
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 3, SEPTEMBER 2022 139

Flexible Active–Passive and Push–Pull Protocols
Ebelechukwu Esimai , Graduate Student Member, IEEE, and Marly Roncken , Member, IEEE

Abstract—By means of a simple buffer design, we show that
active versus passive and push versus pull settings in asynchronous
communication protocols, also known as handshake protocols,
can be controlled by initialization. We advocate postponing ini-
tialization until run time and show that postponement simplifies
the design and design process and serves test, debug, and analysis.
We design the buffer as a network of communication channels
with storage, called Links, and storage-free computation mod-
ules, called Joints. We describe the behaviors of Links and Joints
using a shared variable model presented here for the first time.

Index Terms—Asynchronous circuit, communication protocol,
distributed system, initialization, late binding, Link–Joint model.

I. INTRODUCTION

THIS letter focuses on the use of active versus passive and
push versus pull in asynchronous communication proto-

cols, also known as handshake protocols. We are particularly
interested in communication protocols generated as part of a
large distributed system with automated support of a syntax
directed or otherwise structured compiler [1]–[3], [6], [10].

We specify such systems as networks of communication
channels with storage, called Links, and computation modules
without storage, called Joints [7]–[9]. We prefer Link–Joint
systems because they enable us to postpone implementation
decisions. Links and Joints cover most if not all asynchronous
protocols and circuit families.

Active and passive apply to a Link’s ends, also called ports.
Push and pull apply to the entire Link. Specifically:

1) an active Link port starts the communication;
2) a passive Link port responds;
3) a Link pushes data from its active port to passive port;
4) a Link pulls data from its passive port to active port;
5) a bidirectional Link pushes and pulls data.
Active–passive and push–pull protocol settings determine

whether the system is functional and how well it performs.
How to optimize protocol settings for best performance is out-
side the scope of this letter. Instead, this letter shows that we
can implement any active–passive and push–pull protocol set-
tings that a designer or a compiler may assign to a system of
Links and Joints merely by initializing Link storage!

Manuscript received 11 November 2021; revised 22 January 2022 and
7 March 2022; accepted 10 March 2022. Date of publication 15 March 2022;
date of current version 23 August 2022. This work was supported in part
by private sponsors through the Portland State University Foundation. This
manuscript was recommended for publication by S. Katkoori. (Corresponding
author: Ebelechukwu Esimai.)

The authors are with the Asynchronous Research Center and the Computer
Science Department, Maseeh College of Engineering and Computer Science,
Portland State University, Portland, OR 97201 USA (e-mail: esimai@pdx.edu;
mroncken@pdx.edu).

Digital Object Identifier 10.1109/LES.2022.3159492

Fig. 1. A Link shares three variables, turn, dataAtoB, and dataBtoA, between
its two distinct ports, A and B. Variable turn identifies “whose turn it is”
to update the Link variables—A’s or B’s. Variables dataAtoB and dataBtoA
contain the data going from A to B and from B to A, respectively. Unless one
or both bit vectors for dataAtoB and dataBtoA have zero bit width, the Link is
bidirectional as indicated by the bidirectionality of the arrows at ports A and B.

In other words, the same design can serve multiple
settings—yet, many designs do not and suffer unnecessary
complexity, because their designers bind settings prematurely.

1) Compilers and logic designers often fix active–passive
and push–pull settings [1]–[3], [6], creating multiple
design and validation tasks where one would suffice.

2) Circuit designers often build a fixed setting into the cir-
cuit either directly or with a reset signal [10, Fig. 9.8],
which may complicate both the design and its testability.

We use the example of a first-in–first-out buffer (FIFO)
to illustrate these points. Section II introduces Links and
Joints and builds up the example. Section III uses the FIFO
example to set active–passive and push–pull by initialization.
Section IV advocates for freedom of initialization right up to
run time. Section V concludes this letter.

II. PREPARING THE EXAMPLE

We use a network of alternating Links and Joints to build
the example for this letter—a FIFO. Sections II-A and II-B
describe the functional behaviors of Links and Joints using
a shared variable model. This new model is simpler but the
behaviors it specifies are consistent with our earlier specifi-
cations [7]–[9] and model [4]. Section II-C presents the Link
and Joint design of the FIFO.

A. Shared Variable Model for Links

A Link stores and transports data and control information
between its two distinct ends, A and B, also called ports. In
this letter, we ignore the transport part of a Link and model
the storage part as three shared variables, turn, dataAtoB, and
dataBtoA—see Fig. 1. Variable turn designates the port to
update the Link variables. When turn designates A, denoted as
“turn = A is valid,” port A—ultimately representing a Joint or
environment connected to A—may update turn and dataAtoB.
Specifically, port A may change turn to designate B and may
update dataAtoB with new data going from A to B. Likewise,
when turn = B, port B may update turn and dataBtoA. Data

1943-0671 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 08,2022 at 00:17:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2566-6119
https://orcid.org/0000-0002-3703-3856

140 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 3, SEPTEMBER 2022

Fig. 2. Joints SRC, COPY, and SNK with formal Link port names (top) and
guarded command specifications (bottom). Data flow from left to right in the
direction of the arrows. Each port is marked with a small circle, colored gray
here to indicate that Link variable turn has yet to be initialized.

may be typed, but for the purpose of this letter it suffices
to model dataAtoB and dataBtoA as bit vectors. When none,
exactly one, or both data bit vectors have zero bit width,
we consider the Link bidirectional, unidirectional, or data-
less, respectively. Henceforth, we will refer to the individual
ports and variables of Link l as l.A, l.B, l.turn, l.dataAtoB, and
l.dataBtoA.

B. Extending the Shared Variable Model to Joints

A Joint computes and controls the information flow between
Link ports to which it connects. One can view a Joint as a
place where Links meet to exchange information. In particular,
a Joint may exchange information between both ports of the
same Link [8]. Joint specifications use the following terms to
access Link variables from port p of Link l, where parameter
p is either l.A or l.B.

1) myturn(p): A Boolean that indicates if it is p’s turn
to update the shared variables in Link l. Denotes
“l.turn = A” if p = l.A, and “l.turn = B” if p = l.B.

2) yourturn(p): An assignment that relinquishes the turn to
update l’s variables from p to l’s other port. Denotes
“l.turn := B” if p = l.A, “l.turn := A” if p = l.B.

3) myR(p): A data bit vector stored by Link l and intended
to be read by p—that is, by the Joint connected to p.
Denotes l.dataBtoA if p = l.A, l.dataAtoB if p = l.B.

4) myW(p): A data bit vector stored by l and intended to
be written by p—that is, by the Joint connected to p.
Denotes “l.dataAtoB” if p = l.A, “l.dataBtoA” if p = l.B.

Given that Link port p only reads and never writes myR(p),
myR(p) is stable as long as myturn(p) holds because then Link
l’s other port lacks the turn to change the Link variables. The
terms, myturn(p), yourturn(p), myR(p), and myW(p), exploit
the symmetry of Links and allow a Joint’s formal specification
to be silent as to which end of a Link p is at.

Fig. 2 shows three Joints: SRC, COPY, and SNK. We draw
a Joint as a big circle containing the Joint name and attach a
small circle for each Link port to which the Joint connects.
Each Link port has a formal name defined only in the scope
of the Joint and used in the formal specification of the Joint.
With each port, we draw an arrow to indicate which way Link
data flow. All Link ports in Fig. 2 are unidirectional, with Link
data entering a Joint at a port with formal name in and leaving
a Joint at a port with formal name out.

We use guarded commands [5] to specify the behavior of
each Joint [8] and an interleaving model to combine behaviors.
Each Joint in Fig. 2 has a single guarded command, with the
Boolean guard separated by an arrow (→) from the command.
Each Joint must wait until its guard is true before it may
execute its command. Command execution is atomic: changes
to Link variables become visible atomically, i.e., all at once,
upon termination of the command’s execution.

In Fig. 2, each Joint waits to execute its command until all
its Link ports have their turn. During execution:

1) Joint SRC writes the bit vector for value 2 to myW(out)
and relinquishes out’s turn;

2) Joint COPY copies data from myR(in) to myW(out) and
relinquishes both in’s turn and out’s turn;

3) Joint SNK prints the data value stored in myR(in) and
relinquishes in’s turn.

Fig. 2 refrains from specifying whether the commands execute
their statements in sequence or in parallel. Both work, here,
because: 1) each command statement changes a different Link
variable and 2) command execution is atomic.

C. Example: FIFO

FIFOs are essential for bridging differences in throughput
between a source (SRC) and sink (SNK) and for optimiz-
ing overall system throughput. In Fig. 3(a)–(d), we build four
FIFO configurations by “linking” instances of Joints SRC,
COPY, and SNK in series. With the instance of Joint COPY,
the two Links, L1 and L2, form a two-stage FIFO that can
store zero, one, or two data items between SRC and SNK. To
optimize throughput, FIFOs may be primed with initial data
and control information.

III. PRIMING THE FIFO WITH DATA AND CONTROL

The four FIFO configurations in Fig. 3(a)–(d) offer different
initializations for data and control variables in Links L1 and
L2. Each Link stores a single control variable, called turn in
Fig. 1, and—being unidirectional—a single data variable of
nonzero bit width, called dataAtoB or dataBtoA depending on
whether the data stored in it go from Link port A to B or vice
versa. To distinguish changes in turn from changes in data
when “running” the FIFO, Fig. 3 uses:

1) a pin at the Link port designated by turn (), attaching
permission to change the Link variables to that port;

2) arbitrary (∗) or specific numeric values for data;
3) a mere arrow to depict a Link.
Data in Fig. 3 flow from left to right in the direction of the

arrows. A Link is considered empty and without relevant data,
if the Link port that writes the data has the turn. A Link is
considered full and has relevant data if the Link port that reads
the data has the turn. We call the FIFO in Fig. 3 empty if both
Links L1 and L2 are empty, full if both Links are full, and half
full if one Link is empty and the other Link is full. The four
FIFO configurations in Fig. 3 are initially empty (a-top), full
(b-top), and half full (c-top, d-top).

Fig. 3(a)–(d) run the same FIFO design! The red-colored
pins and data values in Fig. 3(a-top)–(d-top) are part of the
initial state, as are the active (•) and passive (◦) port settings
explained in more detail in Section III-A.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 08,2022 at 00:17:44 UTC from IEEE Xplore. Restrictions apply.

ESIMAI AND RONCKEN: FLEXIBLE ACTIVE–PASSIVE AND PUSH–PULL PROTOCOLS 141

Fig. 3. Panels (a)–(d) each show three states in an interleaving model running a two-stage FIFO between SRC and SNK. Data flow from left to right, as
specified in Figs. 1 and 2. Each run starts at the top row and proceeds to the next lower row in the panel. The runs start from a FIFO that is initially (a) empty,
(b) full, or (c) and (d) half full. Instead of the gray ports in Fig. 2, the panels use opaque black circles (•) for active ports and transparent black circles (◦)
for passive ports. Note that each panel uses a different active versus passive port setting.

(a) In an initially empty FIFO with irrelevant arbitrary Link data (top), Joint COPY waits until Joint SRC has written a new data value, 2, into Link L1
and relinquished its turn on L1 (middle). Joint COPY (middle) now has all the Link turns necessary to act. It acts by copying L1’s data value, 2, to
L2 and by relinquishing both Link turns (bottom). The FIFO is now half-full with relevant data in L2.

(b) In an initially full FIFO (top), Joint COPY waits until Joint SNK has read and printed L2’s data value, 0, and relinquished its turn on L2 (middle).
Joint COPY (middle) now has all the Link turns necessary for it to act. It acts by copying L1’s data value, 1, to L2 and by relinquishing its turn on
Link L1 and its turn on Link L2 (bottom). The FIFO is now half-full with relevant data in L2.

(c) In an initially half-full FIFO with the relevant data in L2 (top), Joint COPY waits until SNK has printed L2’s data value, 1, and relinquished its turn
on L2 (middle). COPY also waits until SRC has written a new data value, 2, into Link L1 and relinquished its turn on L1 (bottom). Though SNK acts
before SRC here, they may act in either order. The FIFO is now half-full with relevant data in L1.

(d) In an initially half-full FIFO with relevant data in L1 (top), Joint COPY has all the Link turns necessary to act. It acts by copying L1’s data, 1, to L2
and by relinquishing both Link turns (middle). The FIFO (middle) is now half-full with the relevant data in L2 and with COPY waiting for SNK and
SRC to act, as in Fig. 3(c-top) This time, SRC acts first (bottom).

We initialized FIFO data such that Joint SNK may print
consecutive numbers up to and including the first SRC-written
data value 2. Fig. 3(a)–(d) each show three consecutive states
of a running FIFO, including the initial state. As expected,
SNK prints initial FIFO data—none for (a), 0 then 1 for (b),
1 for (c) and (d)—and then SRC-written data.

Running FIFOs follow the Link–Joint protocol, where Joints
take turns reading and writing Link data by “playing ping-
pong” with a Link’s turn. This protocol has the following
practical consequences.

1) The FIFO never uses data stored in initially empty Links.
2) Only data in initially full Links require initialization.
3) Links can retain an old data or control value until a new

one replaces it—clearance is unnecessary.

A. Active–Passive and Push–Pull Are Set by Initialization

All turn variables in Fig. 3 are initialized. So, rather than
the gray-colored circles in Fig. 2 that mark ports of Links with
an uninitialized turn variable, Fig. 3 uses different markings.

1) Fig. 3 uses opaque black circles (•) for ports that initially
have the turn. We call these ports active.

2) Fig. 3 uses transparent black circles (◦) for ports initially
lacking the turn. We call these ports passive.

3) In Fig. 3, Links with an active port on the left and a
passive port on the right push data from left to right.

4) In Fig. 3, Links with a passive port on the left and an
active port on the right pull data from left to right.

Our use of opaque and transparent black circles in Fig. 3 and
the terms active versus passive and push versus pull agree

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 08,2022 at 00:17:44 UTC from IEEE Xplore. Restrictions apply.

142 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 14, NO. 3, SEPTEMBER 2022

with notations and terminology introduced and used in prior
research at Caltech [3], Philips Research [2], [6], and the
University of Manchester [1].

In the top row of Fig. 3(a), the L1 port connected to SRC
and the L2 port connected to COPY are active. Note that the
two ports remain active while the FIFO state progresses to
lower rows in Fig. 3(a). Note that the two other ports remain
passive. Consequently, given that the data in Fig. 3(a) keep
flowing from left to right in the direction of the arrows, L1
and L2 push data initially and keep pushing data while the
FIFO runs—until we reinitialize the system.

We can reinitialize the FIFO as indicated in Fig. 3(b-top).
The L1 port connected to COPY and the L2 port connected
to SNK then become active, the ports previously active in (a)
then become passive, and L1 and L2 then pull data.

IV. FREEDOM OF INITIALIZATION

When priming a FIFO, a designer or a compiler tends to
fill the FIFO up to a specific level with specific data values
and—depending on latency and throughput requirements—
with a specific distribution of full versus empty Links. Fig. 3,
therefore, focuses primarily on filling levels and data con-
tents of the FIFO and provides two initial configurations for
a half-full FIFO to hint at potential differences in latency.1

Fig. 3 illustrates that the same design serves multiple active–
passive and push–pull settings if we postpone initialization and
bind settings late. Rather than binding settings at compile or
fabrication time, we can wait until run time. We can even bind
some system parts early and others late. Compared to systems
that use “fixed protocol settings” [1]–[3], [6], flexibility to bind
protocol settings late offers the following benefits.

1) Small Library: Our Link and Joint model specifies basic
system parts independent of an initial state these may
assume, resulting in one Link specification in Fig. 1 and
three Joint specifications in Fig. 2. Had we used “fixed
protocol settings,” Fig. 1 would require two channels and
Fig. 2 eight modules, each with a different specification.

2) Simple Design Process: Our Link and Joint model com-
bines basic parts into larger designs and ultimately into
systems, independent of initial states these may assume.
The initial values of the Link variables in Fig. 3(a) differ
from those in Fig. 3(b)–(d) but the four FIFO designs are
identical. Had we used “fixed protocol settings,” Fig. 3
would require not one but four different FIFO designs.

3) Test Compatible: Effective test, debug, and analysis
often require protocol settings other than those used
for normal operation [9]. Late binding makes initializa-
tion for test runs as easy as initialization for normal
runs. A circuit with “fixed protocol settings” in need
of other settings for test would require bypass features,
complicating circuit or test.2

1Latency and throughput evaluations require a real-time model rather than
the interleaving model that we use in this letter.

2Fig. 9.8 in the book by Jens Sparsø [10] shows a Micropipeline circuit
implementation with fixed protocol settings for a 2-stage half-full ring FIFO.

Neither early nor late bindings remove the need to know
which initial states a system should use to run as intended.
This knowledge is necessary to analyze and guarantee cru-
cial correctness and performance metrics of the system. Late
binding has the advantage that it can support test metrics too,
paving the way for high-level test generation.

We created Links and Joints to have a unified design and
test approach for asynchronous systems, regardless of circuit
family and technology [9]. Using this approach, we can “pro-
gram” protocol settings by connecting Link variables to a
general access mechanism. We also connect Joint guards by
adding accessible go signals to safely stop, (re-)initialize, and
start executions. The Joint specifications in Fig. 2 implicitly
assume the presence of go signals. “Programmable” protocols,
currently unique to Link–Joint designs [7]–[9], can be adopted
by any high-level asynchronous design approach.

V. CONCLUSION

Asynchronous designs often suffer unnecessary complexity
because logic designers, circuit designers, or compilers bind
protocol settings prematurely. Flexible binding of settings as
well as of choice of protocol and even circuit family gives Link
and Joint systems enjoyable simplicity in design, design pro-
cess, and even test, debug, and analysis. We encourage others
to adopt a similarly flexible design approach.

ACKNOWLEDGMENT

The authors thank Gary Delp, Bart McCoy, Warren Hunt,
Jr., and Ivan Sutherland for support and productive research
discussions.

REFERENCES

[1] A. Bardsley, “Implementing Balsa handshake circuits,” Ph.D. the-
sis, Dept. Comput. Sci., Univ. Manchester, Manchester, U.K.,
2000.

[2] K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij,
and A. Peeters, “Asynchronous circuits for low power: A DCC error
corrector,” IEEE Design Test Comput., vol. 11, no. 2, pp. 22–32,
1994.

[3] S. M. Burns, “Automated compilation of concurrent programs into
self-timed circuits,” M.S. thesis, Dept. Comput. Sci., California Inst.
Technol., Pasadena, CA, USA, 1987.

[4] C. Chau, W. A. Hunt, Jr., M. Kaufmann, M. Roncken, and I. Sutherland,
“A hierarchical approach to self-timed circuit verification,” in Proc. IEEE
Int. Symp. Asynchronous Circuits Syst. (ASYNC), 2019, pp. 105–113.

[5] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–457,
Aug. 1975.

[6] A. Peeters, F. te Beest, M. de Wit, and W. Mallon, “Click elements: An
implementation style for data-driven compilation,” in Proc. IEEE Int.
Symp. Asynchronous Circuits Syst. (ASYNC), 2010, pp. 3–14.

[7] M. Roncken and I. Sutherland, “Design and test of high-speed asyn-
chronous circuits,” in Asynchronous Circuit Applications, J. Di and
S. C. Smith, Eds. London, U.K.: Inst. Eng. Technol. (IET), 2020, ch.
7, pp. 113–171.

[8] M. Roncken et al., “How to think about self-timed systems,” in Proc.
Asilomar Conf. Signals Syst. Comput., 2017, pp. 1597–1604.

[9] M. Roncken, S. Mettala Gilla, H. Park, N. Jamadagni, C. Cowan, and
I. Sutherland, “Naturalized communication and testing,” in Proc. IEEE
Int. Symp. Asynchronous Circuits Syst. (ASYNC), 2015, pp. 77–84.

[10] J. Sparsø, Introduction to Asynchronous Circuit Design. Kongens
Lyngby, Denmark: DTU Compute, 2020.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 08,2022 at 00:17:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

