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Abstract. Formal verification of asynchronous circuits is known to be
challenging due to highly non-deterministic behavior exhibited in these
systems. One of the main challenges is that it is very difficult to come
up with a systematic approach to establishing invariance properties,
which are crucial in proving the correctness of circuit behavior. Non-
determinism also results in asynchronous circuits having a complex state
space, and hence makes the verification task much more difficult than
in synchronous circuits. To ease the verification task by reducing non-
determinism, and consequently reducing the complexity of the set of ex-
ecution paths, we impose design restrictions to prevent communication
between a module M and other modules while computations are still
taking place that are internal to M . These restrictions enable our veri-
fication framework to verify loop invariants efficiently via induction and
subsequently verify the functional correctness of asynchronous circuit
designs. We apply a link-joint paradigm to model asynchronous circuits.
Our framework applies a hierarchical verification approach to support
scalability. We demonstrate our framework by modeling and verifying
the functional correctness of a 32-bit asynchronous serial adder.

Keywords: asynchronous circuit modeling, asynchronous circuit veri-
fication, non-deterministic behavior, hierarchical verification, link-joint
model, mechanical theorem proving, self-timed serial adder

1 Introduction

Asynchronous (or self-timed) circuits have shown their potential advantages over
synchronous (or clock-driven) circuits for low power consumption, high operat-
ing speed, low electromagnetic interference, elimination of clock skew problems,
better composability and modularity in large systems, etc [10,15]. Nonetheless,
the asynchronous paradigm exposes great challenges in both design and verifica-
tion that are not found in the clocked paradigm. It is still a daunting challenge
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to verify the correctness of asynchronous systems at large scale, mainly due to
the high degree of non-determinism for event ordering inherent in such systems.
Since verification is a critical component of any complex digital design, scalable
methods for asynchronous system verification are highly desirable.

Our effort is complementary to the work introduced by Park et al. [11] to vali-
date timing constraints for delay-insensitive handshake components. The authors
used model-checking to perform timing verification on handshake components,
to validate the correctness of local communication or handshake protocols with
respect to delays in gates and wires. Our approach relies on such analysis to jus-
tify our abstraction of self-timed circuits to finite-state-machine representations
of networks of communication channels, thus ignoring circuit-level timing con-
straints. Using the ACL2 theorem-proving system [7], we present a framework
for specifying and verifying the functional correctness of those networks.

Our work focuses on developing scalable methods for reasoning about the
functional correctness of self-timed systems. Our approach applies induction
reasoning to establishing loop invariants of self-timed systems. We use the DE
(Dual-Eval) system [3], which is built using the ACL2 theorem-proving system,
to specify and verify self-timed circuit designs. DE is a formal hardware descrip-
tion language that permits the hierarchical definition of finite-state machines.
It has shown its capabilities to specify and verify synchronous microprocessor
designs [1,4]. A key feature of the DE system is that it supports hierarchical
verification, which is critical in verifying the correctness of circuit behavior at
large scale. It also provides a library of verified hardware circuit generators that
can be used to build and analyze more complex hardware systems [1].

We use DE to model self-timed circuits as networks of communication and
computation primitives that operate with each other locally via the link-joint
model proposed by Roncken et al. [13], a universal model for various self-timed
circuit families. To our knowledge, we are the first to model self-timed circuits us-
ing the link-joint model in a theorem-proving system. We also develop a method
for verifying functional properties of self-timed circuits constructed via the link-
joint model.

We model the non-determinism of self-timed circuit behavior by consulting
an oracle field — an external field we inject into the circuit model. The chal-
lenge in reasoning about the correctness of non-deterministic systems is that
their state space is not only large as compared to synchronous systems, but
also ill-structured in such a way that computing invariants in those systems
becomes highly complicated. Since invariants are crucial properties for proving
the correctness of circuit behavior, we are interested in developing a method
for computing invariants of self-timed circuits systematically, thus ultimately
making the verification of these systems tractable. Our approach attempts to
reduce non-determinism, consequently reducing the complexity of the set of exe-
cution paths, by imposing design restrictions to prevent communication between
a module M and other modules while computations are still taking place that
are internal to M . These design restrictions enable our verification approach to
verify loop invariants efficiently via induction and subsequently verify the func-
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tional correctness of self-timed circuit designs. We demonstrate our framework
by modeling and verifying the functional correctness of a 32-bit self-timed serial
adder 3. This provides a significant first step towards the formal verification of
arbitrary asynchronous designs.

The rest of the paper is organized as follows. Related work is given in Sec-
tion 2. An overview of the DE system is presented in Section 3. Section 4
describes our self-timed circuit modeling and verification approach. Section 5
demonstrates our approach by describing our modeling and verification of a
32-bit self-timed serial adder. Possible future work and concluding remarks are
given in Sections 6 and 7, respectively.

2 Related Work

Asynchronous circuit verification is an active research area in the hardware com-
munity. Many efforts in this area have focused on verifying properties of asyn-
chronous circuits by applying timing verification techniques [6,8,9,11]. Park et
al. [11] presented their framework, called ARCtimer, for modeling, generating,
verifying, and enforcing timing constraints for individual delay-insensitive hand-
shake components. ARCtimer uses the general-purpose model checker NuSMV
to perform timing verification of handshake components. The authors’ main goal
was to verify that the network of logic gates and wires and their delays meet the
component’s communication protocol specification. Our goal is complementary:
to verify that the network of handshake components and their protocols meets
its functional specification, while ignoring circuit-level timing constraints that
can be handled by tools like ARCtimer.

Verbeek and Schmaltz [17] formalized and verified with the ACL2 theorem
prover blocking (not transmitting data) and idle (not receiving data) conditions
over delay-insensitive primitives in the Click library. These conditions were then
used to derive SAT/SMT instances from asynchronous circuits built out of these
primitives for checking deadlock freedom in those circuits. While our approach
also uses ACL2 to model and verify self-timed circuits, we verify the functional
correctness of self-timed circuit models.

Clarke and Mishra [2] employed model checking to automatically verify some
safety and liveness properties of a self-timed FIFO queue element specified
in Computation Tree Logic (CTL). The authors also presented a hierarchical
method for verifying large and complex circuits. Nevertheless, their approach
imposed an unrealistic assumption on self-timed circuits that each gate has one
unit delay. Our approach, on the other hand, does not restrict gate delays except
that they are finite.

Other previous work on asynchronous circuit verification attempted to re-
duce non-determinism by adding restrictions to circuit designs, as presented by
Srinivasan and Katti [16] and Wijayasekara et al. [18]. Srinivasan and Katti [16]

3 The source code for this work is available at https://github.com/acl2/acl2/tree/
master/books/projects/async/serial-adder
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applied a refinement-based method for verifying safety properties of desynchro-
nized pipelined circuits, while Wijayasekara et al. [18] applied the same method
for verifying the functional equivalence of NULL Convention Logic (NCL) cir-
cuits against their synchronous counterparts. While their verification frameworks
are highly automated by using decision procedures, both provided quite limited
scalability and no liveness properties were verified. Although we also impose de-
sign restrictions to reduce non-determinism, our approach is capable of verifying
liveness properties as described in Section 5 in our account of the verification of
a 32-bit self-timed serial adder. Our approach exploits hierarchical verification
and induction reasoning to support scalability.

3 The DE System

DE is a formal occurrence-oriented hardware description language developed in
ACL2 for describing Mealy machines [3]. It has been shown to be a valuable
tool in formal specification and verification of hardware designs [14,5]. The op-
erational semantics for the DE language is implemented as an output “wire”
evaluator, se, and a state evaluator, de. The se function evaluates a module
and returns its outputs as a function of its inputs and its current state. The de

function evaluates a module and returns its next state; this state will be struc-
turally identical to the module’s current state, but with updated values. The
interested reader may refer to Hunt’s paper [3] for details about the se and de

functions.
In synchronous circuits, storage elements update their values simultaneously

at every global clock tick, where the clock rate is fixed. Hence the duration
represented by two consecutive de evaluations of a synchronous module is fixed
and exactly one clock cycle. In self-timed circuits, however, storage elements
update their values whenever their local communication conditions are met; and
hence the duration represented by two consecutive de evaluations of a self-timed
module varies.
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Fig. 1. Half-adder (left) and full-adder (right)

A DE description is an ACL2 constant containing an ordered list of modules,
which we call a netlist. Each module consists of five elements in the following
order: a netlist-unique module name, inputs, outputs, internal states represented
by a list of occurrence names identifying those occurrences that contain state-
holding devices, and occurrences. Each occurrence consists of four elements in
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the following order: a module-unique occurrence name, outputs, a reference to a
primitive or defined module, and inputs. For instance, the DE descriptions of the
half-adder and full-adder netlists shown in Figure 1 are described below. Note
that these adders are purely combinational-logic circuits; they do not contain
any internal state.

(defconst *half-adder*
’((half-adder

(a b)
(sum carry)
() ;; No internal state
((g0 (sum) xor (a b))
(g1 (carry) and (a b))))))

(defconst *full-adder*
(cons ’(full-adder

(c a b)
(sum carry)
() ;; No internal state
((t0 (sum1 carry1) half-adder (a b))
(t1 (sum carry2) half-adder (sum1 c))
(t2 (carry) or (carry1 carry2))))

*half-adder*))

A key feature of the DE system is that it supports hierarchical verification,
which is critical in verifying the correctness of large circuit descriptions. The idea
is to verify the correctness of a larger module by composing verified submodules
without delving into details about the submodules. More specifically, each time
a module is specified, we prove a value lemma specifying the module’s outputs
and a state lemma specifying the module’s next state. If a module does not
have an internal state (purely combinational), only the value lemma need be
proven. These lemmas are used to prove the correctness of yet larger modules
containing these submodules, without the need to dig into any details about
the submodules. Such an approach can scale to very large systems, as has been
shown on contemporary x86 designs at Centaur Technology [14]. We refer the
interested reader to Hunt’s paper [3] for an example of the value lemma of the
full-adder mentioned above.

4 Modeling and Verification Approach

We model self-timed circuits by (1) adding local signaling to state-holding de-
vices, (2) establishing local communication protocols, and (3) employing an ora-
cle, which we call a collection of go signals, for modeling non-deterministic circuit
behavior due to variable delays in wires and gates. The details of our modeling
approach are described below.

In the clock-driven design paradigm, state-holding devices are all governed
by a global clock signal such that their internal states are updated at the same
time when the clock “ticks”, which is simulated by a de evaluation in the DE
system. There is no such global clock signal in the self-timed design paradigm.

A Framework for Asynchronous Circuit Modeling 7
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Fig. 2. Simple self-timed communication circuit using the link-joint model from Ron-
cken et al. [13]

Thus, when a self-timed circuit is simulated by a de evaluation, its state-holding
elements will update their states based on their inputs.

For establishing local communication protocols, we model the link-joint model
introduced by Roncken et al. [13]. Our rationale for formalizing this model is the
authors’ demonstration that it is a universal communication model for various
circuit families. In this model, links are communication channels in which data
and full/empty states are stored, while joints are handshake components that
implement flow control and data operations. Roughly speaking, joints are the
meeting points for links to coordinate states and exchange data. Figure 2 shows
an example of a simple self-timed communication circuit using the link-joint
model. This circuit consists of a joint associated with an incoming link L0 and
an outgoing link L1. In general, a joint can have several incoming and outgoing
links connected to it, as depicted in Figure 3.

Links receive fill or drain commands from and report their full/empty states
and data to their connected joints. A full link carries valid data, while an empty
link carries data that are no longer or not yet valid. When a link receives a fill
command, it changes its state to full. A link will change to the empty state if it
receives a drain command. We use a set-reset (SR) latch to model the full/empty
state of a link, as illustrated by the lower box in each link shown in Figure 2 4.
The interested reader may refer to Roncken et al.’s paper [13] for other options
of link control circuitry.

Joints receive the full/empty states of their links and issue the fill and drain
commands when their communication conditions are satisfied. The control logic
of a joint is an AND function of the conditions necessary for it to act. To enable a
joint-action, all incoming links of a joint must be full and all outgoing links must

4 Using SR latches in this manner requires an implementation to assure sufficient delay
in the AND function to prevent overlap in the S and R inputs. This is handled at
the circuit level by Park et al. [11].
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be empty (see the AND gates in Figures 2 and 3). Due to arbitrary delays in wires
and gates, enabled joints may fire in any order. We model the non-deterministic
circuit behavior by associating each joint with a so-called go signal as an extra
input to the AND function in the control logic of that joint. The value of the go
signal will indicate whether the corresponding joint will fire when it is enabled.
The idea of using go signals to model non-determinism was presented in a paper
by Roncken et al. [12]. In our framework, when applying the de function that
computes the next state of a self-timed circuit, only enabled joints with high
values of the go signals will fire. When a joint fires, the following three actions
will be executed in parallel 5:

– transfer data computed from the incoming links to the outgoing links,
– fill the outgoing links, make them full,
– drain the incoming links, make them empty.

Below is our DE description of the self-timed module shown in Figure 2,
where D0 and D1 are one-bit latches, and the combinational logic (Comb. Logic)
representing the data operation of the joint is simply a one-bit buffer. This
module contains state-holding devices S0, D0, S1, and D1.

’(link-joint
(s0-act s1-act d0-in go)
(d1-out)
(s0 d0 s1 d1) ;; Internal states
(;; Link L0
(s0 (s0-status) sr (s0-act fire))
(d0 (d0-out d0-out-) latch (s0-act d0-in))
;; Link L1
(s1 (s1-status) sr (fire s1-act))
(d1 (d1-out d1-out-) latch (fire d1-in))
;; Joint
(j (fire) joint-cntl (s0-status s1-status go))
(h (d1-in) buffer (d0-out))))

We consider all possible interleavings of the go signals’ values when reasoning
about the correctness of circuit behavior. The only requirement is that when
applying the de function to compute the next state of a module, the go signals
are high for at least one enabled joint (if any such joint exists). We call this
restriction the single-step-progress requirement.

Our framework exploits a hierarchical verification approach to formalizing
single transitions of circuit behavior (simulated by se and de functions), as
described in Section 3. The verification process at the module level requires
us to show how several asynchronous blocks can be interconnected to provide
provably correct, higher level functions. Our framework currently treats modules

5 The work done by Park et al. [11] used ARCtimer to generate and validate timing
constraints in joints. Their framework added sufficient delay to the control logic of
each joint to guarantee that the clock pulse is wide enough for the three mentioned
actions to be properly executed when the joint fires. Our work assumes that we have
a valid circuit that satisfies necessary circuit-level timing constraints, as guaranteed
by ARCtimer.

A Framework for Asynchronous Circuit Modeling 9



fullin0...

fullinm

...

GO

fullout0...

fulloutn

...

drain0 ...
drainm

fill0...
filln

Comb. Logic

Din0
...

Dinm

Dout0
...

Doutn

Fig. 3. Sketch of a joint with m incoming and n outgoing links [13]

as “complex” links that communicate with each other via local communication
protocols. Hence, self-timed modules report both data and communication states
to the joints connecting those modules. In the future, we plan to explore a notion
of modules being treated as “complex” joints 6.

The communication state of a self-timed module is more complicated than
that of a primitive link in the sense that it can be ready to send and receive data
at the same time, or “not ready” to communicate with its connected modules.
For this reason, self-timed modules use separate incoming and outgoing com-
munication signals, whereas primitive links only need one full/empty signal for
both incoming and outgoing communications. For example, the ready-in- (active
low) and ready-out (active high) output signals of the module in Figure 4 are
both active at the same time when the two links on the left side are empty and
the three links on the right side are full. This module is in the not-ready state
when the two links on the left side are full and the three links on the right side
are empty.

In arbitrarily non-deterministic systems, the state space may not exhibit a
clear structure for computing invariants effectively. Verification of such systems
may require exploring the entire state space. To simplify the verification task by
reducing non-determinism, and consequently reducing the complexity of the set
of execution paths, we impose restrictions on circuit designs such that a module
is ready to communicate with other modules only when it finishes all of its

6 We choose to model modules as links for the purpose of storage-free connections
between modules, since they are connected via storage-free joints in this setting.
However, this modeling does not keep to the spirit of the link-joint paradigm in
which computation is supposed to be done entirely in joints and links serve only to
store data [13].
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Fig. 4. Example of a self-timed module containing one joint with two incoming and
three outgoing primitive links. The flow control of the joint is not shown in the figure
for the sake of simplicity. Note that a self-timed module can contain several links and
joints. We use this simple example for pedagogical purposes.

internal operations and becomes quiescent. By adding these restrictions, the state
space is not only reduced but, more importantly, it also exhibits a structure for
establishing loop invariants efficiently via induction. These restrictions guarantee
that every module will reach a fixed point before it can communicate with other
modules, and thus enable our framework to establish invariants and subsequently
verify the functional correctness of circuit designs.

5 32-Bit Self-Timed Serial Adder Verification

In this section we demonstrate our framework by describing our modeling and
verification of a 32-bit self-timed serial adder. This relatively simple example is
sufficiently complex to demonstrate the generality of our approach. First let us
introduce the shift register concept, which is used in constructing a serial adder.
A shift register is a state-holding device that shifts in the data present at its
input and shifts out the least significant bit (LSB) in the bit-vector whenever the
register’s advance (“clock”) input transitions from low to high. Shift registers
can have both parallel (bit-vector) and serial (single-bit) inputs and outputs.
Figure 5 illustrates an example of a serial-in, serial-out, and parallel-out n-bit
shift register. The figure shows that the shift register outputs both the LSB
(serial-out) and the entire n-bit vector (parallel-out), but it only accepts single-
bit inputs (serial-in). When the write/shift signal is high, the value of Shift-Reg
will be shifted right by one position and the bit-in will be stored in Shift-Reg at
the most-significant-bit (MSB) position.

A Framework for Asynchronous Circuit Modeling 11
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Fig. 5. Serial-in, serial-out, and parallel-out n-bit shift register

Table 1. 4-bit serial addition example. The bit-in is 0 for both shift registers A and B
in this example.

A B S si ci+1

1010 0011 1xxx 1 0

0101 0001 01xx 0 1

0010 0000 101x 1 0

0001 0000 1101 1 0

A serial adder is a digital circuit that performs binary addition via bit addi-
tions, from the LSB to MSB, one at a time. Bit additions are performed using a
1-bit full-adder to generate a sum bit and a carry bit, and two input operands
and the accumulated sum are stored in the shift registers. Table 1 shows a 4-bit
serial addition example.

We construct a 32-bit self-timed serial adder using the link-joint model, i.e.,
the communications between state-holding elements in the circuit are established
via the link-joint model. Figure 6 shows the datapath of a 32-bit self-timed serial
adder; the control path is elided for the sake of simplicity 7. In terms of the link-
joint model, the figure displays only the data operations of the joints (circles)
and the link data (rectangles) 8; it abstracts both the flow control of the joints
and the link states. To model non-determinism, we associate each joint with a
go signal. In Figure 6, we see that the go signals point to the data operations of
their corresponding joints, and we also refer to joints by their go signals’ names.
But note that these go signals are indeed provided as inputs to the AND gates
in the control logic of their corresponding joints, which are omitted from the
figure. The roles of the storage elements (the rectangles in Figure 6) used in the
serial adder are described below.

– Two 32-bit input operands are stored in Shift-Reg0 and Shift-Reg1, and the
32-bit sum is stored in Shift-Reg2. The final 33-bit sum (including the carry-
out) is stored in the regular register Result.

7 The dotted lines emanating from the Done- latch represent the fact that the output
of Done- is used in the control path, not in the datapath.

8 Our approach currently declares shift registers as primitive state-holding devices and
uses them to store link data. In the future, we plan to be faithful to the link-joint
methodology by replacing the shift registers by links and joints.

12 C. Chau et al.
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– Cntl-State and Cntl-State’ are 5-bit registers that hold the current and next
control states of the serial adder, respectively. The current control state acts
as a counter that counts the number of times the bit addition has been
executed. Since the adder performs 32-bit additions, the control states are 5
bits long.

– The output of the Done- latch indicates whether the circuit will write the
final 33-bit result into the Result register when the corresponding commu-
nication is ready, or the circuit keeps updating the current control state
Cntl-State.

– Latches A and B contain two 1-bit operands for the full-adder; latch Ci

contains the carry-in. The 1-bit sum and the carry-out produced from the
full-adder are stored in latches S and Co, respectively.

We prove that the self-timed serial adder indeed performs the addition under
an appropriate initial condition. Initially, Shift-Reg0, Shift-Reg1, Ci, Cntl-State’,
and Done- are full; other state-holding elements are empty. The initial values
stored in Shift-Reg0, Shift-Reg1, and Ci represent two 32-bit input operands and
the carry-in, respectively. The initial value of Cntl-State’ is the zero vector, and
the initial value of Done- is high (or 1). We prove that Result eventually becomes

A Framework for Asynchronous Circuit Modeling 13



full and its value at that point is the sum of the two 32-bit input operands and
the carry-in.

Our approach applies the hierarchical verification method as described in
Section 3 to verifying the correctness of the self-timed serial adder. Specifically,
we first construct module M1 that performs bit additions using a 1-bit full-
adder (the innermost dashed-line box in Figure 6). We place a constraint when
constructing M1 so that its ready-out signal is active (i.e., ready to send data) if
the condition

(
full(S) ∧ full(Ci)

)
is satisfied, and its ready-in- signal is active

(i.e., ready to receive data) if the condition
(
(empty(A)∨ empty(B))∧full(Ci)

)
is satisfied. This constraint guarantees that M1 is ready to communicate with
other modules only when it is quiescent. For example, consider the scenario when
A and B and Ci are empty, S and Co are full. Since the ready-out condition for
M1 is not satisfied, the joint associated with the go-s signal (henceforth, we
refer to this joint simply as go-s) is not ready to act even if Shift-Reg2 is empty.
Likewise, neither go-a nor go-b is ready to act even if Shift-Reg0 and Shift-Reg1
are full, since the ready-in- condition for M1 is not satisfied. Note that M1 is
still active in this case; it is not quiescent because go-carry is now ready to act.

After constructing module M1, we prove an se value lemma and a de state
lemma for this module. We then move on to construct module M2 that performs
serial additions without control states (the middle dashed-line box in Figure 6).
We also place a constraint on M2’s design to guarantee that M2 is ready to
communicate with other modules only when it is quiescent: its ready-out signal
is active when full(Shift-Reg2) is satisfied, and its ready-in- signal is active when(
empty(Shift-Reg0)∧empty(Shift-Reg1)∧full(Shift-Reg2)

)
is satisfied. Since M2

contains M1 as a submodule, the two lemmas we already proved for M1 are used
in proving the value and state lemmas for M2, without knowing any further
details about M1. These two lemmas about M2 are then used in proving the
value and state lemmas for circuit M3, i.e., the serial adder with control states.

A key step in our verification of the self-timed serial adder is to establish the
loop invariant of this circuit model via induction. Given the initial state of the
circuit as mentioned earlier, we prove that the full/empty state of every link in
this circuit is preserved after each iteration of the circuit execution, as long as the
value of Done- before each iteration is 1. Each iteration performs one bit-addition
and the orders of operations to be executed in one iteration are displayed by the
dependency paths of the go signals in Figure 7. Each relation goi → goj shown in
this figure indicates that goj will not be ready if goi is not executed. For instance,
the two arrows from go-a and go-b to go-add indicate that go-add is ready only
if go-a and go-b were executed. At the initial state, only go-a, go-b, and go-buf-
cntl are ready to act: go-a is ready because Shift-Reg0 is full, A is empty, and
M1 is ready to receive data (i.e., the ready-in- condition for M1 is satisfied);
go-b is ready because Shift-Reg1 is full, B is empty, and M1 is ready to receive
data; go-buf-cntl is ready because Cntl-State’ and Done- are full, Cntl-State is
empty, and the value of Done- is 1. Each iteration except the last is finished
when go-cntl is executed (Figure 7(a)). The last iteration (the value of Done-
at the beginning of this iteration is 0) is finished when go-result is executed

14 C. Chau et al.
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(Figure 7(b)). Our correctness theorems include the interleaving specification
hypotheses, which consider all possible interleavings of the go signals’ values
conforming to the single-step-progress requirement as well as the dependency
paths in Figure 7. It is easy to check manually that these dependency paths
cover all possible execution paths of M3. We plan to formalize this claim in the
future.

The following two theorems, both proved with ACL2, state correctness of our
self-timed circuit. Theorem 1 (partial correctness) states that given the initial
state st of the serial adder as mentioned previously (Hypothesis 2), and the input
sequence input seq satisfying the interleavings of the go signals specified by the
dependency paths shown in Figure 7 (Hypothesis 4, note that the go signals
are part of the inputs); if the Result register becomes full (Hypothesis 6) after
running the serial adder n de steps from the initial state (Hypothesis 5), then
the value of the Result register at that point is the sum of the two 32-bit input
operands and the carry-in initially stored in two shift registers Shift-Reg0 and
Shift-Reg1, and latch Ci, respectively. Theorem 2 (termination) states that the
Result register will become full if n is large enough (Hypothesis 6’; Hypotheses 1-
5 are the same as in Theorem 1).

In our verification effort, we automate the verification process for the serial
adder by defining macros that help prove automatically the base case of the loop
invariant for all possible execution paths. We prove about 230 supporting lemmas
(not including other supporting lemmas imported from libraries from the ACL2
Community Books) that help discharge automatically proof obligations required
to prove the two main theorems mentioned above. One of the main challenges
in verifying the serial adder is to prove the loop invariant by induction: ACL2
fails to discover automatically the correct induction scheme to prove this loop
invariant. We have to provide an induction scheme to ACL2. In spite of that,
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our induction scheme is general enough to be applied to proving loop invariants
of other self-timed circuits. The verification time of the 32-bit self-timed serial
adder is about 80 seconds on a 2.9 GHz Intel Core i7 processor with 4MB L3
cache and 8GB memory. Since the loop invariant of the serial adder is established
by induction, our proof technique can scale to any size of the adder.

Theorem 1 (Partial correctness).

async serial adder(netlist) ∧ (1)

init state(st) ∧ (2)

(operand size = 32) ∧ (3)

interleavings spec(input seq, operand size) ∧ (4)

(st′ = run(netlist, input seq, st, n)) ∧ (5)

full(result status(st’)) (6)

⇒ (result value(st′) = shift reg 0 value(st) +

shift reg 1 value(st) +

ci value(st))

Theorem 2 (Termination).

async serial adder(netlist) ∧ (1)

init state(st) ∧ (2)

(operand size = 32) ∧ (3)

interleavings spec(input seq, operand size) ∧ (4)

(st′ = run(netlist, input seq, st, n)) ∧ (5)

(n ≥ num steps(input seq, operand size)) (6′)

⇒ full(result status(st′))

6 Future Work

In the future, we plan to prove the partial correctness of the self-timed serial
adder without specifying the interleavings of the go signals’ values. In other
words, we aim to remove Hypothesis 4 from Theorem 1. A possible approach
is that we can use Theorem 1 as a supporting lemma and also prove that for
any interleaving i, there always exists a specified interleaving i′ such that the
orderings of operations when executing the circuit under i and i′ are identical.
From these two lemmas, we can derive the desired partial correctness theorem
that does not specify the interleavings.

For the termination theorem (Theorem 2), simply removing Hypothesis 4
will make the theorem invalid. We need to add a constraint guaranteeing that
delays are bounded in order to prove Theorem 2 without having Hypothesis 4.

We also plan to investigate a notion of modules with joints at the interfaces
instead of links, where two modules are connected by one or more external links.
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Another possibility for future work is to develop a better compositional reasoning
method that improves scalability when the number of interleavings increases.
The high-level idea is to verify the correctness of a larger module by composing
verified submodules without delving into details about the submodules as well
as the interleavings of their internal operations.

Our existing design restrictions may reduce the performance of self-timed
implementations. Our purpose of imposing these restrictions in the design stage
is to establish loop invariants for iterative circuits. For circuits that have no
feedback loops, we are developing a method for verifying these systems without
imposing the aforementioned restrictions.

7 Conclusion

This paper presents a framework for modeling and verifying self-timed circuits
using the DE system. We model a self-timed system as a network of links com-
municating with each other locally via handshake components, which are called
joints, using the link-joint model. To our knowledge, this is the first time self-
timed circuits are modeled using the link-joint model in a theorem-proving sys-
tem. We also model the non-determinism of event-ordering in self-timed circuits
by associating each joint with an external go signal. In addition, presenting self-
timed modules as complex links is also new in our paper. Another contribution of
our work is our verification procedure to self-timed circuits as described. We show
that the existing DE system already proven to be successful for synchronous cir-
cuits is adaptable for handling self-timed systems by reasoning with go signals
as well as state-holding elements that have their own gating. Our verification
approach is able to establish loop invariants using induction when the circuit
behavior obeys the design restrictions we propose. Hierarchical verification is
essential in our verification method and critical to circuit verification at large
scale.
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