
This document contains information developed at the Asynchronous Research Center at Portland State
University. You may disclose this information to whomever you please. You may reproduce this
document for any not-for-profit purpose. Reproduction for commercial profit is strictly forbidden without
written consent of the author. Copies of the material must contain this notice.

ARC# 2012-is13 printed on July 11, 2012 at 11:31 page 1
 An Asynchronous Research Center Document

ASYNCHRONOUS RESEARCH CENTER
Portland State University

Subject: Remarks for the Turing Celebration
Date: June 16, 2012
From: Ivan Sutherland
ARC#: 2012-is13

The Tyranny of the Clock

In Alan Turingʼs day logic was slow and costly but, relative to logic, wires were
fast and almost free. Since then the costs of logic and wires have reversed: modern
logic is fast and almost free but, relative to logic, wires are now slow and costly. They
are costly in three ways. 1) The wires in a modern circuit chip cost most of its area; the
transistors in a chip hide underneath a thick bed of tiny wires. 2) The wires in a modern
circuit chip cost most of the delay. 3) Worst of all, moving electric charge onto and off of
wires wastes most of the energy. The cost of logic and memory dominated Turingʼs
thinking, but today, communication rather than logic should dominate our thinking.

Does communication dominate your thinking?

My question applies equally to hardware, software and theory.

Todayʼs digital design paradigm, the “clocked” design paradigm, depends on
a rhythmic clock signal. The clock signal breaks time into discrete time steps. The
designer knows exactly his intent for all the actions of each time step. The designer can
check that all the necessary precursors for the actions of each time step happen in
earlier steps. Discrete time steps simplify the design task.

Before the telegraph, there was no easy way to synchronize time over
distance. Fortunately, there was little need outside navigation to know what time it is
somewhere else. “Simultaneous” didnʼt need to apply between Chicago and New York;
each city could be its own time zone. The railroad changed that: passengers wanted to
know at what local time their train would arrive, and dispatchers wanted to avoid
collisions. Fortunately, the telegraph could provide a notion of “simultaneous” from New
York to Chicago so that schedules could be kept. Like a railroad the clocked design
paradigm makes designers want a concept of “simultaneous” so that clock periods can
begin and end everywhere simultaneously.

An Asynchronous Research Center Document ARC# 2012-is13

ARC# 2012-is13 printed on July 11, 2012 at 11:31 page 2
 An Asynchronous Research Center Document

As transistors and wires get smaller, the area over which one can deliver a
clock signal “simultaneously” becomes smaller and thus the number of “clock zones”
must increase. The clock beat of each zone differs from the beat of its neighbors in
phase and often in frequency as well. A large chip may have hundreds or even
thousands of separate clock zones. The clocked design paradigm helps within each
zone, but only within the zone.

Between clock zones the clocked design paradigm retards data flow. The
clocked design paradigm insists on synchronizing all incoming data to the frequency
and phase of the clock in the destination zone. Synchronizing a data signal to the
destination clock requires special precaution against errors. A reliable boundary
crossing requires a delay of two or three clock periods. It is as if each clock zone posted
customs inspectors at its borders. The clocked design paradigm exacerbates
communication delay.

Ever since my 1988 Turing lecture, I have been exploring an alternative
“clock-free” design paradigm. I seek change in the design paradigm to cast off the
tyranny of the clock. Instead of making all logic “march to an external drum beat,” let us
allow each logic element to proceed at its own pace. Because each element acts only
when and if necessary, such a paradigm shift will lead to designs that save energy. The
clock-free paradigm will also make computers go faster because doing away with
border-crossing delays speeds communication. I see a parallel to the economic
efficiency Europe gains from free communication across national borders.

Casting off the tyranny of the clock offers freedom to optimize the separate
parts of a design. For example, Rajit Manohar and his students at Cornell report a clock-
free IEEE-compliant, double precision, floating-point adder with the same throughput as
an equivalent clocked design. The Cornell clock-free design uses less than half, about
40%, as much energy per addition as its clocked counterpart. The Cornell design gains
simplicity and thus reduces energy by doing easy cases fast and allowing the rare hard
cases to take longer. A recent paper from my group in the Asynchronous Research
Center at Portland State University reports on faster division by allowing steps that
merely shift to go faster than steps that must subtract.

Casting off the tyranny of the clock offers modularity as well as local
optimization. Sam Fuller, then chief engineer at Digital Equipment Corporation, once
told me that his process people could provide faster chips every six months. He
complained that his product couldnʼt similarly improve every six months because it took
18 months to redesign an entire computer for the new clock speed. The tyranny of the
clock made his design insufficiently modular to permit incremental improvement. He
chose to march his entire machine to a single drumbeat rather than allowing each part
to work at its own best speed.

Like all tyranny, the tyranny of the clock stems from the range over which we
choose to subject ourselves to the tyrantʼs authority.

An Asynchronous Research Center Document ARC# 2012-is13

ARC# 2012-is13 printed on July 11, 2012 at 11:31 page 3
 An Asynchronous Research Center Document

The clock-free paradigm I promote relates to the clocked design paradigm as
a “free economy” relates to a “controlled economy.” We can regain the efficiency of local
decision making by revolting against the pervasive beat of an external clock.

Clock-free commercial products are in use today. Handshake Solutions, a
computer aided design company from the Netherlands, was proud of having 700 million
of their clock-free chips in use in smart cards, passports, cellphones, and other portable
devices. Fulcrum Microsystems, a Caltech spin-off recently purchased by Intel, sells a
self-timed communication switch with outstanding performance.

The paradigm shift I seek faces three formidable obstacles: technical, social
and courage. First, technical: Make no mistake; designing a clock-free system can face
the same hard problems of parallelism that give software people nightmares. But a few
pioneers have shown that clock-free design is possible and sometimes even easy. The
pioneers have uncovered benefits like using less than half, 40%, of the energy per
operation as reported by Cornell. Second, social: All of todayʼs commercial design tools
assume clocked design. All engineering schools teach clocked design. Will we ever train
enough young people in the clock-free paradigm for it to self-perpetuate? Third,
courage: Management knows the costs, difficulties, and results of the “tried and true”
clocked design paradigm. Management chooses “to bear those ills we have rather than
fly to others that we know not of.”

The clock-free design paradigm I promote must eventually prevail. It fits
Physics. Each increase in the relative cost of communication over logic brings us closer
to the fundamental physical truth that “simultaneous” lacks meaning.

The clock-free paradigm fits everything weʼve learned since Turing about
programming. Software avoids tyrannous global time constraints. Without freedom from
global time constraints, software libraries would be impossible. “Modularity” and “Data
hiding” are basic principles of quality software because they allow re-use and local
optimization. Software is self-timed: Each subroutine runs at its own pace; its users wait
for it to finish. Imagine what software would be like if subroutines could start and end
only at preset time intervals. “My subroutines all start at 3.68 millisecond intervals; how
often do yours start?”

Software development proceeds from correctness to performance. After
software works, we tune its heavily used parts to achieve the desired performance.
Performance almost always depends on only a small part of the whole. Compare this to
the situation in a clocked hardware design where each and every signal must arrive “on
time,” even if itʼs rarely used. The tyranny of the clock wastes both engineering cost at
design time and energy at run time. What a needless waste!

Only a small handful of intrepid entrepreneurs and academic researchers
have yet dared to explore the clock-free paradigm I promote. I predict that sometime

An Asynchronous Research Center Document ARC# 2012-is13

ARC# 2012-is13 printed on July 11, 2012 at 11:31 page 4
 An Asynchronous Research Center Document

soon, some courageous management will tire of wasting money on the tyranny of the
clock and adopt the clock-free design paradigm. Such courage will reap giant rewards.

I shall be disappointed but not at all surprised if that courageous management
speaks an Oriental language rather than English, the native tongue I share with Alan
Turing.

References:

I. Sutherland. "Micropipelines," Communications of the ACM, Vol. 32, No. 6, June 1989, pp. 720-738.

I. Sutherland and J. Ebergen. "Computers without Clocks," Scientific American, Vol. 287, No. 2, August
2002, pp. 62-69.

B. Riaz Sheikh and R. Manohar. “An Operand-Optimized Asynchronous IEEE 754 Double-Precision
Floating-Point Adder,” Proceedings of the IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pp. 151-162, 2010.

N. Jamadagni and J. Ebergen. “An Asynchronous Divider Implementation,” Proceedings of the IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC), pp. 97-104,
2012.

