M). The DCC cassette beside the corrector 
provides an idea of the corrector's size. 
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Detector 
c -  

Figure 6. Error detector with communica- 
tions ports. 

bols including four parity symbols; C2 
words contain 32 symbols with six par- 
ity symbols. Due to the timing of a DCC 
player, the error detector must process 
approximately 3,000 C1 and 2,300 C2 
words per second. 

The detector processes %bit symbols 
that represent values from the Galois 
field GF(28). The operations on these val- 
ues differ from those on integers. For ex- 
ample, we obtain the sum of two GF(28) 
symbols by taking their bitwise exclusive 
OR. Tangram only supports two basic 
types, Booleans and integers, in a speci- 
fied range. Therefore, programmers 
must introduce designspecific data 
types in the program. The Galois box de- 
scribes four definitions of GF(28). 

Figure 6 shows the detector with its 

communication ports. The detector 
has two input ports: T to receive the 
type of the code word and C to receive 
the symbols of a code word. The han- 
dling of a word starts by inputing the 
word type through T, after which C r e  
ceives the codeword. The detector 
then computes the error information 
and outputs it through two output 
ports: E for the error values and L for 
the error status and location. Kessels et 
al.'5 describe a similar but much 
simpler design including a complete 
Tangram program. 

The detector processes words in two 
phases. It computeswalled syndromes 
and then uses the result to compute er- 
ror information. Syndrome computation 
occurs on-the-fly as the detector se- 
quentially receives the symbols of the 
word. The syndrome computation is the 
same forall words, but the computation 
in thesecond phase depends on the cor- 
rectness of the code word. 

If the word is correct, the syndromes 
are zero and the error detection of the 

Galois field arithmetic in Tangram 

We can describe all the information 
about type GF(27 that the design of 
the detector requires in 60 lines of 
Tangram text. This description con- 
tains seven basic definitions introduc- 
ing types, constants, and functions. 
We give four definitions as an exam- 
ple. The definitions are separated by 
the symbol &. A tuple of eight Boole- 
ans represents the new type gfsym. 
Constant gkero represents the value 
zero in gfsym. Function gfadd has two 
parameters of type gfsym and yields 
their sum, which is also of type gfsym. 

We obtain the result by comparing 
the corresponding elements in the 
operands, where element i in tuple 5 

is denoted by si. Function a multiplies 
a gfsym value by the constant a. Here 

a is  a root of the irreducible polyno- 
mial XS + X4 + Xj + F + 1. Figure F 
shows the circuit multiplying symbol s 
by a. 

gfsym = type (bool, boo/, bool, 
bool, bool, bool, bool, boot) 

& gkero = const (false! false/ false 
false, false, false, false, false) 

& gfadd = func (5, t : gfsym): 

(S.O#t.O,S. l  #t.l,S.2#t.2, 
s.3 # f.3, s.4 # t.4, s.5 # f.5, 
s.6 + t.6, s.7 # t.7) 

& alpha = func (5 : gfsym) : gfsym. 
(5.7, s.0, s.1 f ~ 7 ~ 5 . 2  f 5.7, 

5.3 # s.7, 5.4, s.5, 5.6) 

9fsym. 

word is complete. If the syndromes are 
not zero, the detector must perform an 
elaborate search of error values and lo- 
cations. Hence, the circuit must be fast 
enough to deal with this worst-case 
situation. 

Power simulations of the detector 
chip (Figure 7) show that a correct 
word requires only one third the ener- 
gy of an incorrect one. Table 1 gives the 
measured timing and power charac- 
teristics of the fabricated IC at the nor- 
mal operating voltage of 5V. it follows 
from these measurements and the re- 
quired throughput that our chip dissi- 
pates 2.4 mW for correct words and 8.1 
mW for worst-case incorrect words. As 
we expect that more than 98% of the 
words are correct, the average power 
consumption is approximately 2.5 mW. 

Figure 8 shows the measured timing 
and power characteristics of the chip 
as a function of the supply voltage. We 
measure the time needed to process the 
mix of C1 and C2 code words relative 
to the value required for the DCC ap- 

to their exclusive OR. Other basic 
functions include multiplication and 
inversion. 

s.0 

s.2 s.l & 

s.5 s'4 a=J=K 
Note that + for Booleans amounts Figure F. Multiplication of s by a. 
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Figure 8. Measured timing (a] and power (bj characteristics of the detector IC. 

Table 1. Measured execution time and energy for the two types of code words. 

Time (ps) Energy (14 Power (mw) 
Rate (per s) Correct Worst case Correct Worst case Correct Worst case 

3,000 
2,300 

18 48 0.44 1.33 1.3 
18 64 0.49 1.79 1.1 

plication. Therefore, the relative time 
should be less than one to be fast 
enough to deal with our worstcase sce- 
nario. The timing curves indicate that 
even at a supply voltage of 2V, the chip 

is functionally correct and fast enough 
for correct words, but too slow if all 
words are incorrect. However, at 2.5V 
the IC also meets the speed require- 
ments under worstcase conditions and 

consumes only 0.3 mW. The IC is 
testable without additional hardware. 
The four code words that we selected 
give a stuck-at-fault coverage of 99.9% 
in less than 2-ms test time on an 
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I 

HP82000 tester. 
The detector program consists of 430 

lines of Tangram text, including 60 lines 
on Galois field arithmetic. Kessels'6pre 
vides a derivation of the program. We 
translated this program fully automati- 
cally (push-button) into a handshake 
circuit with 2,211 components. Basing 
the design on Euclid's algorithm led to 
a purely sequential program operating 
on two large variables of 64 bits. The 
twewires-per-bit data encoding implies 
that each of the eight assignment chan- 
nels to these variables requires 128 
wires. This large amount of wiring leads 
to a circuit layout (see Figure 9) where 
the routing channels take more than 
two thirds of the area. The circuit 
contains 44,000 transistors, and its core 
size is 11.5 mm2 in a 1.0-micron CMOS 
technology. 

Compared to an existing (second- 
generation) clocked realization of a 
similar function, we estimate the asyn- 
chronous version to be about twice 
as large in area but five times more 
economic in power consumption. A 
modified Tangram program for the de- 
tector could further reduce the activity 

Flagger 

1% data. 

Figure 9. Photograph of a bonded ver- 
sion of the detector IC. 

in the datapath. Switch-level simula- 
tions suggest a further reduction of 50% 
in power consumption with an area in- 
crease of only 5%. 

Controller IC 
The controller is located between 

four neighboring modules. Its main 
function is to perform the following si- 
multaneous and independent data 

Diagnostics T C E L  

Figure 10. Block diagram of the controller IC. 

transfers between the modules: 

w from the channel decoder to 

from memory to the detector (and 

w from memory to the source 

memory 

vice versa) 

decoder 

Since each of these transfers has its 
own timing characteristics, it is natural 
to have a distributed architecture in 
which a separate transferer performs 
each of these transfers. Figure lOshows 
the global design of the controller in 
which we named each of the transfer- 
ers after its communication partner. It 
also shows the Flagger module, which 
outputs diagnostic information gath- 
ered by other transferers. 

The transferers operate in parallel, 
where loose synchronization prevents 
mutual overtaking. A memory con- 
troller arbitrates among the indepen- 
dent memory accesses. Each of the 
transferers contains a counter that cycli- 
cally generates memory addresses. One 
algorithmic cycle through the memory 
takes 680 ms. 

Eight tape tracks store the audio in- 
formation. Since the channel decoder 
handles each of the tracks separately, 
the controller receives eight track in- 
puts, each with its own clock signal. We 
therefore designed the tape transferer 
as a distributed system, with eight au- 
tonomous track transferers and a com- 
mon module. This system merges the 
eight track streams through arbitration. 
The arbitrated merging of data streams 
in both the tape transferer and the mem- 
ory controller makes the IC nondeter- 
ministic regarding the order of the 
memory access. 

The controller interfaces with four 
modules. Only communication with 
the detector goes through handshake 
channels. We based the interfaces with 
the channel decoder, the source de- 
coder, and the DRAM on nonhand- 
shake protocols that we programmed 
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in Tangram. (The earlier Track input 
buffer box gave an example.) 

Both the nondeterministic behavior 
and the long algorithmic cycle time 
make designing a test strategy for the 
controller quite challenging. Since ex- 
isting test equipment cannot deal with 
nondeterminism, we must make the 
test behavior deterministic. We have 
done this by designing the program to 
allow it to activate each transferer 
singly. By adding partial scan facilities 
to allow the setting of the address coun- 
ters in the transferers, we have dealt 
with the long cycle time problem. The 
test strategy gives a 99.9% stuck-at fault 
coverage in 62-rns test time with 3% 
more area. 

The controller program consists of 
1,500 lines of Tangram text, resulting in 
a handshake circuit of 5,287 compo- 
nents. The distributed architecture 
leads to an efficient layout where the 
routing channels account for only 50% 
of the area. The circuit contains 11 1,OOO 
transistors, and its core size is 18 mm2 
in a 0.8-micron CMOS technology. The 
chip consumes 8 mW at the normal o p  
erating voltage of 5V. 

Because of functional differences, 
we cannot precisely compare the ex- 
isting DCC IC. Estimates indicate a pow- 
er reduction of 80%. The savings in 
power consumption comes from the 
distributed design, in which each mod- 
ule changes its state space at its own 
rate. The designer of a clocked revision 
of the same function must combine the 
state spaces of all the submodules into 
a large state space, which will make 
transitions at a rate high enough to deal 
with all events. 

WE HAVE DESIGNED and fabricated 
two asynchronous ICs performing error 
correction on DCC specifications. Table 
2 summarizes their main characteristics. 
A detailed account of a previous IC corn 
piled from Tangram appears in van 
Berkel et al.’’ 
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able 2. Characteristics of error corrector ICs. 

Item Detector Controller 

Design effort (person-years) 
Tangram lines 
Handshake components 
Standard cells 
Transistors 
Technology (micron) 
Core area (mm2) 
Power @ 5V (mW) 

0.4 
430 

2,211 
3,385 

44,000 
1 .o 

11.5 
2.4 

0.8 
1,500 
5,287 
1 1,474 

1 1 1,000 
0.8 
18.0 
8.0 

At the gate and latch level, asynchro 
ous circuits are more difficult to design 
Ian clocked circuits. Therefore, we 
elieve the design of complex asyn- 
hronous circuits requires a high-level 
rogramming language such as Tangram 
nd a transparent silicon compiler, 
loreover, tools providing fast feedback 
n all relevant design aspects, such as 
inctional behavior, timing, power, and 
rea, are a prerequisite for obtaining cor- 
?ct and economic solutions. 
Both asynchronous ICs we designed 

nd fabricated nicely demonstrate why 
relldesigned asynchronous CMOS cir- 
uits save power: They only dissipate 
)hen and where necessary. The timing 
olds for functionssuch as the detector, 
rhere the worstcase work load exceeds 
le averagecase load. Where dissipa- 
on occurs becomes important for func- 
ons such as the controller, which 
llows a distributed architecture with 
ibmodules running at different rates. 
or example, the (second-generation) 
locked realization operates at a clock 
equency of 6 MHz. In both ICs, the var- 
)us data rates are very low relative to 
lis frequency. By accessing registers at 
ieir data rates rather than at a high 
lock rate, substantial savings occur. 
In comparison with clocked circuits 

le 70.100% area overhead occurs large 
as a result of the twowires-per-bit data 
ncoding. This is essentially the price 
)r QDI operation. 

In the ESPRIT project Exact, we are in- 
vestigating less expensive alternatives to 
implement handshake circuits based on 
one-wire-per-bit encoding. These alter- 
natives promise additional (and sub- 
stantial) power savings, but require delay 
matching and, therefore, introduce new 
verification and test problems. @?b 
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