
A Hierarchical Approach to
Self-Timed Circuit Verification

Cuong Chau, Warren A. Hunt Jr., Matt Kaufmann
Department of Computer Science

The University of Texas at Austin

Austin, TX, USA

Email: {ckcuong,hunt,kaufmann}@cs.utexas.edu

Marly Roncken, Ivan Sutherland
Maseeh College of Engineering and Computer Science

Portland State University

Portland, OR, USA

Email: mroncken@pdx.edu, ivans@cecs.pdx.edu

Abstract—Self-timed circuits can be modeled in a link-joint
style using a formally defined hardware description language. It
has previously been shown how functional properties of these
models can be formally verified with the ACL2 theorem prover
using a scalable, hierarchical method. Here we extend that
method to parameterized circuit families that may have loops
and non-deterministic outputs. We illustrate this extension with
iterative self-timed circuits that calculate the greatest common
divisor of two natural numbers, with circuits that perform
arbitrated merges non-deterministically, and with circuits that
combine both of these.

I. INTRODUCTION

Self-timed circuits and systems proceed at their own rate

without reference to a global clock. We use ACL2 [1], [2],

[3] to model self-timed circuits at the gate level and to verify

that those models exhibit specified functional properties. We

build on our previous work [4] that demonstrated a hierarchical

approach to support efficient, scalable proof, including support

for substitution of functionally equivalent submodules without

the need to rework proofs. In this paper we extend that method-

ology to circuits that may be parameterized by data width,

contain loops, and/or provide non-deterministic outputs. We

illustrate this extension by modeling and verifying functional

correctness of two families of self-timed circuits parameterized

by data width: one that computes the greatest common divisor
(GCD) and one that performs arbitrated merges.

We have chosen the link-joint model as the basis for our

ACL2 formalization of self-timed circuits and systems. That

model, originally proposed by Roncken et al. [5], [6], is a

universal generalization for a number of self-timed circuit

models (e.g., Click [7], Mousetrap [8], Micropipeline [9],

and GasP [10]). The link-joint model of self-timing manages

communication locally via links on an individual joint-to-joint

basis. In circuit implementation terms, this means that instead

of using a global-clock signal to indicate when all clocked

storage elements should accept new data, self-timed storage

elements (links) accept input only when they are ready and

the input data are valid — and when a link accepts new input,

it signals to its datum provider that the provider may proceed

to calculate its next output value(s).

To capture the link-joint computational model, we reuse the

DE hierarchical circuit verification approach [11]. Originally,

this automated approach was used to verify the FM9001

microprocessor design [12], but we have generalized the

semantics of this hardware description language (HDL) based

circuit specification and verification approach to allow the

analysis of self-timed circuits, where their implementations

proceed at their own rate. We dispense with a universal clock

to accommodate self-timed circuit models. We include a new

DE-language link-control primitive that provides the control

necessary to signal the storage in each link to accept data

while also providing acknowledgment signaling that links

have accepted their input data. Using this new primitive, we

then abstract away implementation details of link and joint

control circuitry. Note, a joint delivers data to output links

only when the joint has a valid go signal. We use such go
signals to model interleavings of circuit operations, and we

prove the correctness of all self-timed circuit models without

assumptions about the arrival time of go signals. These signals

can also provide post-manufacture test control.
Unlike many efforts for validating timing properties of

self-timed systems, we are interested in verifying functional

properties. Specifically, we verify the functional correctness

of self-timed systems in terms of relationships between their

input and output sequences. Though correctness of the lower-

level circuit implementations may depend on circuit-level

timing constraints, we assume that such timing proofs can be

provided separately, as suggested by Park et al. [13].
This paper makes the following contributions:

• extend our previous framework [4] to model and verify

circuit generators with parameterized data sizes;

• demonstrate that the data-loop-free verification frame-

work proposed by our previous work is applicable to

circuits with loops as well. In particular, we show that,

by applying our previous framework, we are able to

specify and verify an iterative self-timed circuit model

that computes the GCD of two natural numbers. Our

modeling avoids imposing communication restrictions

introduced by Chau et al. [14];

• formalize an arbitrated merge joint that provides mutually

exclusive access to its output link from its two input links;

and

• develop strategies for verifying the functional correctness

of self-timed circuits performing arbitrated merges. This

work includes library development for reasoning about

105

2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC)

978-1-5386-5883-3/19/$31.00 ©2019 IEEE
DOI 10.1109/ASYNC.2019.00022

the membership relation and the interleaving operation.

The rest of the paper is organized as follows. Section II

overviews some related work. An overview of the DE system

is given in Section III. Section IV describes our method-

ology for modeling and verifying self-timed circuits. Sec-

tions V and VI demonstrate our methodology by describing

our modeling and verification of a GCD circuit synthesizer and

circuits involving arbitrated merges, respectively. Concluding

remarks and future work appear in Section VII.

II. RELATED WORK

Most verification efforts that use formal techniques for ana-

lyzing self-timed circuit implementations concern circuit-level

timing properties. Timing verification has been investigated by

several groups [15], [16], [17], [18], [13]. For instance, Park

et al. [13] developed the ARCtimer framework for modeling,

generating, and verifying timing constraints on individual

handshake components. ARCtimer uses the NuSMV model

checker for its analysis. The authors’ goal was to ensure that

the network of logic gates and wires, along with their asso-

ciated delays, meets the component’s protocol requirements.

In contrast, our goal concerns proving that a self-timed circuit

or system meets its functional specification, while ignoring

circuit-level timing constraints that can be investigated by tools

like ARCtimer.

Dill [19] developed a trace theory for hierarchical ver-

ification of communication sequences in speed-independent

circuits. The author focused only on control circuits, while

data circuits were not involved. His method checks circuit

properties by simply searching through the state-transition

graph that models the circuit behavior. Although this approach

is automatic, it explicitly represents and stores all possible

states. This is quite inefficient when dealing with circuits

consisting of a large number of states. In addition, while the

author proposed two theories for modeling and checking safety

and liveness properties of speed-independent circuits, only the

theory for dealing with safety properties was implemented.

The use of hierarchical verification methods in self-timed

circuit contexts has also been explored by Clarke and

Mishra [20], in their attempt to verify safety and liveness

circuit properties automatically. Their analysis approach is

based on model checking, and they investigated the correctness

of a self-timed FIFO queue element. Their approach assumes

a unit delay for each gate in a self-timed circuit, where our

approach avoids imposing any restrictions on gate delays.

Previous applications of ACL2 to asynchronous circuit

designs have focused on properties other than their functional

correctness. Verbeek and Schmaltz [21] have formalized and

verified blocking (failing to transmit data) and idle (failing

to receive data) conditions about delay-insensitive primitives

from the Click circuit library. By using ACL2, these con-

ditions were translated into SAT/SMT instances to confirm

deadlock freedom in the self-timed circuits investigated. Peng

et al. [22] presented a framework for detecting glitches that

occur in synthesized clock-domain-crossing netlists but are

not apparent in the original RTL specifications. The authors’

L0bit-in

en

L0-out
L1 bit-out

G en∼

Fig. 1. A flip-flop composed of two latches

approach integrates ACL2 with a SAT solver for verifying,

in synthesized netlists, the glitch-free property of each state-

bit associated with a corresponding flip-flop output. They

demonstrated their tool on commercial designs from Oracle

Microelectronics.

We previously developed a hierarchical reasoning method

that avoids exploring interleavings within verified submod-

ules [4]. We demonstrated that method on data-loop-free self-

timed circuits with fixed data widths. We now extend that

framework to circuits with loops and with parameterized data

widths. We also develop strategies for reasoning about circuits

with arbitrated merges that produce non-deterministic outputs.

III. OVERVIEW OF THE DE SYSTEM

DE is a hierarchical circuit description language defined

in the ACL2 logic. The DE system includes an ACL2 predi-

cate that recognizes a syntactically well-formed netlist; this

predicate enforces syntactic requirements on naming, arity,

occurrence structure, and signal connectivity. The semantics

of the DE language is given by a simulator whose se function

computes the outputs and whose de function computes the

next state for a module from the module’s current inputs

and current state. The de simulation function operates in two

passes: it first propagates values from primary inputs and

internal states throughout the netlist, calculating values for

every internal wire. Once the values on all wires are known,

it produces the outputs by accessing the appropriate wire

values. To produce the next state, de makes a second pass

over the entire netlist propagating previously-calculated wire

values into storage elements.

A well-formed DE netlist is an ordered list of modules,

where each module may include references to previously

defined modules or to DE primitives. Each module definition

consists of five ordered entries: a unique module name, input

names, output names, internal-state names, and a list of

occurrences that references previously defined submodules or

DE primitives. Each occurrence in a module consists of four

ordered entries: a module-unique occurrence name, a list of

output names, a reference to a DE primitive or a submodule,

and a list of input names. Below is a DE netlist for a flip-

flop circuit that is built from two latches L0 and L1, using a

simplified version of the DE latch primitive and the DE b-not

primitive. Figure 1 offers a schematic diagram of this circuit.

(defconst *netlist*
’((flip-flop ;; Module’s name

(en bit-in) ;; Inputs
(bit-out) ;; Outputs
(L0 L1) ;; Internal states
;; Occurrences
((L0 (L0-out) latch (en bit-in))
(G (en∼) b-not (en))
(L1 (bit-out) latch (en∼ L0-out))))))

106

Below is an example of evaluating the output and next state

for the flip-flop module using the se and de functions, re-

spectively. These two functions require the same four ordered

arguments: the name of the module to evaluate, its input

values, its current-state value, and a well-formed DE netlist

containing the definition of the module and submodules to be

simulated. The semantics of latch is given as follows: when

the enable signal is on, latch will propagate the input value

to the output and update its internal state with the input value;

otherwise it will report the current state to the output and

its state remains unchanged. For the DE system, we use the

ACL2 constants t and nil to represent Boolean true and false,

respectively. The single quotation marks require the evaluator

to use the inputs as given, thus the expression ’(nil nil)

provides a list of two Boolean values: false, false. In this

example, we instantiate en := nil, bit-in := nil, L0 := ’(t),

and L1 := ’(nil). Note that we use the ACL2 (prefix) syntax

to describe the formulas in this section.

(se ’flip-flop ’(nil nil) ’((t) (nil)) *netlist*) =
’(t)

(de ’flip-flop ’(nil nil) ’((t) (nil)) *netlist*) =
’((t) (t))

The DE system provides a hierarchical approach to analyze

DE circuit descriptions. In particular, we prove the following

two lemmas in a hierarchical manner for every DE module:

a value lemma characterizing a module’s outputs and a state
lemma characterizing a module’s next state — and for other

than the lowest-level modules, these two lemmas are proved

by automatic application of the value and state lemmas of

submodules, without referencing the internal details of the

submodules. A purely combinational module requires only a

value lemma. Here are the value and state lemmas for module

flip-flop.

(se ’flip-flop inputs st *netlist*) =
(flip-flop$outputs inputs st)

(de ’flip-flop inputs st *netlist*) =
(flip-flop$step inputs st)

where the outputs and step functions flip-flop$outputs and

flip-flop$step are defined as symbolic logical expressions

characterizing the outputs and next state of flip-flop, respec-

tively.

(flip-flop$outputs inputs st) :=
(let ((en (first inputs))

(L0.data (first (first st)))
(L1.data (first (second st))))

(list (if (not en) L0.data L1.data)))

(flip-flop$step inputs st) :=
(let ((en (first inputs))

(bit-in (second inputs))
(L0.data (first (first st)))
(L1.data (first (second st))))

(list ;; L0’s next state
(list (if en bit-in L0.data))
;; L1’s next state
(list (if (not en) L0.data L1.data))))

From the state lemma, we prove the following multi-step
state lemma by induction,

(de-n ’flip-flop inputs-seq st *netlist* n) =
(flip-flop$run inputs-seq st n)

where de-n and flip-flop$run are defined recursively in

terms of de and flip-flop$step, respectively. For instance,

below is the definition of flip-flop$run.

(flip-flop$run inputs-seq st n) :=
(if (<= n 0)
st
(flip-flop$run
(rest inputs-seq)
(flip-flop$step (first inputs-seq) st)
(- n 1)))

Once the state lemma and the multi-step state lemma are

proved, we use only the step and run functions in reasoning

about the module behavior.

IV. METHODOLOGY

We use the ACL2 logic to model self-timed systems and

circuits based on the link-joint model. Implementations are

written in the DE language. We use the ACL2 theorem prover

to certify properties of these implementation models.

A. Modeling

We follow the modeling approach proposed by our previous

work [4]. Here we briefly describe the link-joint model that

we use to represent self-timed circuits with the DE language.

Links are communication channels in which data are stored

along with a validity signal. Joints perform data operations

and implement flow control. Joints are the meeting points that

coordinate links and share link data. A self-timed system can

be viewed as a directed graph with links as edges and joints

as nodes. The control logic of a joint is an AND function

of the conditions necessary for it to act. A joint can have

multiple such AND functions to guard different actions, which

are usually mutually exclusive. To enable a joint action, all

input and output links of that action must be full and empty,

respectively, as illustrated by the AND gate in Figure 2.

Enabled joints (that is, when at least one action is enabled)

may fire in any order due to arbitrary delays in wires and

gates. We model this non-deterministic circuit behavior by

associating each joint with a so-called go signal as an extra

input to the AND function in the control logic of that joint.

In case a joint has multiple such AND functions, they may

share the same go signal as long as at most one function can

fire at a time. When a joint acts, the following three tasks will

execute in parallel:

• using data from full input links, compute results to

transfer to empty output links;

• fill (possibly a subset of) the empty output links, leaving

them full; and

• drain (possibly a subset of) the full input links, leaving

them empty.

Our DE description of a self-timed module allows links

and joints to appear in any order in the module’s occurrence

107

D0d0-in

S0� F D �

fullL0 fullin

Combinational
Logic

fireB

fireA
drain

fireC

D1 d1-out

S1� F D �

fullL1

fill

emptyout

JointLink Link

L0 L1

GO

Fig. 2. A diagram of a link-joint circuit is shown. It has two links, L0 and
L1, and three joints A, B, and C. Only joint B is shown in its entirety. The
upper and lower boxes in each link represent link data and link full/empty
status, respectively.

list, except that each link must be declared before its input

and output joints so that when the module is being evaluated,

the se function called in the first pass will extract the links’

full/empty states and data and provide these values as inputs

for the corresponding joints; the de function will make the

second pass to update the link’s full/empty states and data

using the joints’ output values calculated from the first pass.

Below is a DE description of the self-timed module shown in

Figure 2, where D0 and D1 are latches. The Combinational

Logic oval represents the data computation of the joint which

is a storage-free amplifier (buffer below) in this DE descrip-

tion. The diagram shows four state-holding devices that work

together in pairs: data latch D0 (d0 below) and its associated

full/empty flag S0 (s0 below), and data latch D1 (d1 below)

and its associated full/empty flag S1 (s1 below).

’(link-joint ;; Module’s name
(fireA fireC d0-in go) ;; Inputs
(s0-status s1-status d1-out) ;; Outputs
(s0 d0 s1 d1) ;; Internal states
;; Occurrences
(;; Link L0
(s0 (s0-status) link-cntl (fireA fireB))
(d0 (d0-out) latch (fireA d0-in))
;; Link L1
(s1 (s1-status) link-cntl (fireB fireC))
(d1 (d1-out) latch (fireB d1-in))
;; Joint B
(jb-cntl (fireB)

joint-cntl
(s0-status s1-status go))

(jb-op (d1-in) buffer (d0-out))))

As an example, we use the list ’((t) (nil) (nil) (t))

to represent the state of the above module where link L0 is

full and its data value is nil, and link L1 is empty and its

data value is t. Note that when a link is empty, its data are

invalid.

Self-timed modules can be abstracted as “complex” links or

“complex” joints [4]. A module is a complex link if only links

appear at its input and output ports. Similarly, a module is a

complex joint if only joints appear at its input and output ports.

A complex link is limited to a single input and single output

link to remain a point-to-point connection, while a complex

joint can have many inputs and many outputs. It is typical that

self-timed modules receive and send data via different links,

using separate input and output communication signals.

Single-step-update

properties

Multi-step

input-output

relationship

Value and

state lemmas

Multi-step

state lemma

Functional

correctness

Induction

Induction

step run

Hierarchical reasoning

& induction

Fig. 3. Verification flow

B. Verification

Most existing work in formally verifying self-timed systems

has concerned only flow control. Those efforts have mainly

explored strategies for validating timing and communication

properties. Our approach, on the other hand, considers self-

timed circuits involving both data operations and flow control.

We verify functional properties of a self-timed system as

a whole. Our approach supports scalability via hierarchical
reasoning and induction. We extend the methodology devel-

oped by our previous work [4] for verifying the functional

correctness of self-timed circuits and systems in terms of the

relationships between their input and output sequences. One of

our extensions develops a proof strategy for reasoning about

recursively defined circuit generators, which emerge from the

context of parameterized data widths. In particular, our ap-

proach applies induction in proving the value and state lemmas

for those parameterized circuit generators. Another extension

in our reasoning method also applies induction to establish the

single-step-update properties for self-timed circuits containing

loops. This appears in the context of reasoning about the algo-

rithmic specification functions, which are defined recursively,

for those circuits. Figure 3 depicts our verification flow for a

self-timed module. The value and state lemmas and the multi-

step state lemma were already discussed in Section III. The

single-step-update properties will be explained in more detail

later in this section. The next two sections will discuss the

multi-step input-output relationship through several self-timed

circuit models. The functional correctness theorem is a direct

corollary of the multi-step input-output relationship that is

stated in terms of the de-n function, while that relationship

is formalized in terms of the run function.

Although we aim to verify the multi-step input-output rela-

tionship for each self-timed module, our hierarchical reasoning

is indeed applied only at one-step updates. Once the one-step

update on the output sequence is established, the multi-step

input-output relationship can then be proved by induction.

In order to specify the input-output relationship at one step,

we introduce a set of extraction functions for each sequential

module. An extraction function extract(st) returns a sequence

of values computed from valid data residing in state st.
We use such a function to abstract away state transitions

internal to its corresponding module; it will return the same

108

sequence for any two input states if one of those states can

reach the other through merely internal transitions. Applying

extract to the step function, i.e. extract(step(inputs, st)),
will compute the one-step update on the abstracted state given

the current inputs inputs and current state st. Recall that

step symbolically specifies the module’s next state in one (de)

step (see flip-flop$step in Section III for an example). To

establish the multi-step input-output relationship by induction,

we prove the following key lemma, which is called the single-

step-update property [4],

extract(step(inputs, st)) = extracted-step(inputs, st) (1)

where extracted-step is the specification for the one-step

update on the abstracted state. An important property of

extracted-step is that its definition avoids exploring the

module’s internal operations and their possible interleavings

— extracted-step(inputs, st) depends only on the values of

extract(st) and the communication signals at the module’s

input and output ports. In Sections V and VI, where we

describe our experiments, we will discuss the use of extract
and extracted-step in more detail 1. The examples in these

two sections demonstrate the scalability of our approach. It

is critical that step and extract are defined hierarchically so

that the single-step-update property (1) can be proved hierar-

chically. A naive approach that expands the definitions of the

step and extract functions of submodules when proving (1)

may lead to a computational explosion. Our proofs cover all

possible interleavings of circuit operations by considering all

combinations of go signals’ values. Much of our proof process

is stylized. We automate the proof process by introducing

proof idioms via macros and by developing lemma libraries.

V. A GCD CIRCUIT MODEL

In this section we demonstrate our methodology by model-

ing and verifying the functional correctness of an iterative self-

timed circuit synthesizer that computes the greatest-common-

divisor (GCD) of two natural numbers. In particular, we

specify and verify the self-timed circuit model, called gcd,

displayed in Figure 4. Notice that this is really a family of

circuit models, parameterized by data width n for inputs a
and b. This circuit family computes the GCD of two input

operands as described by the following algorithm.

gcd-alg(a, b) :=

if (a = 0) then b

else if (b = 0) then a

else if (a = b) then a

else if (a < b) then gcd-alg(b− a, a)

else gcd-alg(a− b, b)

gcd-alg is formalized in ACL2 to serve as the functional

specification for gcd. By proving the following properties

(where d is any common divisor of a and b), we show that

1Our proofs for the circuits described later in Sections V and VI are
available at https://github.com/acl2/acl2/tree/master/books/projects/async.

0

1

S

L0

a �= 0 &
b �= 0 &
a �= b

0

1

L1

a < b

a− b, b

b− a, a

0

1

L2

a, b gcd(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

1
�

2n
�

2n
�

2n
�

2n�

n
�

in

out

body

Fig. 4. Data flow of module gcd: a circuit that computes the GCD of two
natural numbers. n is the number of bits in each operand. Solid rectangles
represent links. Dashed, rounded-corner rectangles identify joints.

gcd-alg correctly computes the GCD of two natural numbers

a and b.

a mod gcd-alg(a, b) = 0,

b mod gcd-alg(a, b) = 0,(
(a > 0) ∨ (b > 0)

) ∧ (a mod d = 0) ∧ (b mod d = 0)

⇒ 0 < gcd-alg(a, b) ∧ d ≤ gcd-alg(a, b)

Our DE-based gcd circuit model, based on Sparso’s de-

sign [23], consists of four links and three joints. Link S holds

a binary value that acts as the mux select signal for joint in.

The two operands stored in link L0 will be passed to joint

out to check if they are non-zero and do not have the same

value — we call this condition the GCD condition. If the GCD

condition is true, the two operands will enter the body of the

loop and be stored in link L1. Otherwise, the circuit will report

the result and be ready to accept new inputs after the result

has been accepted (because in this case 0 will be stored in link

S). In the case the two operands have entered the loop and

been stored in link L1, the greater operand will be updated as

described in the gcd-alg algorithm. The updated operand and

the remaining operand will then be stored in link L2.

When joint in fires, it drains either link L2 or the link

providing the external input 2, according to the value of the

mux select signal. Thus, joint in has two mutually exclusive

actions. In a similar manner, joint out also has two mutually

exclusive actions: when it fires, it fills link S and either link L1

or the link accepting the final output 3, depending on the value

2The link that provides the external input is represented only by the small
arrow at the left of the drawing labeled a, b in Figure 4.

3The link that accepts the final output is represented only by the small
arrow at the right of the drawing labeled gcd(a, b) in Figure 4.

109

of the demux select signal. Joint body updates the operands

as described below.

gcd-body$op(a, b) :=

if (a < b) then swap(a, b)

return (a− b, b)

We model the three joints in, out, and body as DE modules

and prove the value lemma for each of them. There are no state

lemmas for these joints because they are purely combinational

modules.

Let in-act denote the fire signal from the AND gate (not

illustrated) associated with the input port (labeled a, b) in the

control logic of joint in. Module gcd accepts a new input data

item each time the in-act signal fires. We define in-seq, the

accepted input sequence, as the sequence of input data items

that have passed joint in. Similarly, let out-act denote the fire
signal from the AND gate (not illustrated) associated with the

output port (labeled gcd(a, b)) in the control logic of joint out.
We define out-seq, the valid output sequence, as the sequence

of data items that have passed through joint out while out-
act fires. The functionality of gcd over a data sequence of

natural-number pairs is specified recursively as follows,

gcd$op-map(seq) :=

if (seq = NULL)

then [] // an empty list

else
let in := first(seq)

return [gcd-alg(in.a, in.b)] ++ gcd$op-map(rest(seq))

where ++ indicates concatenation. We then define an extraction

function that extracts the future output sequence from the

current state, st, as described below,

gcd$extract(st) := gcd$op-map(data([st.L1, st.L2, st.L0]))

where the projection function data(l) returns the list generated

by mapping over the links in l, collecting the data item of

each full link and ignoring each empty link. For example,

suppose links L0 and L1 are full, and link L2 is empty in

state st; then data([st.L1, st.L2, st.L0]) will return [d1, d0],
where di is the data item of link Li. Note that the order of

links Li to be extracted does not affect our correctness proof

for gcd, because we impose a condition that there be at most

one valid data item, not including S, in the system at any

time. In particular, we require the following condition, which

we prove is an invariant,

gcd$inv(st) :=

if full(st.S.s) ∧ (st.S.d = 0)

then len(gcd$extract(st)) = 0

else len(gcd$extract(st)) = 1

where len(l) counts the number of elements in list l. This

invariant is necessary to maintain the first-in-first-out rela-

tionship between input and output sequences. We verify the

functional correctness of gcd by formalizing the relationship

between its input and output sequences after an n-step ex-

ecution from its initial state, for any natural number n and

any data size. We expect the output sequence is the sequence

of GCDs of the natural-number pairs in the input sequence.

Our formalization also considers two facts: the initial state

may contain some valid data, and there can be some valid

data remaining in the final state because the circuit operation

over these data has not yet finished. Formally, we establish the

following multi-step input-output relationship,

gcd$extract(gcd$run(inputs-seq, st, n)) ++ out-seq =

gcd$op-map(in-seq) ++ gcd$extract(st) (2)

where gcd$run is recursively defined in terms of gcd$step
(e.g., see flip-flop$run in Section III). It trivially follows

that out-seq = gcd$op-map(in-seq) when the initial and

final states of gcd contain no valid data. Note that the

parameters inputs and inputs-seq we mention throughout

our experiments consist of both input data and input control

signals, including go signals for every joint. On the other

hand, in-seq and out-seq contain only data and are devoid

of control information. Moreover, in-seq is the sequence of

inputs extracted from inputs-seq that are accepted by gcd,

specifically when: L0 is empty, S is full with a value of 0,

the link providing the input data is full, and the corresponding

go signal is active. Our proof of (2) uses induction and the

following single-step-update property, which is an instance of

(1), as a supporting lemma,

gcd$extract(gcd$step(inputs, st)) =

gcd$extracted-step(inputs, st) (3)

where the extracted next-state function gcd$extracted-step
extracts the future output sequence from the next state in

terms of the gcd$extract function, as described in Figure 5.

gcd$extracted-step avoids considering internal operations of

gcd; it considers only the values of gcd$extract and the

in-act and out-act signals at gcd’s input and output ports

respectively, thus reducing the complexity of extracting valid

outputs from gcd’s next state to four cases, regardless of

how internal operations proceed. Equation (3) holds when

gcd$inv(st) holds. Since we already proved that gcd$inv is

an invariant, our induction proof for (2) still applies as long

as the initial state of gcd satisfies gcd$inv.

VI. ARBITRATED MERGE

The circuit discussed in the previous section has the first-

in-first-out input-output property. This implies that the order

in the output sequence is deterministic. Now we discuss

another well-known type of self-timed circuit that produces

non-deterministic output sequences, that is, circuits allocating

mutually exclusive access to shared resources. A mutual-
exclusion circuit or arbiter is commonly used in self-timed

systems to provide mutually exclusive access to a shared

resource on a first-come-first-served (FCFS) basis [24]. Since

the arrival times of requests are variable, the grant outcomes

are essentially non-deterministic.

110

gcd$extracted-step(inputs, st) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gcd$extract(st), if in-act = nil ∧ out-act = nil

[gcd-alg(inputs.a, inputs.b)] ++ gcd$extract(st), if in-act = t ∧ out-act = nil

remove-last(gcd$extract(st)), if in-act = nil ∧ out-act = t

[gcd-alg(inputs.a, inputs.b)] ++ remove-last(gcd$extract(st)), otherwise

where remove-last(l) returns list l except for its last element.

Fig. 5. Definition of gcd$extracted-step

A. Arbitrated Merge Joint

We model a simple arbitrated merge joint that randomly
transfers data from one of the two input links to the output

link if both input links are full “nearly” at the same time.

When only one input link is currently full, the merge will

transfer data from that link to the output link. In either

case, the data transfer occurs only when the output link is

empty. This implementation of an arbitrated merge joint was

described in Roncken et al.’s paper [6]. In our modeling, we

use an oracle signal called select to perform random selections

when necessary. Although quite simple, this arbitrated merge

model serves our purpose of illustrating the handling of non-

determinism in our verification framework. In the future, we

intend to model an arbitrated merge joint with an arbitration

mechanism that supports fairness [6]: when two requests arrive

at nearly the same time, they must be served before the merge

serves new requests.

B. Experiments

We use the membership relation (∈) and the interleaving

operation (⊗) for establishing the multi-step input-output re-

lationships for self-timed circuits performing arbitrated merge

operations. For example, the output sequence from an arbi-

trated merge can be expressed as a member of all possible

interleavings of the two input sequences as follows.

out-seq ∈ (in0-seq ⊗ in1-seq)
The interleaving operation ⊗ computes all interleavings of its

two input sequences, e.g. 4,

[1, 2]⊗ [a, b] = [[1, 2, a, b], [1, a, 2, b], [1, a, b, 2],

[a, 1, 2, b], [a, 1, b, 2], [a, b, 1, 2]].

Verifying the multi-step input-output relationships for cir-

cuits performing arbitrated merges involves developing a li-

brary that supports reasoning about the membership relation

and the interleaving operation. In this library, referred to as

mem-interl-lib, we prove lemmas about the preservation of

the membership under the concatenation operation with the

presence of the interleaving operation. For example,

x ∈ (y ⊗ z)⇒ (x ++ x1) ∈ ((y ++ x1)⊗ z) ∧
(x ++ x1) ∈ (y ⊗ (z ++ x1)). (4)

We will present more key lemmas from mem-interl-lib when

we discuss our experiments below. As we did for gcd, our

4The two input operands of ⊗ do not necessary have the same length.

strategy for proving the multi-step relationship is based on

single-step-update properties. For circuits involving arbitrated

merges, we introduce two extraction functions to extract two

valid input streams for each arbitrated merge; and we prove a

single-step-update property for each extraction function.

1) Example 1

in0

in1

buffers

Q’20a

Q’20b

A

arbitrated merge

out

Fig. 6. Data flow of interl. Dashed rectangles represent complex links.
Circles represent joints.

Our first example considers a circuit that connects two 20-

link queues to the two input ports of an arbitrated merge

(Figure 6). We model a 20-link queue as a complex link

that concatenates two 10-link queues, Q′
10 [4], which are also

complex links, via a storage-free buffer joint. Let in0-seq and

in1-seq represent two accepted input sequences connected to

Q′
20a and Q′

20b, respectively. We prove that for any inter-

leaving x of two data sequences remaining in the final state,

the concatenation of x and the output sequence must be a

member of (seq0 ⊗ seq1); where seq0 is the concatenation of

in0-seq and the valid data sequence in Q′
20a at the initial state,

and seq1 is the concatenation of in1-seq and the valid data

sequence in Q′
20b at the initial state. Formally, we prove the

following property,

let stf := interl$run(inputs-seq, st, n),

∀x ∈ (
interl$extract0(stf)⊗ interl$extract1(stf)

)
.

(x ++ out-seq) ∈
((

in0-seq ++ interl$extract0(st)
) ⊗

(
in1-seq ++ interl$extract1(st)

))
(5)

where interl$extract0 and interl$extract1 extract valid

data from Q′
20a and Q′

20b, respectively. When the initial

and final states have no valid data, we obtain the corollary

out-seq ∈ (in0-seq ⊗ in1-seq). We prove property (5)

by induction after proving two single-step-update properties

(one for each extraction function) and lemma (4). Note that

the single-step-update properties for interl are proved in a

hierarchical manner. Specifically, these properties are proved

by applying the single-step-update properties of submodules

Q′
20a and Q′

20b accordingly, without exploring the operations

internal to these submodules.

111

interl
in0

in1

L gcd out

2n
�

2n
�

2n
�

2n
�

n
�

Fig. 7. Data flow of igcd. Dashed circles represent complex joints.

2) Example 2
The next example further illustrates hierarchical reasoning:

the verification of a self-timed module that contains self-timed

submodules with and without arbitration. We model a module,

called igcd, that connects the output port of interl to the input

port of gcd via a link (Figure 7). Notice that each item in each

input stream of igcd carries a pair of operands for a GCD

operation. We verify the correctness of igcd by proving that

this circuit produces a sequence of GCDs over any interleaving

of two input sequences. Our approach uses three extraction

functions that compute the GCDs of the valid data residing

in interl.Q′
20a, interl.Q′

20b, and the concatenation of L and

gcd, respectively.

igcd$extract0(st) := gcd$op-map(interl$extract0(st.interl)),

igcd$extract1(st) := gcd$op-map(interl$extract1(st.interl)),

igcd$extract2(st) :=

gcd$op-map(data([st.L])) ++ gcd$extract(st.gcd)

We formalize the multi-step input-output relationship for

igcd in terms of function prepend-rec(x, y) that prepends

each list in x to y. For example,

prepend-rec([[1, 2], [3, 6, 4]], [a, b]) = [[1, 2, a, b], [3, 6, 4, a, b]].

Below is the multi-step input-output relationship for igcd
that we formalize.

let stf := igcd$run(inputs-seq, st, n),

∀x ∈ (
igcd$extract0(stf)⊗ igcd$extract1(stf)

)
.

(x ++ igcd$extract2(stf) ++ out-seq) ∈
prepend-rec

((
gcd$op-map(in0-seq) ++ igcd$extract0(st)

) ⊗
(
gcd$op-map(in1-seq) ++ igcd$extract1(st)

)
,

igcd$extract2(st)
)

Our proof applies the following lemma in mem-interl-lib.

e ∈ x⇒ (e ++ e1) ∈ prepend-rec(x, e1)
Again, we apply the hierarchical mechanism to prove the

single-step-update properties for igcd from the single-step-

update properties of submodules interl and gcd accordingly.

3) Example 3
We continue illustrating our hierarchical reasoning method

via a circuit model, comp-interl, that composes three in-

stances of interl as displayed in Figure 8. Loosely speaking,

we prove that the output sequence from comp-interl is an

interleaving of its four input sequences. That correctness

theorem (omitted here) may be stated in terms of the nested

interleaving operator, ⊗2, where x ⊗2 y interleaves each list

in x with each list in y. For example,

[l1, l2, l3]⊗2 [l4, l5] = (l1 ⊗ l4) ++ (l1 ⊗ l5) ++ (l2 ⊗ l4) ++

(l2 ⊗ l5) ++ (l3 ⊗ l4) ++ (l3 ⊗ l5).

interl0
in0

in1

L0

interl1
in2

in3

L1

interl2 out

Fig. 8. Data flow of comp-interl

The proof relies on our library, mem-interl-lib, specifically

the following lemma.

x ∈ (y ⊗2 z)⇒ (x ++ x1) ∈ (prepend-rec(y, x1)⊗2 z) ∧
(x ++ x1) ∈ (y ⊗2 prepend-rec(z, x1))

Figure 9 reports the verification times of the self-timed

circuits discussed in our experiments. All circuits were verified

in seconds.

Circuit Proof time
gcd 8s

Q′
20 3s

interl 4s

Circuit Proof time
igcd 6s

comp-interl 19s

Fig. 9. Proof times for the self-timed circuits discussed in our experiments.
All experiments used an Apple laptop with a 2.9 GHz Intel Core i7 processor,
4MB L3 cache, and 8GB memory. The proof time for a module excludes proof
times for its submodules.

VII. CONCLUSION AND FUTURE WORK

We have discussed the specification and verification of self-

timed circuits represented with a formally-defined, hierarchical

HDL. We extend our previous framework [4] to sequential

circuits with loops and non-deterministic outputs (in particular,

arbitrated merges) that may be parameterized by data size.

Hierarchical verification is a key methodology supporting the

efficient scalability of our correctness proofs.

We represent self-timed circuits, composed of links and

joints, in the DE HDL. This hierarchical HDL provides com-

binational primitives and several latches suitable for modeling

links and joints. To model the non-deterministic advance

of signals, every primitive (combinational-logic-only) joint

includes an additional go signal that, when disabled, prevents

a joint from firing. A joint action will fire only when all of

its input-output conditions and its externally-provided (from

an oracle) go signal are valid. Thus, when we undertake the

verification of a circuit composed of combinational-logic joints

and state-holding links, we are modeling all of the possible

interleavings of circuit activity.

Our present arbitrated merge model does not guarantee

fairness. We plan to implement an arbitration mechanism that

supports fairness for this merge operation. We also expect

to consider the verification of mixed self-timed, synchronous

circuits. For instance, we wish to verify the correctness of

data exchange between two synchronous systems over an

asynchronous interconnect fabric. Such an advance could

contribute to the use of self-timed networks to reduce the use

of inter-clock-domain synchronizers.

112

ACKNOWLEDGMENTS

We thank the reviewers for useful comments. This effort

has been supported by DARPA under Contract No. FA8650-

17-1-7704.

REFERENCES

[1] M. Kaufmann and J S. Moore. (2019) ACL2 Home Page. http://www.
cs.utexas.edu/users/moore/acl2/.

[2] M. Kaufmann, P. Manolios, and J S. Moore, Computer-Aided Reasoning:
An Approach. Boston, MA: Kluwer Academic Press, 2000.

[3] ——, Computer-Aided Reasoning: ACL2 Case Studies. Boston, MA:
Kluwer Academic Press, 2000.

[4] C. Chau, W. A. Hunt Jr., M. Kaufmann, M. Roncken, and I. Sutherland,
“Data-Loop-Free Self-Timed Circuit Verification,” in Proc of the Twenty
Fourth IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC-2018), 2018, pp. 51–58.

[5] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and
I. Sutherland, “Naturalized Communication and Testing,” in Proc of the
Twenty First IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC-2015), 2015, pp. 77–84.

[6] M. Roncken, I. Sutherland, C. Chen, Y. Hei, W. Hunt Jr., C. Chau, S. M.
Gilla, H. Park, X. Song, A. He, and H. Chen, “How to Think about Self-
Timed Systems,” in Proc of the Fifty First IEEE Asilomar Conference
on Signals, Systems, and Computers (Asilomar-2017), 2017, pp. 1597–
1604.

[7] A. Peeters, F. te Beest, M. de Wit, and W. Mallon, “Click Elements:
An Implementation Style for Data-Driven Compilation,” in Proc of the
Sixteenth IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC-2010), 2010, pp. 3–14.

[8] M. Singh and S. M. Nowick, “MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 6, pp. 684–698, 2007.

[9] I. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, 1989.

[10] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” in
Proc of the Seventh International Symposium on Asynchronous Circuits
and Systems (ASYNC-2001), 2001, pp. 46–53.

[11] W. A. Hunt Jr., “The DE Language,” in Computer-Aided Reasoning:
ACL2 Case Studies, M. Kaufmann, P. Manolios, and J S. Moore, Eds.
Springer US, 2000, ch. 10, pp. 151–166.

[12] B. C. Brock and W. A. Hunt Jr., “The DUAL-EVAL Hardware Descrip-
tion Language and Its Use in the Formal Specification and Verification
of the FM9001 Microprocessor,” in Formal Methods in System Design.
Kluwer Academic Publishers, 1997, vol. 11, pp. 71–104.

[13] H. Park, A. He, M. Roncken, X. Song, and I. Sutherland, “Modular
Timing Constraints for Delay-Insensitive Systems,” Computer Science
and Technology, vol. 31, no. 1, pp. 77–106, 2016.

[14] C. Chau, W. A. Hunt Jr., M. Roncken, and I. Sutherland, “A Framework
for Asynchronous Circuit Modeling and Verification in ACL2,” in Proc
of the Thirteenth Haifa Verification Conference (HVC-2017), 2017, pp.
3–18.

[15] M. Bozga, H. Jianmin, O. Maler, and S. Yovine, “Verification of
Asynchronous Circuits using Timed Automata,” in Electronic Notes in
Theoretical Computer Science, 2002, vol. 65, pp. 47–59.

[16] K. Desai, K. S. Stevens, and J. O’Leary, “Symbolic Verification of Timed
Asynchronous Hardware Protocols,” in Proc of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI-2013), 2013, pp. 147–152.

[17] P. Joshi, P. A. Beerel, M. Roncken, and I. Sutherland, “Timing Ver-
ification of GasP Asynchronous Circuits: Predicted Delay Variations
Observed by Experiment,” in Lecture Notes in Computer Science,
D. Dams, U. Hannemann, and M. Steffen, Eds. Springer Berlin
Heidelberg, 2010, ch. 17, pp. 260–276.

[18] H. Kim, P. A. Beerel, and K. Stevens, “Relative Timing Based Verifica-
tion of Timed Circuits and Systems,” in Proc of the Eighth International
Symposium on Asynchronous Circuits and Systems (ASYNC-2002), 2002,
pp. 115–124.

[19] D. L. Dill, Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. MIT press, 1989.

[20] E. Clarke and B. Mishra, “Automatic Verification of Asynchronous
Circuits,” in Proc of the Workshop on Logic of Programs, 1983, pp.
101–115.

[21] F. Verbeek and J. Schmaltz, “Verification of Building Blocks for
Asynchronous Circuits,” in Proc of the Eleventh International Workshop
on the ACL2 Theorem Prover and Its Applications (ACL2-2013), 2013,
pp. 70–84.

[22] Y. Peng, I. W. Jones, and M. R. Greenstreet, “Finding Glitches Using
Formal Methods,” in Proc of the Twenty Second IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC-2016), 2016,
pp. 45–46.

[23] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design - A
Systems Perspective. Springer US, 2001.

[24] C. L. Seitz, “System Timing,” in Introduction to VLSI Systems, C. Mead
and L. Conway, Eds. Addison-Wesley, 1980, ch. 7, pp. 218–262.

113

