
11/13/2017 The VLSI-programming language Tangram and its translation into handshake circuits - IEEE Conference Publication

http://ieeexplore.ieee.org/document/206431/?section=abstract 1/3

Sign Out

Access provided by:
PORTLAND STATE UNIVERSITY
LIBRARY

Contact Administrator

IEEE.org IEEE Xplore Digital Library| IEEE-SA| IEEE Spectrum| More Sites| Cart (0) Create Account| Personal Sign In|

Browse Conferences > Design Automation. EDAC., Pro... Back to Results

The VLSI-programming language Tangram and its translation
into handshake circuits

View Document
87
Paper
Citations

2
Patent
Citations

214
Full
Text Views

Related Articles

A static timing analysis environment using Java
architecture for safety critical...

Dictionary design algorithms for vector map
compression

View All

5
Author(s)

 K. van Berkel ; J. Kessels ; M. Roncken ; R. Saeijs ; F. Schalij

View All Authors

Abstract:
Views VLSI design as a programming activity. VLSI designs are described in the algorithmic programming language Tangram. The paper gives an
overview of Tangram, providing sufficient detail to invite the reader to try a small VLSI program himself. Tangram programs can be translated into
handshake circuits, networks of elementary components that interact by handshake signaling. The authors have constructed a silicon compiler that
automates this translation and converts these handshake circuits into asynchronous circuits and subsequently into VLSI layouts.

Published in: Design Automation. EDAC., Proceedings of the European Conference on

Date of Conference: 25-28 Feb. 1991

Date Added to IEEE Xplore: 06 August 2002

 INSPEC Accession Number: 4077128

DOI: 10.1109/EDAC.1991.206431

Publisher: IEEE

Conference Location: Amsterdam, Netherlands, Netherlands

 Download PDF

 Download Citations

View References

 Email

 Print

 Request Permissions

 Alerts

Keywords

IEEE Keywords
Very large scale integration, Computer languages, Costs, Silicon compiler, Finite impulse response
filter, Programming profession, Laboratories, Algorithm design and analysis, Asynchronous circuits,
Reactive power

INSPEC: Controlled Indexing
VLSI, circuit layout CAD, high level languages

INSPEC: Non-Controlled Indexing
VLSI layouts, Tangram, handshake circuits, VLSI designs, algorithmic programming language,
elementary components, silicon compiler, asynchronous circuits

Authors

K. van Berkel
Philips Res. Labs., Eindhoven, Netherlands

Abstract

Authors

Figures

References

Citations

Keywords

Back to Top
 Export to Collabratec

Abstract Authors Figures References Citations Keywords Metrics Media

My Settings Get HelpBrowse

http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/servlet/Login?logout=/Xplore/guesthome.jsp
http://www.ieee.org/
http://standards.ieee.org/
http://spectrum.ieee.org/
http://www.ieee.org/sitemap.html
https://www.ieee.org/cart/public/myCart/page.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/browse/conferences/title/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=884
http://ieeexplore.ieee.org/search/searchresult.jsp?contentType=ALL&matchBoolean=true&searchField=Search_All_Text&queryText=((p_Title:The%20VLSI%20programming%20language%20Tangram)%20AND%20p_Authors:Berkel)
http://ieeexplore.ieee.org/document/1000039
http://ieeexplore.ieee.org/document/1000014
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20van%20Berkel.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Kessels.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20Roncken.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Saeijs.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.F.%20Schalij.QT.&newsearch=true
http://ieeexplore.ieee.org/document/206431/authors?ctx=authors
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=884
https://doi.org/10.1109/EDAC.1991.206431
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=206431
http://ieeexplore.ieee.org/xpl/dwnldReferences?arnumber=206431
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Very%20large%20scale%20integration.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Computer%20languages.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Costs.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Silicon%20compiler.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Finite%20impulse%20response%20filter.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Programming%20profession.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Laboratories.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Algorithm%20design%20and%20analysis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Asynchronous%20circuits.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Reactive%20power.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.VLSI.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.circuit%20layout%20CAD.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.high%20level%20languages.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.VLSI%20layouts.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Tangram.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.handshake%20circuits.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.VLSI%20designs.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.algorithmic%20programming%20language.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.elementary%20components.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.silicon%20compiler.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.asynchronous%20circuits.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20van%20Berkel.QT.&newsearch=true
http://ieeexplore.ieee.org/document/206431/?section=abstract
http://ieeexplore.ieee.org/document/206431/authors
http://ieeexplore.ieee.org/document/206431/figures
http://ieeexplore.ieee.org/document/206431/references
http://ieeexplore.ieee.org/document/206431/citations
http://ieeexplore.ieee.org/document/206431/keywords
http://ieeexplore.ieee.org/Xplorehelp/#/ieee-xplore-training/working-with-documents#interactive-html
http://ieeexplore.ieee.org/document/206431/
http://ieeexplore.ieee.org/document/206431/authors
http://ieeexplore.ieee.org/document/206431/figures
http://ieeexplore.ieee.org/document/206431/references
http://ieeexplore.ieee.org/document/206431/citations
http://ieeexplore.ieee.org/document/206431/keywords
http://ieeexplore.ieee.org/document/206431/metrics
http://ieeexplore.ieee.org/document/206431/media

The VLSI-programming language Tangram
and its translation into handshake circuits

Kees van Berkel Joep Kessels Marly Ronckep Ronald Saeijs

Philips Research Laboratories,
P.O. Box 80.000, 5600 J A Eindhoven, The Netherlands

Abst rac t

In this paper we view VLSI design as a programming
activity. VLSI designs are described in the algorithmic
programming language Tangram. The paper gives an
overview of Tangram, providing sufficient detail to in-
vite the reader to try a small VLSI program himself.
Tangram programs can be translated into handshake cir-
cuits, networks of elementary components that interact
by handshake signaling. We have constructed a silicon
compiler that automates this translation and converts
these handshake circuits into asynchronous circuits and
subsequently into VLSI layouts.

Introduction
The picture below shows a VLSI layout generated by the
Tangram (silicon) compiler. The input for this layout was
the Tangram program BUBBLE, a cell of a systolic block
sorter as described in 121.

For completeness the Tangram program BUBBLE is
repeated:

Frits Schalij

N= const 64 k C= type (0..127)

(a?C t b!C).
I[x, y: var C

I

I #I a?Y
; #(N-l) l a?x

; case(x>y):[true -+ b!y; y:=x 0 false + b ! ~]
1

; b!y
1

A VLSI program is the description of a VLSI circuit
in an algorithmic language. VLSI programming denotes
the systematic development of such programs from speci-
fications, such that the corresponding compiled circuits
satisfy the specified cost and performance constraints.
Our VLSI-programming language Tangram is based on
Hoare’s work on Communicating Sequential Processes
([SI and [SI). CSP form an attractive basis for a VLSI-
programming language:

II -

It is one of the best studied approaches to concur-
rency and communication in computing science. A
body of theory exists to assist in the specification
and systematic development of programs (e.g. [IS]).

0 CSP is a general purpose language. The most di-
verse VLSI-systems have been described in CSP-
based programming languages, including: mutual
exclusion on a ring 1121, various systolic arrays [15],
a block sorter (as part of a sourceencoder of a digi-
tal video recording application) and FIR filters [2], a
graphics processor 141, a microprocessor [14], a sys-
tolic rank-order filter [a], various types of queues 1111,
various Compact Disc data-processing elements [101
and a regular-expression recognizer [9].

0 For a given functional specification it is often pos-
sible to develop a range of programs, such that the
corresponding compiled circuits cover a significant
part of the low-cost to high-performance spectrum
of VLSI implementations 121. Simple rules allow the
VLSI programmer to predict the cost/performance

2130/91/0000/0384$01.00 0 1991 IEEE
384

properties of the compiled circuit on the basis of his
Program.

0 Programs can be translated fully automatically into
efficient VLSI circuits (Cf. [13] and [3]) .

Tangram is a simple general-purpose VLSI program-
ming language. It enables system designers without in-
depth kncrwledge of VLSI circuits and IC technology to
approach the design of complex VLSI systems as a prm
grammirig task. We expect that VLSI programming and
silicon compiIation will result in considerable savings in
design costs as well as design time.

The work presented here is a continuation of the work
reported in [2] and [3] . Significant progress has been made
with respect to simplification, generalization, formaliza-
tion and implementation.

The paper addresses the principles behind the silicon
compiler in four sections

the VLSI-programming language Tangram,

the intermediate representation handshake circuits,

the translation of Tangram programs into handshake
circuits,

some implementation aspects, including a sketch of
the implementation of handshake circuits as asyn-
chronous VLSI circuits.

Since May 1990 we have been compiling Tangram pro-
grams automatically into CMOS standard-cell layouts.

Tangram'

The language Tangram is based on CSP [6] . In Tan-
gram the programmer can indicate whether commands
(statements) are to be executed sequentially or concur-
rently. Mutually concurrent commands can interact by
synchronized COmmUniCatiOM along so-called channels.
We distinguish direcbd channels along which values can
be communicated from undirected channels, which are
merely used for synchronization. A directed channel con-
nects one output port to one or more input ports (broad-
casting is allowed). A communication along a channel
requires the simultaneous participation of all communi-
cation commands involved.
Tangram contains several elementary commands; the

most important ones are discussed below.

0 A s s i i e n t command z:=E.
The value of expression E is assigned to variable z.

'Tan(lram is an ancient C h i n e pude. It COMMC. of neven
elementary pieces (five triangIes, one aquare and one rhomboid)
and a simple compoetion rule (pi- may not -lap). It dlows
the conntruction of a nearly endlem variety of fancinating shapes.

e Output command a!E.
The value of expression E is output through output
port a.

0 Input command a?z.
A value is input through input port a and stored in
variable 2. The types of port a and variable z have
to be the same.

Synchronization command 6:
Such a command achieves a synchronization among
d l commands connected to channel b.

There are several ways to construct new commands
from existing ones, say T and U .

Sequential composition T ; U .
First T is executed and subsequently U. Ports oc-
curring in both commands must have the same di-
rection.

Concurrent composition T 11 U .
Commands T and U are executed concurrently. The
compound command terminates when both subcorn-
man& are terminated. Both wmmauds can only
interact by communication along channels. When
one command contains an a-t (or input) to
a variable, the other command may not access this
variable. The 11 operator binds more then the ; o p
erator.

Infinite repetition #[TI.
Command T is repeated infinitely often and, there-
fore, this command never terminates.

Finite repetition # N [T]
Command T is executed N times, with N a natural
constant.

The case command allows the selection of one com-
mand out of a set depending on the value of an ex-
pression. For instance, the value of boolean expres-
sion B in
case B : [true -, T 1 falee + U]
determines whether T or U is executed.

Block command I[L 1 T]I,
where L is a (possibly empty) list of definitions and
declarations. All variables and channels used in a
command have to be declared in a surrounding block.
The language allows the definitions of, for instance,
constants and types. Several definitions and declara-
tions can be combined into a liit using the separator
symbol &. For example, the liit
bit = type(O..l) dc 6 : var bit
defines a type bit and declares a variable 6 of that
type.

385

A Tangram program has the form (P) . T , where P is
a list of ports and T a command. The port list P con-
tains all external ports, i.e. the ports through which the
corresponding VLSI circuit communicates with its envi-
ronment. For each port it is indicated whether it is an
input port, output port or undirected port. For each di-
rected port its type is also indicated. The command T
describes the behavior of the circuit. An alternative form
of a Tangram program is L I (P].T, where L is a list of
definitions that may be used in P and T.

With this brief overview of Tangram the reader should
be able to understand the program of BUBBLE in the
introduction. The additional constructs include guarded
commands, arrays, tuples, arithmetic operators, proce-
dures and functions.

Tangram is similar to Occam [7]. Most differences
can be understood from the differences between the tar-
get media: VLSI circuits vs. Transputer networks. E.g.
Tangram supports broadcast, finer data types and shar-
ing of functions, but does not provide facilities for assign-
ing procedures and channels to physical processors and
physical channels.

Handshake circuits

The synchronization primitive of CSP is sometimes re-
ferred to as the "CSP handshake". Indeed, this synchre
nization can be implemented by handshake signaling (Cf.
1161). Although most practical implementations are based
on a &phase handshake, a %phase protocol simplifies the
further presentation and suffices to capture the essence of
handshake signaling.

In its simplest form 2-phase handshake signaling is
described for a channel connecting exactly two processes.
One process, the active one, may issue a "request" sig-
nal along that channel (phase 1). The other process, the
passive one, may respond to that signal by issuing an
"acknowledge" signal along the same channel (phase 2);
the reception of this signal by the former process com-
pletes the handshake. For channel a the two signals will
be denoted by a0 and a1 respectively.

In the case of directed communications the data may
be encoded in either the request or the acknowledge (bi-
directional data transfer can also be considered, but is
not part of Tangram).

When we adopt handshake signaling for the imple-
mentation of Tangram synchronization, communicating
Tangram processes will be implemented as networks of
"components" (one for each process) that interact by
handshake signaling. When we carry this l i e of think-
ing one step further, one may wonder if such a Tangram
process can be decomposed into a network of such "hand-
shake components" drawn from a limited set of different
components. Indeed, this is possible. Such networks will
be called handshake circuits (formerly called abstract cir-

cuits, cf. 121). The implementation of Tangram requires
a relatively small set of different handshake components,
basically one for each primitive concept of the language.

The interface of a handshake component to the ex-
ternal world consists of a set of named po&. Ports are
either passive or active, depending on their role during a
handshake. Ports may be undirected ("synchronization
only") or directed (input/output) as in Tangram. Like-
wise, directed ports are typed.

Example. A sequencer is a handshake component
with one passive port a and two active ports b and c. All
three ports are undirected. Once activated along a it will
complete handshakes along b and c sequentially, before
completing the handshake along a. Its behavior is de-
picted by a state diagram below, together with a symbol
for the component. (Passive/active ports are depicted by
open/closed circles at the periphery of the component.
The initial state has been marked with a fat dot).

The drawing convention is that the active ports of the
sequencer are served counter clockwise, starting from its
passive port.

Example. A repeater is a handshake component with
a passive port a and an active port b. Once activated
along a it will repeatedly handshake along b; completion
of the handshake along a will never occur. Symbol and
state diagram are depicted below.

Example. A mizer is a handshake component with
two passive ports b and c and one active port d. A hand-
shake along d is enclosed by either a handshake along b or
one along c; the choice is left to the environment. Hand-
shakes along b and c must be strictly sequential. The
Tangram compiler guarantees the correct usage of mix-
ers. Symbol and state diagram are depicted below.

Two handshake components are connectable w h c
common port names refer to ports of complementary ac-
tivity, and (in the case of directed ports) of complemr-
tary direction and identical types. The sequencer and ttr

386

mixer above (with the given port names) are connectable.
A pair of ports with identical names is called a channel.

A handshake circuit is a pairwise connectable set of
handshake components. Consequently, a port name may
occur at mot& once for a passive port and once for an
active port. Note that this excludes broadcasting among
handshake components. (The broadcast of Tangram is
implemented by York" components.) The cdcrnal ports
of a handshake circuits are the ones whose name occurs
only once.

Example. A handshake circuit consisting of the 8e-

quencer and mixer has passive a and active d as external
ports. The combined behavior (as observable at the ex-
ternal ports) is that of a duplicator: once activated along
a it will complete two handshakes along d, before com-
pleting the handshake along a.

Translation of Tangram programs
into handshake circuits
The translation of Tangram programs into VLSI-circuit
layouts is divided into two steps with handshake circuits
as an intermediary. In this section we address the first
step: the translation of a Tangram program into an cquiu-
dent handshake circuit. This equivalence has two as-
pects.

Firstly, the external ports of a handshake circuit must
match the Tangram ports in direction and type. We shall
make these ports active (this is not essential, but simpli-
fies the presentation of the translation). Furthermore, we
introduce one additional undirected, passive port named
J. ,/,, activates the circuit (starts the execution of the
Tangram program) and Jl concludes the activity in the
circuit (signals the termination of the Tangram program).
Of course, for non-terminating programs, Jl will never

Secondly, the behavior of the handshake circuit as
observable at its external ports must be identical to
the behavior of the Tangram program, when taking the
handshake-eiialii conventions into account.

We view the translation as a function C from the do-
main of all Tangram programs to the domain of hand-
shake circuits. Although the translation method differs
considerably from 131 it yields essentially the same hand-
shake circuits; albeit simpler, more amenable to formal
analysis and easier to extend to larger source languages.

OCCUT.

Here we confine the description of C to that portion of
Tangram that deals with undirected communication.

The definition of C is based on the syntax of Tangram:
it describes a translation rule for each production rule of
the syntax. More technically, C is defined by induction
over the syntax of Tangram. Here we shall adopt a picto-
rial description of C. The application of C to a Tangram
program (P).S is depicted by enclosing the command S
by two circles, and one handshake port for ,/ and for each
element of P. For example, the program (a').S yields

(a').S +

When S is simply a synchronization on port a, the
corresponding handshake circuit consists of a single mm
nector. A connector merely encloses a handshake on its
active port by each handshake that occurs on its passive
port.

In the examples that follow we assume that all sub-
commands have a synchronization port a. When S is of
the form #[TI the translation introduces a repeater.

A simple scheme is used to name the newly introduced
channels, such as J.0 above. T.0 denotes T with '.O" ap-
pended to dl its names. This simple scheme necessitates
the introduction of connectors for the external ports of
T, as exemplified by port a. Thew connectom can be
removed by appropriate renaming of ports. (In an imple
mentation of C this introduction of such connectors can
be avoided).

When S is of the form T; U the translation introduces
a sequencer.

T;U + J< T;U +

For port names and variable names that occur in both
T and U some "glue" components have to be introduced

387

as well: a mixer for each undirected port. For common
directed ports we introduce generalizations of the mixer
that resemble (de-)multiplexers.

When S is of the form TllU the translation introduces
a concursor.

Once activated along d the concursor will complete hand-
shakes along d.0 and d.1 concurrently, before completing
the handshake along d. For port names common to T
and U a synchronizer is introduced. The synchronizer
encloses each handshake on a by handshakes on both a.0
and a.1. The situation becomes slightly more complicated
when we also consider read access to common variables,
where synchronization is undesirable.

The last command form that we shall discuss is the
block command I[a :than' I TI\. Its translation intro-
duces a run component, i.e. a component that is always
ready to engage in a handshake along its passive port.

Example. A systematic application of C, as intro-
duced so far, to the Tangram program for a ternary
semaphore (I Z - , ~ ") . a-; #[b-lla'] yields the following
handshake circuit (the connectors have been removed).

The translation of Tangram programs into handshake
circuits is clearly synfaz directed. It is relatively straight-
forward to extend C to all other production rules of Tan-
gram. They require the introduction of a few more hand-
shake components such as the variable and the transferrer

A variable is a component with a passive write port

active ports, one for input and one for output. A hand-
shake on its passive port, encloses an active fetch of a mes-
sage and a subsequent delivery of that message through
its output port. It transfers a message on request. The
symbol for a transferrer is a circle with a T in it.

The handshake circuit of the BUBBLE program is de-
picted below. The arrows are channels directed according
to direction of data transport. We invite the reader to
compare this handshake circuit with the Tangram p r e
gram of the introduction; the structural similarities are
quite clear. (The condition z > y is stored in an auxiliary
boolean variable g, since its value can be modified during
the execution of the command.)

Id

The C function can easily be adapted for all Tangram

Due to its syntax-directed nature, the translation is
highly transparent. Given this transparency and some
cost/performance data of the handshake components,
some simple rules can be devised to reason about costs
and performance at Tangram level.

Efficiency at the handshake-circuit level may be en-
hanced by refining C to consider special cases, and/or
by applying some 'peep hole" optimizations afterwards.
Such improvements may include the replacement of ex-
pensive subcircuits by cheaper components (Cf. [31).

constructs presented in the section on the language.

(input) and one or more passive read ports (output), all
of the same type. The environment may choose to send
a value to its write port, or may request a value from
one of its read ports. Reading on multiple ports may
occur concurrently and independently. The symbol for a
variable is a circle with its name in it.

A transferrer has a passive undirected port and two

Note that this translation scheme may yield hand-
shake circuits of arbitrary complexity. Nevertheless, clock
signals are absent: all synchronization is by means of
handshakes. Moreover, handshake circuits are delay-
insensitive: their correct operation is independent of
any assumption on delays in handshake Components and
channels, except that the delays be b i t e 1171.

388

The Tangram compiler
The silicon compiler implements the C function adafited
for four-phase handshake circuits. This adaptation af-
fects the C function in a few minor details, because more
optimizations may be considered.

The current version of the compiler implements a ma-
jor portion of Tangram, including all the commands dis-
cussed in the section on Tangram. The implementation of
C greatly benefited from the compiler-construction tool
Elegant [11.

The compiler contains a small circuit/layout library.
Simple handshake components are realized as single stan-
dard cells consisting of a few transistors, e.g.: repeater
(6), sequencer (20), mixer (22), concursor (40) and syn-
chronizer (12). Components that deal with data are pa-
rameterized for their width (in # bits). Simple generators
produce net lists for these components for given parame-
ter values. For the construction of some of these circuits
we have applied the method discussed in [12]. The re-
sulting circuits are fully asynchronous. For the layout
we used the commercially available standard-cell package
Tancell.

Conc Ius ion
The translation of Tangram programs to VLSI circuits is
relatively straightforward and transparent. This trans-
parency enables the VLSI programmer to make the
appropriate trade-offs between silicon area and perfor-
mance.

Handshake circuits are an attractive intermediary be-
tween Tangram and VLSI circuits: the first translation
step may safely ignore all electronic and layout aspects,
the second step has been reduced to the generation of a
limited number of parameterized circuits and the overall
layout.

The overall prospects for applying Tangram to prac-
tical VLSI systems look promising.

Acknowledgements

Acknowledgements are due to Lex Augusteijn and Jan
Stuyt for providing invaluable assistance in the applica-
tion of respectively Elegant and Tancell to the implemen-
tation of Tangram. We also like to mention the numerous
stimulating and inspiring diSCuSaiOnS with Martin Rem on
VLSI programming, handshake circuits and delay insen-
sitivity.

References

C.H. (Kea) van Berkel, Martin Rem, and Ronald W.J.J.
Saeijs. VLSI Programming. In Proc. o j the 1 Q88 IEEE I d .
Conf. on Computer Deaign: VLSI in Computers 8 Procer-
rorr, 1988, 152-156
C.H. (Kees) van Berkel and Ronald W.J.J. Saeijs. Compi-
lation of Communicating Processes into Delay-Insensitive
Circuits. Ibidem., 157-162.
Ronald W.J.J. Saeijs and C.H. (Keea) van Berkel. The
Design of the VLSI ImageGenerator ZaP Ibidem., 163-
166.
C.A.R. Hoare. Communicating Sequential Processes.
Communicdiona of the ACM, 21(8):660477, 1978.

C.A.R. Hoare. Cornmunicoting Sequentid Proceaaer. Se-
rier in Computer Science, PrenticeHall Int., 1985.
INMOS Limited. Occom Progromnu'ng Manud. Serier in
Computer Science, PrenticeHall Int., 1984.
Anne Kaldewaij and Martin Rem A derivation of a eye-
tolic rank order filter with constant rmponw time. In Proc.
oj the I d . Conj. on Mdhemoticr o j Progrom Conatruction,
Groningen, 1989,281-296. Lecture Noter in Computer Sci-
ence, Vol. 375, Springer-Verlag.
Anne Kaldewaij and Gerard Zwaan. A Syatolic D e a b for
Acceptors or regular Languages.. Submitted for Science of
Cornputer Progromm'ng.

1101 Joep L.W. Kemeb and f ib Schalij. VLSI ' g
for the Compact Disc Player. Submitted for Science o j
Computer Programming.

Ill] Joep L.W. Kessels and Martin Rem. Designing sys-
tolic, diatributed buffera with bounded response time. DiS-
triluted Computing, Vol. 4, 1990, 37-44.

1121 Alain J. Martin. The design of a self-timed circuit for dia-
tributed mutual exclusion. In Henry Fuchs, editor, Chopel
Hill Conference on VLSI, pages. 245-260, Computer Sci-
ence Press, 1985.

113) Alain J. Martin. Syntax-directed 'lkanslation of Con-
current Programs into Self-timed Circuita. In Proc. MIT
Conj. on VLSI, pages 35-50. 1988.

[l4] Alain J. Martin. The Deuign of an Asynchronous Mi-
croprocessor. In Proc. Decennicol Cdtech Conj. on VLSI,
pages 351-373, C.L. Seitr ed., MIT Prw, 1989.

1151 Martin Rem. 'lkace Theory and Systolic Computations.
In J.W. Bakker et. al., ed., PARLE Pordlel Architecturea
ond Languoger in Europe, pp. 14-33, Lecture Noter in
Cornputer Science, Vol. ,958, Springer-Verlag, 19123.

[16] Charlea L. Seitr. System Timing. In C.A. Mead and
LA. Conway, Introduction t o VLSI Syrtema, Chapter 7,
Addison- Wesley, 1980.

fioce Theory ond VLSI
Derign. Lecture Noter in Computer Science, Vol. gO0,
Springer-Verlag, 1985.

117) Jan L.A. van de Snepscheut.

[I] Lex Augusteijn. The Elegant compiler generator system.
In Attribute Grommorr and their Applicotiona, Paris, 1990,
238-254. Lecture Noter in Computer Science, Vol. 461,
Springer-Verlag.

389

