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The VLSI-programming language Tangram 
and its translation into handshake circuits 

Kees van Berkel Joep Kessels Marly Ronckep Ronald Saeijs 

Philips Research Laboratories, 
P.O. Box 80.000, 5600 J A  Eindhoven, The Netherlands 

Abst rac t  

In this paper we view VLSI design as a programming 
activity. VLSI designs are described in the algorithmic 
programming language Tangram. The paper gives an 
overview of Tangram, providing sufficient detail to in- 
vite the reader to try a small VLSI program himself. 
Tangram programs can be translated into handshake cir- 
cuits, networks of elementary components that interact 
by handshake signaling. We have constructed a silicon 
compiler that automates this translation and converts 
these handshake circuits into asynchronous circuits and 
subsequently into VLSI layouts. 

Introduction 
The picture below shows a VLSI layout generated by the 
Tangram (silicon) compiler. The input for this layout was 
the Tangram program BUBBLE, a cell of a systolic block 
sorter as described in 121. 

For completeness the Tangram program BUBBLE is 
repeated: 

Frits Schalij 

N= const 64 k C= type  (0..127) 

(a?C t b!C). 
I[ x, y: var C 

I 

I #I a?Y 
; #(N-l) l  a?x 

; case(x>y):[true -+ b!y; y:=x 0 false + b ! ~ ]  
1 

; b!y 
1 

A VLSI program is the description of a VLSI circuit 
in an algorithmic language. VLSI programming denotes 
the systematic development of such programs from speci- 
fications, such that the corresponding compiled circuits 
satisfy the specified cost and performance constraints. 
Our VLSI-programming language Tangram is based on 
Hoare’s work on Communicating Sequential Processes 
([SI and [SI). CSP form an attractive basis for a VLSI- 
programming language: 

II - 

It is one of the best studied approaches to concur- 
rency and communication in computing science. A 
body of theory exists to assist in the specification 
and systematic development of programs (e.g. [IS]). 

0 CSP is a general purpose language. The most di- 
verse VLSI-systems have been described in CSP- 
based programming languages, including: mutual 
exclusion on a ring 1121, various systolic arrays [15], 
a block sorter (as part of a sourceencoder of a digi- 
tal video recording application) and FIR filters [2], a 
graphics processor 141, a microprocessor [14], a sys- 
tolic rank-order filter [a], various types of queues 1111, 
various Compact Disc data-processing elements [ 101 
and a regular-expression recognizer [9]. 

0 For a given functional specification it is often pos- 
sible to develop a range of programs, such that the 
corresponding compiled circuits cover a significant 
part of the low-cost to high-performance spectrum 
of VLSI implementations 121. Simple rules allow the 
VLSI programmer to predict the cost/performance 
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properties of the compiled circuit on the basis of his 
Program. 

0 Programs can be translated fully automatically into 
efficient VLSI circuits (Cf. [13] and [3 ] ) .  

Tangram is a simple general-purpose VLSI program- 
ming language. It enables system designers without in- 
depth kncrwledge of VLSI circuits and IC technology to 
approach the design of complex VLSI systems as a prm 
grammirig task. We expect that VLSI programming and 
silicon compiIation will result in considerable savings in 
design costs as well as design time. 

The work presented here is a continuation of the work 
reported in [2] and [3] .  Significant progress has been made 
with respect to simplification, generalization, formaliza- 
tion and implementation. 

The paper addresses the principles behind the silicon 
compiler in four sections 

the VLSI-programming language Tangram, 

the intermediate representation handshake circuits, 

the translation of Tangram programs into handshake 
circuits, 

some implementation aspects, including a sketch of 
the implementation of handshake circuits as asyn- 
chronous VLSI circuits. 

Since May 1990 we have been compiling Tangram pro- 
grams automatically into CMOS standard-cell layouts. 

Tangram' 

The language Tangram is based on CSP [6] .  In Tan- 
gram the programmer can indicate whether commands 
(statements) are to  be executed sequentially or concur- 
rently. Mutually concurrent commands can interact by 
synchronized COmmUniCatiOM along so-called channels. 
We distinguish direcbd channels along which values can 
be communicated from undirected channels, which are 
merely used for synchronization. A directed channel con- 
nects one output port to one or more input ports (broad- 
casting is allowed). A communication along a channel 
requires the simultaneous participation of all communi- 
cation commands involved. 
Tangram contains several elementary commands; the 

most important ones are discussed below. 

0 A s s i i e n t  command z:=E.  
The value of expression E is assigned to variable z. 

'Tan(lram is an ancient C h i n e  pude.  It COMMC. of neven 
elementary pieces (five triangIes, one aquare and one rhomboid) 
and a simple compoetion rule (pi- may not -lap). It dlows 
the conntruction of a nearly endlem variety of fancinating shapes. 

e Output command a!E. 
The value of expression E is output through output 
port a. 

0 Input command a?z. 
A value is input through input port a and stored in 
variable 2. The types of port a and variable z have 
to be the same. 

Synchronization command 6: 
Such a command achieves a synchronization among 
d l  commands connected to channel b. 

There are several ways to construct new commands 
from existing ones, say T and U .  

Sequential composition T ; U .  
First T is executed and subsequently U. Ports oc- 
curring in both commands must have the same di- 
rection. 

Concurrent composition T 11 U .  
Commands T and U are executed concurrently. The 
compound command terminates when both subcorn- 
man& are terminated. Both wmmauds can only 
interact by communication along channels. When 
one command contains an a-t (or input) to 
a variable, the other command may not access this 
variable. The 11 operator binds more then the ; o p  
erator. 

Infinite repetition #[TI. 
Command T is repeated infinitely often and, there- 
fore, this command never terminates. 

Finite repetition # N [ T ]  
Command T is executed N times, with N a natural 
constant. 

The case command allows the selection of one com- 
mand out of a set depending on the value of an ex- 
pression. For instance, the value of boolean expres- 
sion B in 
case B : [true -, T 1 falee + U] 
determines whether T or U is executed. 

Block command I[L 1 T]I, 
where L is a (possibly empty) list of definitions and 
declarations. All variables and channels used in a 
command have to be declared in a surrounding block. 
The language allows the definitions of, for instance, 
constants and types. Several definitions and declara- 
tions can be combined into a liit using the separator 
symbol &. For example, the liit 
bit = type(O..l) dc 6 : var bit 
defines a type bit and declares a variable 6 of that 
type. 
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A Tangram program has the form ( P ) . T ,  where P is 
a list of ports and T a command. The port list P con- 
tains all external ports, i.e. the ports through which the 
corresponding VLSI circuit communicates with its envi- 
ronment. For each port it is indicated whether it is an 
input port, output port or undirected port. For each di- 
rected port its type is also indicated. The command T 
describes the behavior of the circuit. An alternative form 
of a Tangram program is L I (P].T, where L is a list of 
definitions that may be used in P and T. 

With this brief overview of Tangram the reader should 
be able to understand the program of BUBBLE in the 
introduction. The additional constructs include guarded 
commands, arrays, tuples, arithmetic operators, proce- 
dures and functions. 

Tangram is similar to Occam [7]. Most differences 
can be understood from the differences between the tar- 
get media: VLSI circuits vs. Transputer networks. E.g. 
Tangram supports broadcast, finer data types and shar- 
ing of functions, but does not provide facilities for assign- 
ing procedures and channels to physical processors and 
physical channels. 

Handshake circuits 

The synchronization primitive of CSP is sometimes re- 
ferred to as the "CSP handshake". Indeed, this synchre 
nization can be implemented by handshake signaling (Cf. 
1161). Although most practical implementations are based 
on a &phase handshake, a %phase protocol simplifies the 
further presentation and suffices to capture the essence of 
handshake signaling. 

In its simplest form 2-phase handshake signaling is 
described for a channel connecting exactly two processes. 
One process, the active one, may issue a "request" sig- 
nal along that channel (phase 1). The other process, the 
passive one, may respond to that signal by issuing an 
"acknowledge" signal along the same channel (phase 2); 
the reception of this signal by the former process com- 
pletes the handshake. For channel a the two signals will 
be denoted by a0 and a1 respectively. 

In the case of directed communications the data may 
be encoded in either the request or the acknowledge (bi- 
directional data transfer can also be considered, but is 
not part of Tangram). 

When we adopt handshake signaling for the imple- 
mentation of Tangram synchronization, communicating 
Tangram processes will be implemented as networks of 
"components" (one for each process) that interact by 
handshake signaling. When we carry this l i e  of think- 
ing one step further, one may wonder if such a Tangram 
process can be decomposed into a network of such "hand- 
shake components" drawn from a limited set of different 
components. Indeed, this is possible. Such networks will 
be called handshake circuits (formerly called abstract cir- 

cuits, cf. 121). The implementation of Tangram requires 
a relatively small set of different handshake components, 
basically one for each primitive concept of the language. 

The interface of a handshake component to the ex- 
ternal world consists of a set of named po&. Ports are 
either passive or active, depending on their role during a 
handshake. Ports may be undirected ("synchronization 
only") or directed (input/output) as in Tangram. Like- 
wise, directed ports are typed. 

Example. A sequencer is a handshake component 
with one passive port a and two active ports b and c. All 
three ports are undirected. Once activated along a it will 
complete handshakes along b and c sequentially, before 
completing the handshake along a. Its behavior is de- 
picted by a state diagram below, together with a symbol 
for the component. (Passive/active ports are depicted by 
open/closed circles at the periphery of the component. 
The initial state has been marked with a fat dot). 

The drawing convention is that the active ports of the 
sequencer are served counter clockwise, starting from its 
passive port. 

Example. A repeater is a handshake component with 
a passive port a and an active port b. Once activated 
along a it will repeatedly handshake along b; completion 
of the handshake along a will never occur. Symbol and 
state diagram are depicted below. 

Example. A mizer is a handshake component with 
two passive ports b and c and one active port d.  A hand- 
shake along d is enclosed by either a handshake along b or 
one along c;  the choice is left to the environment. Hand- 
shakes along b and c must be strictly sequential. The 
Tangram compiler guarantees the correct usage of mix- 
ers. Symbol and state diagram are depicted below. 

Two handshake components are connectable w h c  
common port names refer to ports of complementary ac- 
tivity, and (in the case of directed ports) of complemr- 
tary direction and identical types. The sequencer and ttr 
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mixer above (with the given port names) are connectable. 
A pair of ports with identical names is called a channel. 

A handshake circuit is a pairwise connectable set of 
handshake components. Consequently, a port name may 
occur at mot& once for a passive port and once for an 
active port. Note that this excludes broadcasting among 
handshake components. (The broadcast of Tangram is 
implemented by York" components.) The cdcrnal ports 
of a handshake circuits are the ones whose name occurs 
only once. 

Example. A handshake circuit consisting of the 8e- 

quencer and mixer has passive a and active d as external 
ports. The combined behavior (as observable at the ex- 
ternal ports) is that of a duplicator: once activated along 
a it will complete two handshakes along d, before com- 
pleting the handshake along a. 

Translation of Tangram programs 
into handshake circuits 
The translation of Tangram programs into VLSI-circuit 
layouts is divided into two steps with handshake circuits 
as an intermediary. In this section we address the first 
step: the translation of a Tangram program into an cquiu- 
dent  handshake circuit. This equivalence has two as- 
pects. 

Firstly, the external ports of a handshake circuit must 
match the Tangram ports in direction and type. We shall 
make these ports active (this is not essential, but simpli- 
fies the presentation of the translation). Furthermore, we 
introduce one additional undirected, passive port named 
J. ,/,, activates the circuit (starts the execution of the 
Tangram program) and Jl concludes the activity in the 
circuit (signals the termination of the Tangram program). 
Of course, for non-terminating programs, Jl will never 

Secondly, the behavior of the handshake circuit as 
observable at its external ports must be identical to 
the behavior of the Tangram program, when taking the 
handshake-eiialii conventions into account. 

We view the translation as a function C from the do- 
main of all Tangram programs to the domain of hand- 
shake circuits. Although the translation method differs 
considerably from 131 it yields essentially the same hand- 
shake circuits; albeit simpler, more amenable to formal 
analysis and easier to extend to larger source languages. 

OCCUT. 

Here we confine the description of C to that portion of 
Tangram that deals with undirected communication. 

The definition of C is based on the syntax of Tangram: 
it describes a translation rule for each production rule of 
the syntax. More technically, C is defined by induction 
over the syntax of Tangram. Here we shall adopt a picto- 
rial description of C. The application of C to a Tangram 
program (P).S is depicted by enclosing the command S 
by two circles, and one handshake port for ,/ and for each 
element of P. For example, the program (a').S yields 

(a').S + 

When S is simply a synchronization on port a, the 
corresponding handshake circuit consists of a single mm 
nector. A connector merely encloses a handshake on its 
active port by each handshake that occurs on its passive 
port. 

In the examples that follow we assume that all sub- 
commands have a synchronization port a. When S is of 
the form #[TI the translation introduces a repeater. 

A simple scheme is used to name the newly introduced 
channels, such as J.0 above. T.0 denotes T with '.O" ap- 
pended to dl its names. This simple scheme necessitates 
the introduction of connectors for the external ports of 
T, as exemplified by port a. Thew connectom can be 
removed by appropriate renaming of ports. (In an imple 
mentation of C this introduction of such connectors can 
be avoided). 

When S is of the form T; U the translation introduces 
a sequencer. 

T;U + J< T;U + 

For port names and variable names that occur in both 
T and U some "glue" components have to be introduced 
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as well: a mixer for each undirected port. For common 
directed ports we introduce generalizations of the mixer 
that resemble (de-)multiplexers. 

When S is of the form TllU the translation introduces 
a concursor. 

Once activated along d the concursor will complete hand- 
shakes along d.0 and d.1 concurrently, before completing 
the handshake along d. For port names common to T 
and U a synchronizer is introduced. The synchronizer 
encloses each handshake on a by handshakes on both a.0 
and a.1. The situation becomes slightly more complicated 
when we also consider read access to common variables, 
where synchronization is undesirable. 

The last command form that we shall discuss is the 
block command I[a :than' I TI\. Its translation intro- 
duces a run component, i.e. a component that is always 
ready to engage in a handshake along its passive port. 

Example. A systematic application of C, as intro- 
duced so far, to the Tangram program for a ternary 
semaphore ( I Z - , ~ " ) .  a-; #[b-lla'] yields the following 
handshake circuit (the connectors have been removed). 

The translation of Tangram programs into handshake 
circuits is clearly synfaz directed. It is relatively straight- 
forward to extend C to all other production rules of Tan- 
gram. They require the introduction of a few more hand- 
shake components such as the variable and the transferrer 

A variable is a component with a passive write port 

active ports, one for input and one for output. A hand- 
shake on its passive port, encloses an active fetch of a mes- 
sage and a subsequent delivery of that message through 
its output port. It transfers a message on request. The 
symbol for a transferrer is a circle with a T in it. 

The handshake circuit of the BUBBLE program is de- 
picted below. The arrows are channels directed according 
to direction of data transport. We invite the reader to 
compare this handshake circuit with the Tangram p r e  
gram of the introduction; the structural similarities are 
quite clear. (The condition z > y is stored in an auxiliary 
boolean variable g, since its value can be modified during 
the execution of the command.) 

Id 

The C function can easily be adapted for all Tangram 

Due to its syntax-directed nature, the translation is 
highly transparent. Given this transparency and some 
cost/performance data of the handshake components, 
some simple rules can be devised to reason about costs 
and performance at Tangram level. 

Efficiency at the handshake-circuit level may be en- 
hanced by refining C to consider special cases, and/or 
by applying some 'peep hole" optimizations afterwards. 
Such improvements may include the replacement of ex- 
pensive subcircuits by cheaper components (Cf. [ 31). 

constructs presented in the section on the language. 

(input) and one or more passive read ports (output), all 
of the same type. The environment may choose to send 
a value to its write port, or may request a value from 
one of its read ports. Reading on multiple ports may 
occur concurrently and independently. The symbol for a 
variable is a circle with its name in it. 

A transferrer has a passive undirected port and two 

Note that this translation scheme may yield hand- 
shake circuits of arbitrary complexity. Nevertheless, clock 
signals are absent: all synchronization is by means of 
handshakes. Moreover, handshake circuits are delay- 
insensitive: their correct operation is independent of 
any assumption on delays in handshake Components and 
channels, except that the delays be b i t e  1171. 
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The Tangram compiler 
The silicon compiler implements the C function adafited 
for four-phase handshake circuits. This adaptation af- 
fects the C function in a few minor details, because more 
optimizations may be considered. 

The current version of the compiler implements a ma- 
jor portion of Tangram, including all the commands dis- 
cussed in the section on Tangram. The implementation of 
C greatly benefited from the compiler-construction tool 
Elegant [ 11. 

The compiler contains a small circuit/layout library. 
Simple handshake components are realized as single stan- 
dard cells consisting of a few transistors, e.g.: repeater 
(6), sequencer (20), mixer (22), concursor (40) and syn- 
chronizer (12). Components that deal with data are pa- 
rameterized for their width (in # bits). Simple generators 
produce net lists for these components for given parame- 
ter values. For the construction of some of these circuits 
we have applied the method discussed in [12]. The re- 
sulting circuits are fully asynchronous. For the layout 
we used the commercially available standard-cell package 
Tancell. 

Conc Ius ion 
The translation of Tangram programs to VLSI circuits is 
relatively straightforward and transparent. This trans- 
parency enables the VLSI programmer to make the 
appropriate trade-offs between silicon area and perfor- 
mance. 

Handshake circuits are an attractive intermediary be- 
tween Tangram and VLSI circuits: the first translation 
step may safely ignore all electronic and layout aspects, 
the second step has been reduced to the generation of a 
limited number of parameterized circuits and the overall 
layout. 

The overall prospects for applying Tangram to prac- 
tical VLSI systems look promising. 
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