

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 02, 2020

Introduction to Asynchronous Circuit Design.

Sparsø, Jens

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sparsø, J. (2020). Introduction to Asynchronous Circuit Design. DTU Compute, Technical University of
Denmark.

https://orbit.dtu.dk/en/publications/7d254e00-d5d4-40df-8cfc-732c8112cff4

Introduction to
Asynchronous Circuit Design

Jens Sparsø

Introduction to

Asynchronous Circuit Design

Jens Sparsø

Technical University of Denmark

Copyright c© 2020 Jens Sparsø, Technical University of Denmark. Email:
jspa@dtu.dk. Note: Original versions of eight chapters were previously pub-
lished in 2001 and 2006.

Cataloging Data:

Sparsø, Jens
Introduction to Asynchronous Circuit Design

Pages 1-255
Includes bibliographical references and an index.

ISBN : 979-86-550-5385-4 (Paperback)
Publisher: Independently published (Kindle Direct Publishing)

ISBN : 978-87-643-2001-5 (PDF)
Publisher: DTU Compute, Technical University of Denmark.

The PDF-version of the book may be downloaded from the author’s homepage
https://people.compute.dtu.dk/jspa or from the research database of the
Technical University of Denmark at https://orbit.dtu.dk

The electronic PDF-version is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
https://creativecommons.org/licenses/by-nc-nd/4.0/

Typeset by Jens Sparsø.

mailto:jspa@dtu.dk
https://people.compute.dtu.dk/jspa
https://orbit.dtu.dk

Contents

Preface ix

Acknowledgments xiii

1 Introduction 1

1.1 Why consider asynchronous circuits? 1

1.2 Aims and background . 2

1.3 Clocking versus handshaking 3

1.4 Outline of the book . 6

2 Fundamentals 9

2.1 Handshake protocols . 9

2.1.1 Bundled-data protocols 9

2.1.2 The 4-phase dual-rail protocol 11

2.1.3 The 2-phase dual-rail protocol 13

2.1.4 Other protocols . 13

2.2 Indication and the Muller C-element 14

2.3 The Muller pipeline . 16

2.4 Circuit implementation styles 17

2.4.1 4-phase bundled-data 18

2.4.2 2-phase bundled data (Micropipelines) 19

2.4.3 4-phase dual-rail . 20

2.5 Theory . 23

2.5.1 The basics of speed-independence 23

2.5.2 Classification of asynchronous circuits 25

2.5.3 Isochronic forks . 26

2.5.4 Relation to circuits . 26

2.6 Test . 27

2.7 Summary . 28

iii

iv Contents

3 Static data-flow structures 29
3.1 Introduction . 29
3.2 Pipelines and rings . 30
3.3 Building blocks . 32
3.4 A simple example . 35
3.5 Simple applications of rings . 37

3.5.1 Sequential circuits . 37
3.5.2 Iterative computations 37
3.5.3 Fibonacci sequence generator 38

3.6 When tokens spread . 39
3.7 FOR, IF, and WHILE constructs 42
3.8 A more complex example: GCD 44
3.9 Pointers to additional examples 45

3.9.1 A low-power filter bank 45
3.9.2 An asynchronous microprocessor 46
3.9.3 A fine-grain pipelined vector multiplier 46

3.10 Summary . 47

4 Performance 49
4.1 Introduction . 49
4.2 A qualitative view of performance 50

4.2.1 Example 1: A FIFO used as a shift register 50
4.2.2 Example 2: A shift register with parallel load 52

4.3 Quantifying performance . 55
4.3.1 Latency, throughput, and wavelength 55
4.3.2 Cycle time of a ring . 57
4.3.3 Example 3: Performance of a 3-stage ring 59
4.3.4 Final remarks . 60

4.4 Summary . 60

5 Handshake circuit implementations (four-phase) 61
5.1 The latch, the sink, and the source 61
5.2 Fork, join and merge . 63
5.3 MUX and DEMUX . 65
5.4 Peephole optimizations . 67

5.4.1 DEMUX with a sink on one output 67
5.4.2 A DEMUX with latches on both outputs 68

5.5 Memory cells . 69
5.5.1 Introduction . 69
5.5.2 A simple R-W data-flow memory cell 70
5.5.3 A R-W-RW data-flow memory cell 70
5.5.4 A R-W-WR data-flow memory cell 71
5.5.5 A more efficient R-W memory design 71

5.6 Function blocks – The basics 73

Contents v

5.6.1 Introduction . 73
5.6.2 Transparency to handshaking 74
5.6.3 Review of ripple-carry addition 77

5.7 Bundled-data function blocks 78
5.7.1 Using matched delays 78
5.7.2 Delay selection . 79

5.8 Dual-rail function blocks . 80
5.8.1 Delay insensitive minterm synthesis (DIMS) 80
5.8.2 Null Convention Logic 82
5.8.3 Transistor-level CMOS implementations 83
5.8.4 Martin’s adder . 84

5.9 Hybrid function blocks . 86
5.10 Mutual exclusion and arbitration 88

5.10.1 Mutual exclusion . 88
5.10.2 Arbitration . 89

5.11 Summary . 90

6 Speed-independent control circuits 91
6.1 Introduction . 91

6.1.1 Asynchronous sequential circuits 92
6.1.2 Hazards . 92
6.1.3 Delay models . 93
6.1.4 Fundamental mode and input-output mode 94
6.1.5 Synthesis of fundamental mode circuits 94

6.2 Signal transition graphs . 96
6.2.1 Petri nets and STGs . 96
6.2.2 Some frequently used STG fragments 98

6.3 The basic synthesis procedure 101
6.3.1 Example 1: a C-element 102
6.3.2 Example 2: a circuit with choice 102
6.3.3 Example 2: Hazards in the simple gate implementation 104

6.4 Implementations using state-holding gates 106
6.4.1 Introduction . 106
6.4.2 Excitation regions and quiescent regions 107
6.4.3 Example 2: Using state-holding elements 108
6.4.4 The monotonic cover constraint 108
6.4.5 Circuit topologies using state-holding elements 109

6.5 Initialization . 111
6.6 Summary of the synthesis process 111
6.7 Petrify: A tool for synthesizing SI circuits from STGs 113
6.8 Design examples using Petrify 114

6.8.1 Example 2 revisited . 114
6.8.2 A control circuit for a 4-phase bundled-data latch . . . 117
6.8.3 A control circuit for a 4-phase bundled-data MUX . . . 119

vi Contents

6.9 Summary . 123

7 Performance analysis using timed Petri nets 125
7.1 Timed Petri nets . 125
7.2 Sub-classes of Petri nets . 127
7.3 Timing analysis of timed Petri nets 128
7.4 Example 3 revisited: Analysis using a TTPN 133
7.5 Example 3 revisited: Analysis using a simplified TPPN 135
7.6 Example 4: A four stage ring 136
7.7 Example 5: A pipeline with asymmetric delay elements 136
7.8 Worst-case timing analysis . 139

8 Metastability, arbitration, and synchronization. 141
8.1 What is metastability? . 141
8.2 Quantifying metastability . 144
8.3 Dealing with metastability . 150

8.3.1 Mutual exclusion and arbitration 150
8.3.2 Synchronization . 151
8.3.3 Time-safe and value-safe systems 153
8.3.4 Additional comments and a word of warning 154

8.4 Synchronization in multi-clock systems 155
8.4.1 A simple handshake interface 155
8.4.2 Using a dual-ported memory 156
8.4.3 Using a dual-clock FIFO 157
8.4.4 Value-safe clocking with metastability 158
8.4.5 Value-safe clocking without metastability 159

8.5 A taxonomy of timing organizations 161
8.6 Examples of timing organizations 162

8.6.1 Plesiochronous bit-serial communication 162
8.6.2 Mesochronous communication links 164
8.6.3 Better than worst-case clocked circuits 167

8.7 Concluding remarks . 169

9 Implementation of 2-phase bundled-data circuits 171
9.1 Templates for implementing 2-phase handshake latches 171

9.1.1 Recap of the Muller pipeline 172
9.1.2 Micropipelines . 173
9.1.3 Mousetrap . 174
9.1.4 Click elements . 175
9.1.5 Loihi . 176

9.2 2-phase static data-flow structures 177
9.2.1 A change of viewpoint 177
9.2.2 Phase-decoupled handshaking 179
9.2.3 Phase-decoupled handshake latches 181

Contents vii

9.3 Design examples: FIB and GCD 182
9.3.1 Fibonacci sequence generator (FIB) 182
9.3.2 Greatest common divisor (GCD) 183

9.4 Phase-decoupled click components 184
9.4.1 The handshake latch . 184
9.4.2 Function blocks and delay elements 185
9.4.3 Join and Fork . 185
9.4.4 Merge . 186
9.4.5 MUX and DEMUX . 187
9.4.6 Peephole optimizations 188
9.4.7 Mutual exclusion and arbitration 190

9.5 Prototyping using FPGAs . 191

10 Advanced 4-phase bundled-data
protocols and circuits 195
10.1 Channels and protocols . 195

10.1.1 Channel types . 195
10.1.2 Data-validity schemes 196
10.1.3 Discussion . 196

10.2 Static type checking . 198
10.3 More advanced latch control circuits 199
10.4 Summary . 202

11 High-level languages and tools 203
11.1 Introduction . 203
11.2 Concurrency and message passing in CSP 204
11.3 Tangram: program examples 206

11.3.1 A 2-place shift register 206
11.3.2 A 2-place (ripple) FIFO 207
11.3.3 GCD using while and if statements 207
11.3.4 GCD using guarded commands 207

11.4 Tangram: syntax-directed compilation 208
11.4.1 The 2-place shift register 209
11.4.2 The 2-place FIFO . 210
11.4.3 GCD using guarded repetition 210

11.5 Martin’s translation process . 214
11.6 Using VHDL for asynchronous design 215

11.6.1 Introduction . 215
11.6.2 VHDL versus CSP-type languages 215
11.6.3 Channel communication and design flow 217
11.6.4 The abstract channel package 219
11.6.5 The real channel package 223
11.6.6 Partitioning into control and data 224

11.7 Summary . 227

viii Contents

11.8 The VHDL channel packages 227
11.8.1 The abstract channel package 227
11.8.2 The real channel package 230

References 233

Index 249

Preface

Background

A significant part of the material in this book originally appeared as:

J. Sparsø. Asynchronous circuit design - a tutorial. Chapters 1-8 in
J. Sparsø and S. Furber (eds.), Principles of asynchronous circuit
design - A systems perspective. Kluwer Academic Publishers, 2001.
337 pages.

The publisher held copyrights to these eight chapters for a limited time,
and in 2006, I made the material available in the public domain (for non-
commercial educational use). Apart from a few bug fixes, nothing was changed.

During the following years, both the field, as well as my knowledge, has
evolved, and I have gradually collected more material. For quite some time, I
have wanted to extend and update the text. The book you are holding is the
result of an effort finally to do this.

Origin of the text

My interest in asynchronous circuit design was born when I read the seminal
textbook “Introduction to VLSI Systems” by Carver Mead and Lynn Conway
[97]. This book included an equally influential chapter 8, “System Timing,”
authored by Chuck Seitz. Among other things, this chapter motivated and
introduced so-called “self-timed circuits” – circuits that operate without a
(global) clock or without clocks at all.

This material had a special appeal to me (and many others alike), and I
wanted to design and implement such circuits. There were no textbooks back
then, and the papers I read dealt with different and often narrow aspects of
asynchronous design – I lacked the big picture and an engineering perspective,
and this is what this book attempts to provide.

In such a context, the best way to learn is to do, and we set out to de-
sign a relatively small chip that was fabricated in 1991 in a 1.5µm CMOS
technology. In parallel, I started assembling pieces of knowledge into a big
picture, and I began to look for the common ground behind the seemingly
different approaches and methods I encountered and read about. My material

ix

x Chapter 0. Preface

gradually evolved and was used for tutorials at several European conferences
and summer schools as well as in courses taught at the Technical University
of Denmark and elsewhere. In parallel, we designed and fabricated some more
chips. In May 1999, I gave a one-week intensive course at Delft University of
Technology, and it was when preparing for this I felt that the material was
shaping up, and I set out to write the original text in 2000-2001.

Perspective and aim

Asynchronous design requires a mindset that is different from that generally
employed in clocked design, and both my original tutorial and the book you
are reading now tries to convey this different mindset. The book is intended
as a beginner’s text. The amount of formal notation is deliberately kept at
a minimum, using instead plain English and graphical illustrations to explain
the underlying intuition and reasoning

The book targets senior undergraduate and graduate students in Electrical
and Computer Engineering and industrial designers with a background in con-
ventional (clocked) digital design who wish to gain an understanding of asyn-
chronous design. The book aims to enable its readers to design asynchronous
control and data processing circuits of small and medium complexity, to read
the literature on the topic, and to decide where/whether to use asynchronous
circuits in some of their new designs.

At the Technical University of Denmark, the author is teaching a 5 ECTS
credit point one-semester course using the material, supplemented by a few
journal articles and a small design project.

Finally: If you use the material for regular class teaching, I would be
grateful if you drop me an email. Any comments, bug reports, or suggestions
for improvements or extensions, are also welcomed.

New material added

For those familiar with the original version of the text, the most significant
changes and additions are the following:

1. The static data-flow handshake-component view presented in chapter 3
has proven very viable and is widely used. This chapter has been signif-
icantly updated, explaining better the spread token semantics of static
data flow structures and providing additional design examples and peep-
hole optimizations. As in the original version, 4-phase handshaking is
assumed.

2. A similar static data-flow view of circuits using 2-phase handshaking has
been lacking. Although conceptually a straightforward adoption/simpli-
fication from 4-phase handshaking, a closer look revealed some funda-
mental differences and challenges [86]. A completely new chapter (chap-
ter 9) has been added covering 2-phase bundled-data circuits – both the

xi

static data-flow view and circuit implementation styles introduced after
the publication of the original 2001-version of this text. As 2-phase bun-
dled data implementations have become increasingly popular, this new
chapter fills a void.

3. The material on performance analysis using data-dependency graphs has
been dropped from chapter 4 and replaced by a new chapter (chap-
ter 7) that provides a more well-founded and more general approach
using timed Petri nets. This new chapter is placed after the chapter on
the design of speed independent control circuits where Petri nets and
signal transition graphs are introduced.

4. Finally, a new chapter (chapter 8) has been added covering metastability,
arbitration, and synchronization as well as the organization of different
forms of multi-clock systems.

Jens Sparsø
Technical University of Denmark
June 2020

Email: jspa@dtu.dk

mailto:jspa@dtu.dk

xii Chapter 0. Preface

Acknowledgments

The material in this book has been collected over a period of more than 25
years. During these years, many people have helped me understand different
bits and pieces, and I cannot possibly thank every individual. My primary
source is all the many colleagues I have met at one of the so far 25 editions of
the IEEE International Symposium on Asynchronous Circuits and Systems.
Thank you all for many good and enlightening discussions over the years.
Another source of learning and insight is teaching, and I also want to thank
the many students who, over the years, have attended my course on design
of asynchronous circuits at the Technical University of Denmark, and whose
questions and comments have helped shape the material.

xiii

xiv Chapter 0. Acknowledgments

Chapter 1

Introduction

1.1 Why consider asynchronous circuits?

Most digital circuits designed and fabricated today are “synchronous.” In
essence, they are based on two fundamental assumptions that greatly simplify
their design: (1) all signals are binary, and (2) all components share a common
and discrete notion of time, as defined by a clock signal distributed throughout
the circuit.

Asynchronous circuits are fundamentally different; they also assume bi-
nary signals, but there is no common and discrete time. Instead, the cir-
cuits use handshaking between their components to perform the necessary
synchronization, communication, and sequencing of operations. Expressed in
“synchronous terms,” this results in a behavior that is similar to systematic
fine-grain clock gating and local clocks that are not in phase and whose periods
are determined by actual circuit delays. In essence, registers are only clocked
where and when needed.

This difference gives asynchronous circuits inherent properties that can
be (and have been) exploited to advantage in the areas listed and motivated
below. The interested reader may find a more comprehensive introduction to
the mechanisms behind the advantages mentioned below in [11].

• Low power consumption, [154, 158, 45, 47, 114, 112]
. . . due to fine-grain clock gating and zero standby power consumption.

• High operating speed, [166, 167, 87]
. . . operating speed is determined by actual local latencies rather than
global worst-case latency.

1

2 Chapter 1. Introduction

• Less emission of electro-magnetic noise, [154, 122]
. . . the local clocks tend to tick at random points in time.

• Robustness towards variations in supply voltage, temperature, and fab-
rication process parameters, [94, 109, 110]
. . . timing is based on matched delays (and can even be insensitive to
circuit and wire delays).

• Better composability and modularity, [103, 89, 115, 147, 145]
. . . because of the simple handshake interfaces and the local timing.

• No clock distribution and clock skew problems,
. . . there is no global signal that needs to be distributed with minimal
phase skew across the circuit.

On the other hand, there are also some drawbacks. The asynchronous
control logic that implements the handshaking often represents overhead in
terms of silicon area, circuit speed, and power consumption. It is therefore
pertinent to ask whether or not the investment pays off, i.e., whether the use
of asynchronous techniques results in a substantial improvement in one or more
of the above areas. Other obstacles are a lack of CAD tools and strategies and
a lack of tools for testing and test vector generation.

Research in asynchronous design goes back to the mid-1950s [104, 103].
Still, it was not until the late 1990s that projects in academia and industry
demonstrated that it is possible to design asynchronous circuits that exhibit
significant benefits in nontrivial real-life examples, and commercialization of
the technology began to take place. Examples are presented in [133].

1.2 Aims and background

There are already several excellent articles and book chapters that introduce
asynchronous design [57, 35, 36, 37, 11, 71, 145] as well as several monographs
and textbooks devoted to asynchronous design including [133, 49, 23, 14, 107]
– why then write yet another introduction to asynchronous design? There are
several reasons:

• My experience from designing several asynchronous chips [144, 113], and
from teaching asynchronous design to students and engineers over the
past 10 years, is that it takes more than knowledge of the basic principles
and theories to design efficient asynchronous circuits. In my experience,
there is a large gap between the introductory articles and book chapters
mentioned above explaining the design methods and theories on the one
side, and the papers describing actual designs and current research on
the other side. It takes more than knowing the rules of a game to play
and win the game. Bridging this gap involves experience and a good

1.3. Clocking versus handshaking 3

understanding of the nature of asynchronous circuits. An experience that
I share with many other researchers is that “just going asynchronous”
results in larger, slower, and more power-consuming circuits. The crux is
to use asynchronous techniques to exploit characteristics in the algorithm
and architecture of the application in question. This further implies that
asynchronous techniques may not always be the right solution to the
problem.

• Another issue is that asynchronous design is a rather young discipline.
Different researchers have proposed different circuit structures and de-
sign methods. At first glance, they may seem different – an observa-
tion that is supported by different terminologies. Still, a closer look
often reveals that the underlying principles and the resulting circuits are
somewhat similar.

• Finally, most of the above-mentioned introductory articles and book
chapters are comprehensive and heavy on mathematical formalism. While
being appreciated by those already working in the field, the multitude of
different theories and approaches in existence represents an obstacle for
the newcomer wishing to get started designing asynchronous circuits.

Compared to the introductory texts mentioned above, the aims of this tu-
torial are: (1) to provide an introduction to asynchronous design that is more
selective, (2) to stress basic principles and similarities between the different ap-
proaches, and (3) to take the introduction further towards designing practical
and useful circuits.

1.3 Clocking versus handshaking

Figure 1.1(a) shows a synchronous circuit. For simplicity, the figure shows
a pipeline, but it is intended to represent any synchronous circuit. When
designing ASICs using hardware description languages and synthesis tools,
designers focus mostly on the data processing and assume the existence of a
global clock. For example, a designer would express the fact that data clocked
into register R3 is a function CL3 of the data clocked into R2 at the previous
clock as the following assignment of variables: R3 := CL3(R2). Figure 1.1(a)
represents this high-level view with a universal clock.

When it comes to physical design, the reality is different. Today’s ASICs
use a structure of clock buffers resulting in a large number of (possibly gated)
clock signals, as shown in figure 1.1(b). It is well known that it takes CAD
tools and engineering effort to design the clock gating circuitry and to minimize
and control the skew between the many different clock signals. Guaranteeing
the two-sided timing constraints – the setup to hold time window around the
clock edge – in a world that is dominated by wire delays is not an easy task.
The buffer-insertion-and-resynthesis process that is used in current commercial

4 Chapter 1. Introduction

clock gate signal

CL4

CL4

"Channel" or "Link"

R2 R3 R4R1 CL4CL3

(d)

Ack

R2 R3 R4R1 Data
CL3 CL4

Req

CTL CTL CTL CTL

Req

Ack

Data

R2 R3R1 CL3

CLK

(b)

CLK

R2 R3 R4R1 CL3

(a)

(c)

R4

Figure 1.1: (a) A synchronous circuit, (b) a synchronous circuit with clock
drivers and clock gating, (c) an equivalent asynchronous circuit, and (d) an ab-
stract data-flow view of the asynchronous circuit. (The figure shows a pipeline,
but it is intended to represent any circuit topology).

1.3. Clocking versus handshaking 5

CAD tools may not converge and, even if it does, it relies on delay models that
are often of questionable accuracy.

Asynchronous design represents an alternative to this. In an asynchronous
circuit, the clock signal is replaced by some form of handshaking between
neighboring registers; for example, the simple request-acknowledge based hand-
shake protocol shown in figure 1.1(c). In the following chapter, we look at
alternative handshake protocols and data encodings, but before departing into
these implementation details, it is useful to take a more abstract view as illus-
trated in figure 1.1(d):

• think of the data and handshake signals connecting one register to the
next in figure 1.1(c) as a “handshake channel” or “link,”

• think of the data stored in the registers as tokens tagged with data values
(that may be changed along the way as tokens flow through combina-
tional circuits), and

• think of the combinational circuits as being transparent to the handshak-
ing between registers. A combinatorial circuit simply absorbs a token
on each of its input links, performs its computation, and then emits a
token on each of its output links (much like a transition in a Petri net,
c.f. section 6.2.1).

Viewed this way, an asynchronous circuit is simply a static data-flow struc-
ture [38]. Intuitively, correct operation requires that data tokens flowing in
the circuit do not disappear, that one token does not overtake another, and
that new tokens do not appear out of nowhere. A simple rule that can ensure
this is the following:

A register may input and store a new data token from its predecessor if
its successor has input and stored the data token that the register was pre-
viously holding. [The states of the predecessor and successor registers are
signaled by the incoming request and acknowledge signals, respectively.]

Following this rule, data is copied from one register to the next along the
path through the circuit. In this process, subsequent registers often hold copies
of the same data value, but the old duplicate data values will later be overwrit-
ten by new data values in a carefully ordered manner, and a handshake cycle
on a link always encloses the transfer of exactly one data-token. Understand-
ing this “token flow game” is crucial to the design of efficient circuits, and we
address these issues later, extending the token-flow view to cover structures
other than pipelines. Our aim here is just to give the reader an intuitive feel
for the fundamentally different nature of asynchronous circuits.

An important message is that the “handshake-channel and data-token
view” represents a very useful abstraction that is equivalent to the register
transfer level (RTL) used in the design of synchronous circuits. This data-flow

6 Chapter 1. Introduction

abstraction, as we call it, separates the structure and function of the circuit
from the implementation details of its components.

Another important message is that it is the handshaking between the reg-
isters that control the flow of tokens, whereas the combinational circuit blocks
must be fully transparent to this handshaking. Ensuring this transparency is
not always trivial, and it takes more than a traditional combinational circuit.
For this reason, we use the term “function block” to denote a combinational
circuit whose input and output ports are handshake-channels or links.

Finally, some more down-to-earth engineering comments may also be rele-
vant. The synchronous circuit in figure 1.1(b) is “controlled” by clock pulses
that are in phase with a periodic clock signal, whereas the asynchronous circuit
in figure 1.1(c) is controlled by locally derived clock pulses that can occur at
any time; the local handshaking ensures that clock pulses are generated where
and when needed. This tends to randomize the clock pulses over time and is
likely to result in less electromagnetic emission and a smoother supply current
without the large di/dt spikes that characterize a synchronous circuit.

1.4 Outline of the book

Chapters 2 through 6 cover the basics of asynchronous design and constitute a
whole. These chapters should be read in sequence. The remaining chapters 7
through 11 cover additional material, and these chapters can be read in any
order depending on interest and need.

Chapter 2 presents a number of fundamental concepts and circuits that are
important for the understanding of the following material. Read through it,
but don’t get stuck; you may want to revisit relevant parts later.

Chapters 3 and 4 address asynchronous design at the data-flow level. Chap-
ter 3 explains the operation of pipelines and rings, introduces a set of hand-
shake components, and explains how to design (larger) computing structures.
Chapter 4 addresses performance analysis and optimization of such structures,
both qualitatively and quantitatively.

Chapter 5 addresses the circuit implementation of the handshake compo-
nents introduced in chapter 3.

Chapter 6 addresses the design of hazard-free sequential (control) circuits.
The latter includes a general introduction to the topics and in-depth coverage
of one specific method: the design of speed-independent control circuits from
signal transition graph specifications. These techniques are illustrated by con-
trol circuits used in the implementation of some of the handshake components
introduced in chapter 3.

Chapter 7 addresses performance analysis in the general case using timed
Petri nets (benefiting from the introduction of Petri nets and signal transition
graphs in chapter 6).

Chapter 8 covers metastability, arbitration, and synchronization in quite

some detail. The material is relevant for synchronous design and asynchronous
design alike.

Chapter 9 addresses the design of asynchronous circuits using non-return-
to-zero (NRZ) handshaking. This involves a new view on static data-flow
structures that is different from that introduced in chapter 3. In addition, the
chapter provides FPGA implementations of the basic asynchronous compo-
nents, thereby enabling actual prototyping of asynchronous circuits.

Chapter 10 introduces more advanced topics related to the implementation
of circuits using the 4-phase bundled-data protocol.

Finally, chapter 11 addresses hardware description languages and synthesis
tools for asynchronous design. Chapter 11 is by no means comprehensive;
it focuses on CSP-like languages and syntax-directed compilation, but also
describes how asynchronous design can be supported by a standard language
as VHDL.

8 Chapter 1. Introduction

Chapter 2

Fundamentals

This chapter provides explanations of topics and concepts that are of fun-
damental importance for understanding the following chapters and for appre-
ciating the similarities between the different asynchronous design styles. The
presentation style is somewhat informal, and the aim is to provide the reader
with intuition and insight.

2.1 Handshake protocols

The previous chapter showed one particular handshake protocol known as a
return-to-zero handshake protocol, figure 1.1(c). In the asynchronous commu-
nity, it is given a more informative name: the 4-phase bundled-data protocol.

2.1.1 Bundled-data protocols

The term bundled-data refers to a situation where the data signals use nor-
mal Boolean levels to encode information, and where separate request and
acknowledge wires are bundled with the data signals, figure 2.1(a). In the 4-
phase protocol illustrated in figure 2.1(b), the request and acknowledge wires
also use normal Boolean levels to encode information. The term 4-phase refers
to the number of communication actions: (1) the sender issues data and sets
request high, (2) the receiver absorbs the data and sets acknowledge high, (3)
the sender responds by taking request low (at which point data is no longer
guaranteed to be valid) and (4) the receiver acknowledges this by taking ac-
knowledge low. At this point, the sender may initiate the next communication
cycle.

The 4-phase bundled data protocol is familiar to most digital designers,
but it has a disadvantage in the superfluous return-to-zero transitions that

9

10 Chapter 2. Fundamentals

(b)

(push) channel

(a)

4−phase protocol (c) 2−phase protocol

Data

Req

Ack

Req

Ack

Data

n

Bundled data

Data

Ack

Req

Figure 2.1: (a) A bundled-data channel. (b) A 4-phase bundled-data protocol.
(c) A 2-phase bundled-data protocol.

cost unnecessary time and energy. The 2-phase bundled-data protocol shown
in figure 2.1(c) avoids this. The information on the request and acknowledge
wires is now encoded as signal transitions on the wires and there is no difference
between a 0→ 1 and a 1→ 0 transition, they both represent a “signal event.”
Ideally, the 2-phase bundled-data protocol should lead to faster circuits than
the 4-phase bundled-data protocol, but often the implementation of circuits
responding to events is complex, and there is no general answer as to which
protocol is best.

At this point, some discussion of terminology is appropriate. Instead of
the term bundled-data that is used throughout this text, some texts use the
term single-rail. The term ‘bundled-data’ hints at the timing relationship
between the data signals and the handshake signals, whereas the term ‘single-
rail’ hints at the use of one wire to carry one bit of data. Also, the term
single-rail may be considered consistent with the dual-rail data representation
discussed in the next section. Instead of the term 4-phase handshaking (or
signaling), some texts use the terms return-to-zero (RTZ) signaling or level
signaling, and instead of the term 2-phase handshaking (or signaling), some
texts use the terms non-return-to-zero (NRZ) signaling or transition signaling.
Consequently, a return-to-zero single-track protocol is the same as a 4-phase
bundled-data protocol, etc.

The protocols introduced above all assume that the sender is the active
party that initiates the data transfer over the channel. This is known as a
push channel. The opposite, the receiver asking for new data, is also possible
and is called a pull channel. In this case, the directions of the request and
acknowledge signals are reversed, and the validity of data is indicated in the
acknowledge signal going from the sender to the receiver. In abstract circuit
diagrams showing links/channels as one symbol, we often mark the active end

2.1. Handshake protocols 11

of a channel with a dot, as illustrated in figure 2.1(a).
To complete the picture we mention a number of variations: (1) a channel

without data can be used for synchronization, and (2) a channel where data
is transmitted in both directions and where req and ack indicate validity of
the data that is exchanged. The latter could be used to interface a read-
only memory: the address would be bundled with req and the data would be
bundled with ack. These alternatives are explained later in section 10.1.1. In
the following sections, we restrict the discussion to push channels.

All the bundled-data protocols rely on delay matching, such that the order
of signal events at the sender’s end is preserved at the receiver’s end. On a
push channel, data is valid before request is set high, expressed formally as
V alid(Data) ≺ Req. This ordering should also be valid at the receiver’s end,
and it requires some care when physically implementing such circuits. Possible
solutions are:

• To control the placement and routing of the wires, possibly by routing all
signals in a channel as a bundle. This is trivial in a tile-based datapath
structure.

• To have a safety margin at the sender’s end.

• To insert and/or resize buffers after layout (much as is done in today’s
synthesis and layout CAD tools).

An alternative is to use a more sophisticated protocol that is robust to wire
delays. In the following sections, we introduce a number of such protocols that
are completely insensitive to delays.

2.1.2 The 4-phase dual-rail protocol

The 4-phase dual-rail protocol encodes the request signal into the data signals
using two wires per bit of information that has to be communicated, figure 2.2.
In essence, it is a 4-phase protocol using two request wires per bit of informa-
tion d; one wire d .t is used for signaling a logic 1 (or true), and another wire
d .f is used for signaling logic 0 (or false). When observing a 1-bit channel,
one sees a sequence of 4-phase handshakes where the participating “request”
signal in any handshake cycle can be either d .t or d .f . This protocol is very
robust; two parties can communicate reliably regardless of delays in the wires
connecting the two parties – the protocol is delay-insensitive.

Viewed together the {x .f , x .t} wire pair is a codeword; {x .f , x .t} = {1, 0}
and {x .f , x .t} = {0, 1} represent “valid data” (logic 0 and logic 1 respectively)
and {x .f , x .t} = {0, 0} represents “no data” (or “spacer” or “empty value” or
“NULL”). The codeword {x .f , x .t} = {1, 1} is not used, and a transition from
one valid codeword to another valid codeword is not allowed, as illustrated in
figure 2.2.

12 Chapter 2. Fundamentals

(push) channel
dual−rail

"0" "E" "1"

Valid "0"
Valid "1"
Not used

Empty ("E")
2n

Ack

Data, Req4−phase
0

Empty Valid Empty Valid

Ack

Data {d.t, d.f}

0
1
1

d.t d.f

0

1
0
1

Figure 2.2: A delay-insensitive channel using the 4-phase dual-rail protocol.

This leads to a more abstract view of 4-phase handshaking: (1) the sender
issues a valid codeword, (2) the receiver absorbs the codeword and sets ac-
knowledge high, (3) the sender responds by issuing the empty codeword, and
(4) the receiver acknowledges this by taking acknowledge low. At this point
the sender may initiate the next communication cycle. An even more abstract
view of what is seen on a channel is a data stream of valid codewords separated
by empty codewords.

Let’s now extend this approach to bit-parallel channels. An N -bit data
channel is formed simply by concatenating N wire pairs, each using the en-
coding described above. A receiver is always able to detect when all bits are
valid (to which it responds by taking acknowledge high), and when all bits are
empty (to which it responds by taking acknowledge low). This is intuitive,
but there is also some mathematical background – the dual-rail code is a par-
ticularly simple member of the family of delay-insensitive codes [162], and it
has some elegant properties:

• any concatenation of dual-rail codewords is itself a dual-rail codeword.

• for a given N (the number of bits to be communicated), the set of all
possible codewords can be disjointly divided into 3 sets:

– The empty codeword where all N wire pairs are {0,0}.
– The intermediate codewords where some wire-pairs assume the empty

state and some wire pairs assume valid data.

– The 2N different valid codewords.

Figure 2.3 illustrates the handshaking on an N -bit channel: a receiver sees
the empty codeword, a sequence of intermediate codewords (as more and more
bits/wire-pairs become valid), and eventually a valid codeword. After receiving
and acknowledging the codeword, the receiver sees a sequence of intermediate
codewords (as more and more bits become empty), and eventually the empty
codeword to which the receiver responds by driving acknowledge low again.

2.1. Handshake protocols 13

Time

valid

All
empty

Acknowledge

Data

Time

1

0

All

Figure 2.3: Illustration of the handshaking on a 4-phase dual-rail channel.

2.1.3 The 2-phase dual-rail protocol

The 2-phase dual-rail protocol also uses 2 wires {d .t , d .f } per bit, but the
information is encoded as transitions (events) as explained previously. On an
N -bit channel a new codeword is received when exactly one wire in each of
the N wire pairs has made a transition. There is no empty value; a valid mes-
sage is acknowledged and followed by another message that is acknowledged.
Figure 2.4 shows the signal waveforms on a 2-bit channel using the 2-phase
dual-rail protocol.

11

Ack

(d1.t, d1.f)

(d0.t, d0.f)

d1.t

d1.f

Ack

d0.f

d0.t

00 01 00

Figure 2.4: Illustration of the handshaking on a 2-phase dual-rail channel.

2.1.4 Other protocols

The previous sections introduced the four most common channel protocols: the
4-phase bundled-data push channel, the 2-phase bundled-data push channel,
the 4-phase dual-rail push channel, and the 2-phase dual-rail push channel; but
there are many other possibilities. The two wires per bit used in the dual-rail
protocol can be seen as a one-hot encoding of that bit, and often it is useful to
extend to 1-of-n encodings in control logic, and to use higher-radix encodings
of data. If the focus is on communication rather than computation, m-of-n

14 Chapter 2. Fundamentals

encodings may be of relevance. The solution space can be expressed as the
cross product of a number of options including:

{2-phase, 4-phase} × {bundled-data,dual-rail, 1-of-n, . . .} × {push,pull}

The choice of protocol affects the circuit implementation characteristics
(area, speed, power, robustness, etc.). Before continuing with these imple-
mentation issues, it is necessary to introduce the concept of indication or
acknowledgment, as well as a new component, the Muller C-element.

2.2 Indication and the Muller C-element

In a synchronous circuit, the role of the clock is to define points in time where
signals are stable and valid. In between the clock-ticks, the signals may exhibit
hazards and may make multiple transitions as the combinational circuits sta-
bilize. This does not matter from a functional point of view. In asynchronous
(control) circuits the situation is different. The absence of a clock means that,
in many circumstances, signals are required to be valid all the time, that ev-
ery signal transition has a meaning and, consequently, that hazards and races
must be avoided.

Intuitively, a circuit is a collection of gates (usually including some feedback
loops). When the output of a gate changes it is seen by other gates, that in
turn may decide to change their outputs accordingly. As an example, figure 2.5
shows one possible implementation of the CTL circuit in figure 1.1(c). The
intention here is not to explain its function, just to give an impression of the
type of circuit we are discussing. It is obvious that hazards on the Ro, Ai,
and Lt signals would be disastrous if the circuit is used in the pipeline of
figure 1.1(c).

Lt

+

& &

+

Ao

Ri

Ai

Ro

CTL

Figure 2.5: An example of an asynchronous control circuit. Lt is a “local”
clock that is intended to control a latch.

2.2. Indication and the Muller C-element 15

1

0
0
1
1

0

a b y

1

0
1
0
1

a

b

y
+ 1

Figure 2.6: A normal OR gate

b

a

b
y

a
yC

Some specifications:

1: if a = b then y := a

2: a = b 7→ y := a

3: y = ab+ y(a+ b)

4: a b y
0 0 0
0 1 no change
1 0 no change
1 1 1

Figure 2.7: The Muller C-element: symbol, possible implementation, and
some alternative specifications.

The concept of indication or acknowledgment plays an essential role in the
design of such circuits. Consider the simple 2-input OR gate in figure 2.6.
An observer seeing the output change from 1 to 0 may conclude that both
inputs are now at 0. However, when seeing the output change from 0 to 1, the
observer is not able to make conclusions about both inputs. The observer only
knows that at least one input is 1, but it does not know which. We say that
the OR gate only indicates or acknowledges when both inputs are 0. Through
similar arguments, it can be seen that an AND gate only indicates when both
inputs are 1.

Signal transitions that are not indicated or acknowledged in other signal
transitions are the source of hazards and should be avoided. We address this
issue in greater detail later in section 2.5.1 and chapter 6.

A circuit that is better in this respect is the Muller C-element shown in
figure 2.7. It is a state-holding element, much like an asynchronous set-reset
latch. When both inputs are 0, the output is set to 0, and when both inputs
are 1, the output is set to 1. For other input combinations, the output does
not change. Consequently, an observer seeing the output change from 0 to 1
may conclude that both inputs are now at 1, and similarly, an observer seeing
the output change from 1 to 0 may conclude that both inputs are now 0.

Combining this with the observation that all asynchronous circuits rely

16 Chapter 2. Fundamentals

Req

Ack

Req

Ack

Req

Ack

ReqReq

Ack AckAck

Req Req

Ack

Right

C[i]

C
Left

C[i+1]

if C[i−1] C[i+1] then C[i] := C[i−1]

C CC

C[i−1]

Figure 2.8: The Muller pipeline or Muller distributor.

on handshaking that involves cyclic transitions between 0 and 1, it should be
clear that the Muller C-element is indeed a fundamental component that is
extensively used in asynchronous circuits.

2.3 The Muller pipeline

Figure 2.8 shows a circuit that is built from C-elements and inverters. The
circuit is known as a Muller pipeline or a Muller distributor. Variations and ex-
tensions of this circuit form the (control) backbone of almost all asynchronous
circuits. It may not always be obvious at first glance, but if one strips off the
cluttering details, the Muller pipeline is always there as the crux of the matter.
The circuit has a beautiful and symmetric behavior, and once you understand
its behavior, you have a very good basis for understanding most asynchronous
circuits.

The Muller pipeline in figure 2.8 is a mechanism that relays handshakes.
After all of the C-elements have been initialized to 0, the left environment
may start handshaking. To understand what happens let’s consider the ith C-
element, C[i]: It will propagate (i.e. input and store) a 1 from its predecessor,
C[i − 1], only if its successor, C[i + 1], is 0. Similarly, it will propagate (i.e.
input and store) a 0 from its predecessor if its successor is 1. It is often useful
to think of the signals propagating in an asynchronous circuit as a sequence of
waves, as illustrated at the bottom of figure 2.8. Viewed this way, the role of

2.4. Circuit implementation styles 17

a C-element stage in the pipeline is to propagate crests and troughs of waves
in a carefully controlled way that maintains the integrity of each wave.

On any interface between C-element pipeline stages an observer will see
correct handshaking, but the timing may differ from the timing of the hand-
shaking on the left-hand environment; once a wave has been injected into the
Muller pipeline, it will propagate with a speed that is determined by actual
delays in the circuit.

Eventually, the first handshake (request) injected by the left-hand environ-
ment reaches the right hand environment. If the right-hand environment does
not respond to the handshake, the pipeline eventually fills. If this happens,
the pipeline stops handshaking with the left-hand environment – the Muller
pipeline behaves like a ripple through FIFO!

In addition to this elegant behavior, the pipeline has a number of beautiful
symmetries. Firstly, it does not matter if you use 2-phase or 4-phase hand-
shaking. It is the same circuit. The difference is in how you interpret the
signals and use the circuit. Secondly, the circuit operates equally well from
right to left. You may reverse the definition of signal polarities, reverse the
role of the request and acknowledge signals, and operate the circuit from right
to left. It is analogous to electrons and holes in a semiconductor; when current
flows in one direction, it may be carried by electrons flowing in one direction
or by holes flowing in the opposite direction.

Finally, the circuit has the interesting property that it works correctly
regardless of delays in gates and wires – the Muller-pipeline is delay-insensitive.

2.4 Circuit implementation styles

As mentioned previously, the choice of handshake protocol affects the circuit
implementation (area, speed, power, robustness, etc.). Most practical circuits
use one of the following protocols introduced in section 2.1:

4-phase bundled-data – which most closely resembles the design of syn-
chronous circuits and which normally leads to the most efficient circuits,
due to the extensive use of timing assumptions.

2-phase bundled-data – introduced under the name Micropipelines by Ivan
Sutherland in his 1988 Turing Award lecture.

4-phase dual-rail – the classic approach rooted in David Muller’s pioneering
work in the 1950s.

Common to all protocols is the fact that the corresponding circuit imple-
mentations all use variations of the Muller pipeline for controlling the stor-
age elements. Below we explain the basics of pipelines built using simple
transparent latches as storage elements. More optimized and elaborate circuit
implementations and more complex circuit structures are the topics of later
chapters.

18 Chapter 2. Fundamentals

C

C

C C

C C
Req

Ack

Comb.

F

Req

Ack

(a)

(b)

Latch

EN
Comb.

F
Latch

EN

Latch

EN

Req

Ack

Data

Req

Ack

Data

Latch

EN

Latch

EN

Req

Ack

Latch

EN

Req

Ack

Req

Ack

Data

Req

Ack

Data

Figure 2.9: A simple 4-phase bundled-data pipeline.

2.4.1 4-phase bundled-data

A 4-phase bundled-data pipeline is particularly simple. A Muller pipeline is
used to generate local clock pulses. The clock pulse generated in one stage
overlaps with the pulses generated in the neighboring stages in a carefully
controlled interlocked manner. Figure 2.9(a) shows a FIFO, i.e., a pipeline
without data processing, and figure 2.9(b) shows how combinational circuits
(also called function blocks) can be added between the latches. To maintain
correct behavior, matching delays must be inserted in the request signal paths.

You may view this circuit as a traditional “synchronous” datapath, con-
sisting of latches and combinational circuits that are clocked by a distributed
gated-clock driver, or you may view it as an asynchronous data-flow structure
composed of two types of handshake components: latches and function blocks,
as indicated by the dashed boxes.

The pipeline implementation shown in figure 2.9 is particularly simple, but
it has some drawbacks When it fills, the state of the C-elements is (0, 1, 0,
1, etc.), and as a consequence, only every other latch is storing data. This
is no worse than in a synchronous circuit using master-slave flip-flops, but
it is possible to design asynchronous pipelines and FIFOs that are better in
this respect. Another disadvantage is speed. The throughput of a pipeline
or FIFO depends on the time it takes to complete a handshake cycle. For

2.4. Circuit implementation styles 19

CCC

CC P

Latch

P

Latch

C P

Latch

Req ReqReq

Ack
Ack

Ack

Req

Ack

DataData

Figure 2.10: A simple 2-phase bundled-data pipeline.

the above implementation, this involves communication with both neighbours.
Chapter 10 addresses alternative implementations that are both faster and
have better occupancy when full.

2.4.2 2-phase bundled data (Micropipelines)

A 2-phase bundled-data pipeline also uses a Muller pipeline as the backbone
control circuit, but the control signals are interpreted as events or transitions,
figure 2.10. For this reason, special capture-pass latches are needed: events
on the C and P inputs alternate, causing the latch to alternate between cap-
ture mode and pass mode. This calls for a special latch design, as shown
in figure 2.11, and explained below. The switch symbol in figure 2.11 is a
multiplexer, and the event controlled latch can be understood as two ordi-
nary level-sensitive latches (operating in an alternating fashion) followed by a
multiplexer and a buffer.

Figure 2.10 shows a pipeline without data processing. Combinational cir-
cuits with matching delay elements can be inserted between latches in a similar
way to the 4-phase bundled-data approach in figure 2.9.

The 2-phase bundled-data approach was pioneered by Ivan Sutherland in
the late 1980s, and an excellent introduction is given in his 1988 Turing Award
Lecture [147]. The title Micropipelines is often used synonymously with the
use of the 2-phase bundled-data protocol, but it also refers to the use of a
particular set of components that are based on event signaling. In addition
to the latch in figure 2.11, these are: AND, OR, Select, Toggle, Call, and
Arbiter. The above figures 2.10 and 2.11 are similar to figures 15 and 12 in
[147], but they emphasize stronger the fact that the control structure is a
Muller-pipeline. Some alternative latch designs that are (significantly) smaller
and (significantly) slower are also presented in [147].

At the conceptual level, the 2-phase bundled-data approach is elegant and
efficient. Compared to the 4-phase bundled-data approach, it avoids the power
and performance loss that is incurred by the return-to-zero part of the hand-

20 Chapter 2. Fundamentals

pass

pass

C P

In Out

C P

C=0 P=0 C=1 P=0

C=1 P=1 C=0 P=1

capture

t0: t1:

capture

t2: t3:

Latch

Figure 2.11: Implementation and operation of a capture-pass event controlled
latch. At time t0, the latch is transparent (i.e., in pass mode), and signals C
and P are both low. An event on the C input turns the latch into capture
mode, etc.

shaking. However, as illustrated by the latch design, the implementation of
components that respond to signal transitions is often more complex than the
implementation of components that respond to normal level signals. In ad-
dition to the storage elements explained above, conditional control logic that
responds to signal transitions tends to be complex as well. This has been ex-
perienced by this author [144], by the University of Manchester [45, 47] and
by many others.

Having said this, the 2-phase bundled-data approach may be the preferred
solution in systems with unconditional data-flows and very high requirements
for speed. But as just mentioned, the higher speed comes at a price: larger
silicon area and higher power consumption. In this respect, asynchronous
design is no different from synchronous design.

2.4.3 4-phase dual-rail

A 4-phase dual-rail pipeline is also based on the Muller pipeline, but in a
more elaborate way that due to the combined encoding of data and request.
Figure 2.12 shows the implementation of a 1-bit wide and three stages deep
pipeline without data processing. It can be understood as two Muller pipelines
connected in parallel, using a common acknowledge signal per stage to syn-
chronize operation. The pair of C-elements in a pipeline stage can store the
empty codeword {d .t , d .f } = {0, 0}, causing the acknowledge signal out of

2.4. Circuit implementation styles 21

Ack

C

C

+

C

C

+

C

C

+

d.f

d.t

Ack

d.f

d.t

Figure 2.12: A simple 3-stage 1-bit wide 4-phase dual-rail pipeline.

&

C

C

C

C

+ + +

C

C

C

di[0].f

di[0].t

di[1].f

di[1].t

di[2].f

di[2].t

+ ++

"All empty"

ack_i
ack_o

do[0].f

do[0].t

do[1].f

do[1].t

do[2].f

do[2].t

Alternative completion detector

C

"All valid"

&

Figure 2.13: An N-bit latch with completion detection.

that stage to be 0, or it can store one of the two valid codewords {0, 1} and
{1, 0}, causing the acknowledge signal out of that stage to be logic 1. At this
point, and referring back to section 2.2, the reader should notice that because
the codeword {1, 1} is illegal and does not occur, the acknowledge signal gen-
erated by the OR gate safely indicates the state of the pipeline stage as being
“valid” or “empty.”

An N -bit wide pipeline can be implemented by using a number of 1-bit
pipelines in parallel. Towards a receiver, this does not guarantee that all bits
in a word arrive at the same time. But often, the necessary synchronization
is done in the function blocks. In [145, 143] we describe a design of this style
using the DIMS combinational circuits explained below.

If bit-parallel synchronization is needed, the individual acknowledge signals
can be combined into one global acknowledge using a C-element. Figure 2.13

22 Chapter 2. Fundamentals

b
y

E E 0 0

F F

TF

T F

TT

1

1

0 1

0

0

NO CHANGE

y.f y.t

01

a b

b.t

AND

b.f

a

C

C

C

C y.t

a.f
00

01

10

11

a.t

+ y.f

Figure 2.14: A 4-phase dual-rail AND gate: symbol, truth table, and imple-
mentation.

shows an N-bit wide latch. The OR gates and the C-element in the dashed box
form a completion detector that indicates whether the N-bit dual-rail codeword
stored in the latch is empty or valid. The figure also shows an implementation
of a completion detector using only a 2-input C-element.

Let us now look at how combinational circuits for 4-phase dual-rail circuits
are implemented. As mentioned in chapter 1 combinational circuits must be
transparent to the handshaking between latches. Therefore, all outputs of a
combinational circuit must not become valid until after all inputs have become
valid. Otherwise, the receiving latch may prematurely set acknowledge high
(before all signals from the sending latch have become valid). Similaly, all out-
puts of a combinational circuit must not become empty until after all inputs
have become empty. Otherwise, the receiving latch may prematurely set ac-
knowledge low (before all signals from the sending latch have become empty).
Consequently, a combinational circuit for the 4-phase dual-rail approach in-
volves state holding elements, and it exhibits a hysteresis-like behavior in the
empty-to-valid and valid-to-empty transitions.

A particularly simple approach, using only C-elements and OR gates, is
illustrated in figure 2.14, which shows the implementation of a dual-rail AND
gate. The circuit can be understood as a direct mapping from sum-of-minterms
expressions for each of the two output wires into hardware. The circuit waits
for all its inputs to become valid. When this happens, exactly one of the four
C-elements goes high. This again causes the relevant output wire to go high
corresponding to the gate producing the desired valid output. When all inputs
become empty, the C-elements are all set low, and the output of the dual-rail
AND gate becomes empty again. Note that the C-elements provide both the
necessary ’and’ operator and the hysteresis in the empty-to-valid and valid-
to-empty transitions that is required for transparent handshaking. Note also
that (again) the OR gate is never exposed to more than one input signal being
high.

2.5. Theory 23

Other dual-rail gates such as OR and EXOR can be implemented in a
similar fashion, and a dual-rail inverter involves just a swap of the true and
false wires. The transistor count in these basic dual-rail gates is rather high,
and in chapter 5, we explore more efficient circuit implementations. Here our
interest is in the fundamental principles.

Given a set of basic dual-rail gates, one can construct dual-rail combina-
tional circuits for arbitrary Boolean expressions using normal combinational
circuit synthesis techniques. The transparency to handshaking that is a prop-
erty of the basic gates is preserved when composing gates into larger combi-
national circuits.

The fundamental ideas explained above all go back to David Muller’s work
in the late 1950s and early 1960s [104, 103]. While [104] develops the fun-
damental theory for the design of speed-independent circuits, [103] is a more
practical introduction, including a design example: a bit-serial multiplier using
latches and gates as explained above.

2.5 Theory

Asynchronous circuits can be classified, as we will see below, as being self-
timed, speed-independent, or delay-insensitive depending on the delay assump-
tions that are made. In this section, we introduce some important theoretical
concepts that relate to this classification. The goal is to communicate the ba-
sic ideas and provide some intuition on the problems and solutions. A reader
who wishes to dig deeper into the theory is referred to the literature. Some
recent starting points are [107, 57, 71, 37, 14].

2.5.1 The basics of speed-independence

We start by reviewing the basics of David Muller’s model of a circuit and the
conditions for it being speed-independent [104]. A circuit is modeled along
with its (dummy) environment as a closed network of gates, closed meaning
that all inputs are connected to outputs and vice versa. Gates are modeled as
Boolean operators with arbitrary non-zero delays, and wires are assumed to
be ideal. In this context, the circuit can be described as a set of concurrent
Boolean functions, one for each gate output. The state of the circuit is the set
of all gate outputs. Figure 2.15 illustrates this for a stage of a Muller pipeline
with an inverter and a buffer mimicking the handshaking behavior of the left
and right-hand environments.

A gate whose output is consistent with its inputs is said to be stable; its
“next output” is the same as its “current output”, zi′ = zi. A gate whose
inputs have changed in such a way that an output change is called for is said
to be excited; its “next output” is different from its “current output”, i.e.,
zi′ 6= zi. After an arbitrary delay, an excited gate may spontaneously change
its output and become stable. We say that the gate fires, and as excited gates

24 Chapter 2. Fundamentals

r i a i+1

c ia i r i+1

iy

C

ri′ = not(ci)

ci′ = riyi + (ri + yi)ci

yi′ = not(ai+1)

ai+1′ = ci

Figure 2.15: Muller model of a Muller pipeline stage with “dummy” gates
modeling the environment behavior.

fire and become stable with new output values, other gates in turn become
excited, etc.

To illustrate this, suppose that the circuit in figure 2.15 is in state (ri, yi, ci,
ai+1) = (0, 1, 0, 0). In this state (the inverter) ri is excited corresponding to
the left environment being about to take request high. After the firing of
ri ↑ the circuit reaches state (ri, yi, ci, ai+1) = (1, 1, 0, 0), and ci now becomes
excited. For synthesis and analysis purposes, one can construct the complete
state graph representing all possible sequences of gate firings. This is addressed
in detail in chapter 6. Here we restrict the discussion to an explanation of the
fundamental ideas.

In the general case, several gates may be excited at the same time (i.e., in
a given state). If one of these gates (say zi) fires, the interesting thing is what
happens to other excited gates that have zi as one of their inputs: they may
remain excited, or they may find themselves with a different set of input signals
that no longer calls for an output change. A circuit is speed-independent if the
latter never happens. The practical implication of an excited gate becoming
stable without firing is a potential hazard. Since delays are unknown, the
gate may or may not have changed its output, or it may be in the middle of
doing so when the ‘counter-order’ comes calling for the gate output to remain
unchanged.

Since the model involves a Boolean state variable for each gate (and for
each wire segment in the case of delay-insensitive circuits), the state space
becomes very large, even for small circuits. In chapter 6 we introduce signal
transition graphs as a more abstract representation from which circuits can be
synthesized.

Now that we have a model for describing and reasoning about the behavior
of gate-level circuits, let us address the classification of asynchronous circuits.

2.5. Theory 25

d

d

dA

2

3

d1
A

B
dB

C
dC

Figure 2.16: A circuit fragment with gate and wire delays. The output of
gate A forks to inputs of gates B and C.

2.5.2 Classification of asynchronous circuits

At the gate level, asynchronous circuits can be classified as being self-timed,
speed-independent, or delay-insensitive depending on the delay assumptions
that are made. Figure 2.16 serves to illustrate the following discussion. The
figure shows three gates: A, B, and C, where the output signal from gate A is
connected to inputs on gates B and C.

A speed-independent (SI) circuit, as introduced above, is a circuit that
operates “correctly”, assuming positive, bounded but unknown delays in gates
and ideal zero-delay wires. Referring to figure 2.16 this means arbitrary dA,
dB , and dC , but d1 = d2 = d3 = 0. Assuming ideal zero-delay wires is not very
realistic in today’s semiconductor processes. By allowing arbitrary d1 and d2
and by requiring d2 = d3 the wire delays can be lumped into the gates, and
from a theoretical point of view, the circuit is still speed-independent.

A circuit that operates “correctly” with positive bounded but unknown
delays in wires as well as in gates is delay-insensitive (DI). Referring to fig-
ure 2.16, this means arbitrary dA, dB , dC , d1, d2, and d3. Such circuits are
extremely robust. One way to show that a circuit is delay-insensitive is to use
a Muller model of the circuit where wire segments (after forks) are modeled
as buffer components. If this equivalent circuit model is speed-independent,
then the circuit is delay-insensitive.

Unfortunately, the class of delay-insensitive circuits is rather small. Only
circuits composed of C-elements and inverters can be delay-insensitive [91],
and the Muller pipeline in figures 2.5, 2.8, and 2.15 is one important exam-
ple. Circuits that are delay-insensitive, except for some carefully identified
wire forks where d2 = d3, are called quasi-delay-insensitive (QDI). Such wire
forks, where signal transitions occur at the same time at all end-points, are
called isochronic (and discussed in more detail in the next section). Typically
these isochronic forks are found in gate-level implementations of basic build-
ing blocks where the designer can control the wire delays. At the higher levels
of abstraction, the composition of building blocks would typically be delay-
insensitive. After these comments, it is evident that a distinction between DI,
QDI, and SI makes good sense.

Because the class of delay-insensitive circuits is so small, basically excluding

26 Chapter 2. Fundamentals

all circuits that compute, most circuits that are referred to in the literature as
delay-insensitive are only quasi-delay-insensitive.

Finally a word about self-timed circuits: speed-independence and delay-
insensitivity, as introduced above, are (mathematically) well-defined proper-
ties under the unbounded gate and wire delay model. Circuits whose correct
operation relies on more elaborate and/or engineering timing assumptions are
simply called self-timed.

2.5.3 Isochronic forks

From the above, it is clear that the distinction between speed-independent cir-
cuits and delay-insensitive circuits relates to wire forks and, more specifically,
to whether the delays to all end-points of a forking wire are identical or not.
If the delays are identical, the wire-fork is called isochronic.

The need for isochronic forks is related to the concept of indication intro-
duced in section 2.2. Consider a situation in figure 2.16, where gate A has
changed its output. Eventually, this change is observed on the inputs of gates
B and C, and after some time, gates B and C may respond to the new input
by producing new outputs. If this happens we say that the output change
on gate A is indicated by output changes on gates B and C. If, on the other
hand, only gate B responds to the new input, it is not possible to establish
whether gate C has seen the input change as well. In this case, it is necessary
to strengthen the assumptions to d2 = d3 (i.e., that the fork is isochronic) and
conclude that since the input signal change was indicated by the output of B,
gate C has also seen the change.

2.5.4 Relation to circuits

In the 2-phase and 4-phase bundled-data approaches, the control circuits are
usually speed-independent (or in some cases even delay-insensitive), but the
datapath circuits with their matched delays are self-timed. Circuits designed
following the 4-phase dual-rail approach are generally quasi-delay-insensitive.
In the circuits shown in figures 2.12 and 2.14, the forks that connect to the
inputs of several C-elements must be isochronic, whereas the forks that connect
to the inputs of several OR gates are delay-insensitive.

The different circuit classes, DI, QDI, SI, and self-timed, are not mutually
exclusive ways to build complete systems, but useful abstractions that can be
used at different levels of design. In most practical designs, they are mixed.
For example, in the Amulet processors [48, 46, 50], SI design is used for local
asynchronous controllers, bundled-data for local data processing, and DI is
used for high-level composition. Another example is the hearing-aid filter
bank design presented in [113]. It uses the DI dual-rail 4-phase protocol inside
RAM-modules and arithmetic circuits to provide robust completion indication,
and 4-phase bundled-data with SI control at the top levels of design, i.e.,

2.6. Test 27

somewhat different from the Amulet designs. This emphasizes that the choice
of handshake protocol and circuit implementation style is among the factors
to consider when optimizing an asynchronous digital system.

It is important to stress that speed-independence and delay-insensitivity
are mathematical properties that can be verified for a given implementation. If
an abstract component – such as a C-element or a complex And-Or-Invert gate
– is replaced by its implementation using simple gates and possibly some wire-
forks, then the circuit may no longer be speed-independent or delay-insensitive.
As an illustrative example, we mention that the simple Muller pipeline stage in
figures 2.8 and 2.15 is no longer delay-insensitive if the C-element is replaced
by the gate-level implementation shown in figure 2.5 that uses simple AND
and OR gates. Furthermore, even simple gates are abstractions; in CMOS
the primitives are N and P transistors, and even the most basic gates include
forks.

In chapter 6, we explore the design of SI control circuits in great detail
(because theory and synthesis tools are well developed). As SI circuits ignore
wire delays completely, some care is needed when physically implementing
these circuits. In general, one might think that the zero wire-delay assumption
is trivially satisfied in small circuits involving 10-20 gates, but this need not
be the case: a place and route CAD tool might spread the gates of a small
controller all over the chip. Even if the gates are placed next to each other,
they may have different logic thresholds in their inputs, which in combination
with slowly rising or falling signals can cause (and have caused!) circuits to
malfunction. For static CMOS and circuits operating with low supply voltages
(e.g. VDD ∼ V tN + |V tP |) this is less of a problem, but for dynamic circuits
using a larger VDD (e.g., 3.3 V or 5.0 V) the logic thresholds can be very
different. This often overlooked problem is addressed in detail in [152].

2.6 Test

When it comes to the commercial exploitation of asynchronous circuits, the
problem of test comes to the fore. Testing is a major topic in its own right,
and it is beyond the scope of this tutorial to do anything more than mention
a few issues and challenges. Although the following text is brief it assumes
some knowledge of testing. The material does not constitute a foundation for
the following chapters, and it may be skipped.

The previous discussion about Muller circuits (excited gates and the firing
of gates), the principle of indication, and the discussion of isochronic forks ties
in nicely with a discussion of testing for stuck-at faults. In the stuck-at fault
model, defects are modeled at the gate level as (individual) inputs and outputs
being stuck-at-1 or stuck-at-0. The principle of indication says that all input
signal transitions on a gate must be indicated by an output signal transition
on the gate. Furthermore, asynchronous circuits make extensive use of hand-
shaking, and this causes signals to exhibit cyclic transitions between 0 and 1.

28 Chapter 2. Fundamentals

In this scenario, the presence of a stuck-at fault is likely to cause the circuit
to halt; if one component stops handshaking, the stall tends to “propagate”
to neighboring components, and eventually, the entire circuit halts. Conse-
quently, the development of a set of test patterns that exhaustively tests for
all stuck-at faults is simply a matter of developing a set of test patterns that
toggle all nodes, and this is generally a comparatively simple task.

Since isochronic forks are forks where a signal transition in one or more
branches is not indicated by the gates that take these signals as inputs, it
follows that isochronic forks imply untestable stuck-at faults.

Testing asynchronous circuits incur additional problems. As we will see
in the following chapters, asynchronous circuits tend to implement registers
using latches rather than flip-flops. In combination with the absence of a global
clock, this makes it less straightforward to connect registers into scan-paths.
Another consequence of the distributed self-timed control (i.e., the lack of a
global clock) is that it is less straightforward to single-step the circuit through
a sequence of well-defined states. This makes it less straightforward to steer
the circuit into particular quiescent states, which is necessary for IDDQ testing
– the technique that is used to test for shorts and opens which are faults that
are typical in today’s CMOS processes.

The extensive use of state-holding elements (such as the Muller C-element),
together with the self-timed behavior, makes it difficult to test the feed-back
circuitry that implements the state holding behavior. Delay-fault testing rep-
resents yet another challenge.

The above discussion may leave the impression that the problem of testing
asynchronous circuits is largely unsolved. This is not correct. Intead, the
truth is that the techniques for testing synchronous circuits are not directly
applicable. The situation is quite similar to the design of asynchronous circuits
that we address in detail in the following chapters. Here a mix of new and
well-known techniques is also needed. A good starting point for reading about
the testing of asynchronous circuits is [131].

2.7 Summary

This chapter introduced a number of fundamental concepts. We now return
to the main track of designing circuits. The reader may want to revisit some
of the material in this chapter again while reading the following chapters.

Chapter 3

Static data-flow structures

In this chapter, we develop a high-level view of asynchronous design that is
equivalent to RTL (register transfer level) in synchronous design. At this
level the circuits may be viewed as static data-flow structures. The aim is to
focus on the behavior of the circuits and to abstract away the details of the
handshake signaling, which can be considered an orthogonal implementation
issue.

3.1 Introduction

The various handshake protocols and the associated circuit implementation
styles presented in the previous chapters are rather different. However, when
looking at the circuits at a more abstract level – the data-flow handshake-
channel level introduced in chapter 1 – these differences diminish, and it makes
good sense to view the choice of handshake protocol and circuit implementa-
tion style as low level implementation decisions that can be made largely in-
dependently from the more abstract design decisions that establish the overall
structure and operation of the circuit.

Throughout this chapter, we assume a 4-phase protocol since this is most
common. From a data-flow point of view this means that we will be dealing
with data streams composed of alternating valid and empty values. In a two-
phase protocol, we would see only a sequence of valid values, and two-phase
circuits are covered in depth in chapter 9. Furthermore, we will be dealing
with simple latches as storage elements. The latches are controlled according
to the simple rule stated in chapter 1:

A latch may input and store a new token (valid or empty) from its pre-
decessor if its successor latch has input and stored the token that it was
previously holding.

29

30 Chapter 3. Static data-flow structures

Latches (i.e., handshake latches) are the only components that initiate and
take an active part in handshaking; all other components are “transparent” to
the handshaking. To ease the distinction between latches and combinational
circuits and to emphasize the token flow in circuit diagrams, we use a box
symbol with double vertical lines to represent latches throughout the rest of
this tutorial (see figure 3.1).

3.2 Pipelines and rings

Figure 3.1(a) shows a snapshot of a pipeline composed of five latches denoted
L0, L1, . . . , L4. The state of the C-elements controlling the latches is shown
next to the C-elements. Figure 3.1(b) illustrates the state of the C-elements
and indicate which C-elements are about to change state (similar to the ex-
planation of the Muller pipeline in Section 2.3). With the given state of the
C-elements, data latches L0, L3, and L4 are transparent and latches L1 and
L2 are holding data. Data latch L1 holds a copy of data that has been copied
into L2.

Figure 3.1(c) shows the more abstract static data-flow view of the pipeline.
The “box arrows” represent channels or links consisting of request, acknowl-
edge, and data signals (as explained on page 3). The valid value in L1 has
just been copied into L2, and the empty value in L3 has just been copied into
L4. This means that L1 and L3 are now holding old duplicates of the values
now stored in L2 and L4. Such old duplicates are called “bubbles,” and the
newest/rightmost valid and empty values are called “tokens.” To distinguish
tokens from bubbles, tokens are represented with a circle around the value. In
this way, a latch may hold a valid token, an empty token or a bubble. Bubbles
can be viewed as catalysts: a bubble allows a token to be copied forward, and
after this has happened, the bubble has moved backward.

This forward copying of tokens is illustrated in figure 3.1(d). For each step,
figure 3.1(d) first shows “what happens” (tokens are copied forward) and then
the resulting state of the circuit. This is to emphasize that a token-bubble
pair is not simply swapped in an atomic operation; tokens are copied forward,
leaving bubbles behind. It may be useful to realize the similarity between how
(valid and empty) tokens are copied forward and how the rising and falling
transitions (or the 0’s and 1’s) in the Muller pipeline control circuit moves
forward.

Any circuit should have one or more bubbles, otherwise it will be in a
deadlock state. This is a matter of initializing the circuit properly, and we
will elaborate on this shortly. Furthermore, as we will see later, the number
of bubbles also has a significant impact on performance.

In a pipeline with at least three latches, it is possible to connect the out-
put of the last stage to the input of the first, forming a ring in which data
tokens can circulate autonomously. Assuming the ring is initialized as shown

3.2. Pipelines and rings 31

C C C C C
0 01

L0 L1 L2 L3 L4

1 0

L0

BubbleBubble Token TokenToken

L1 L2 L3 L4

0 01 1 0

EN EN EN EN EN

Transparent TransparentHold

Req

Ack

Req

Ack

Hold Transparent

(b)

(c) E EVV E

E EVVE

E EVVE

Step 1:

E EVE

E EVE V

E

Step 2:

(d)

(a)

Figure 3.1: (a) A possible state of a five stage pipeline. (b) The state of the
Muller pipeline control circuit. (c) The abstract “static data-flow structure”
representation of the pipeline in figure 3.1(a). (d) Illustration of how the
operation of the pipeline can be understood at this level: as tokens being
copied forward (into stages holding bubbles).

32 Chapter 3. Static data-flow structures

E

EV

V

E E V

t2:

V EV

V E
t0:

t1: t3:

E

E V E

V E V

Token Token Bubble

E

V

Figure 3.2: A three-stage ring. A possible initial state (t0), and the following
sequence of data transfers (t0, t1, and t2).

in figure 3.2(a) at time t0 with a valid token, an empty token and a bubble,
the first steps of the circulation process at times t1, t2 and t3 are also shown
in figure 3.2(b) – again emphasizing the tokens are copied forward. Rings are
the backbone structures of circuits that perform iterative computations. The
cycle time of the ring in figure 3.2 is 6 “steps” (the state at t6 is identical to
the state at t0). Both the valid token and the empty token have to make one
round trip. A round trip involves 3 “steps” and as there is only one bubble
to support this the cycle time is 6 “steps”. It is interesting to note that a
4-stage ring initialized to hold a valid token, an empty token, and two bubbles
can iterate in 4 “steps.” It is also interesting to note that the addition of one
more latch does not re-time the circuit or alter its function (as would be the
case in a synchronous circuit); it is still a ring in which a single data token is
circulating.

As a final note, the more theoretically inclined reader is referred to [140,
141] for a more formal and Petri-net-based discussion of the token-bubble
semantics of static data-flow structures.

3.3 Building blocks

Figure 3.3 shows a minimum set of components that is sufficient to implement
a large class of asynchronous circuits (static data-flow structures with deter-
ministic behavior, i.e., without arbiters). The components can be grouped
into five categories, as explained below. In the following sections, we will see
examples of the token-flow behavior in structures composed of these compo-
nents.

3.3. Building blocks 33

Source

0

1

MUTEX

ARB

Arbiter

Merge

F

Function block

Latch Sink

DEMUX

0

1

MUX

Join Fork

(Alternative symbols)

1

1 1

1
R1 G1

R2 G2

Figure 3.3: A basic and sufficient set of handshake components to implement
data-flow style asynchronous circuits.

Latches provide storage for variables and implement the handshaking that
supports the token flow. In addition to the normal handshake latch,
a number of degenerate latches are often needed: a latch with only an
output channel is a source that produces tokens (with the same constant
value), and a latch with only an input channel is a sink that consumes
tokens. Figure 2.9 shows the implementation of a 4-phase bundled-data
latch, figure 2.11 shows the implementation of a 2-phase bundled-data
latch and figures 2.12 – 2.13 shows the implementation of a 4-phase
dual-rail latch.

34 Chapter 3. Static data-flow structures

Function blocks are the asynchronous equivalent of combinatorial circuits.
They are transparent/passive from a handshaking point of view. A func-
tion block: (1) waits for a token on its input, (2) computes the required
combinatorial function, and (3) issues a token on its output. Both empty
and valid tokens are handled in this way. The implementation of func-
tion blocks is a topic with much greater depths and insights than this
simple description hints. The topic is addressed in detail in chapter 5.

Unconditional flow control: Fork and join components are used to handle
parallel threads of computation. In engineering terms, forks are used
when the output from one component is input to more components, and
joins are used when data from several independent channels needs to
be synchronized – typically because they are (independent) inputs to
a circuit. In the following, we often omit joins and forks from circuit
diagrams: the fan-out of a channel implies a fork, and the fan-in of
several channels implies a join.

A merge component has two or more input channels and one output
channel. Handshakes on the input channels are assumed to be mutually
exclusive, and the merge relays input tokens/handshakes to the output.

Conditional flow control: MUX and DEMUX components perform the
usual functions of selecting among several inputs or steering the input to
one of several outputs. The control input is a channel, just like the data
inputs and outputs. A MUX synchronizes the control channel and the
relevant input channel and it sends the input data to the data output.
The other input channel is ignored. Similarly, a DEMUX synchronizes
the control and data input channels and steers the input to the selected
output channel.

Mutual exclusion and arbitration: The merge component presented above
assumes that handshakes on the two input channels are mutually exclu-
sive. If this is not the case, an arbiter is needed. An arbiter selects the
channel whose request is asserted first. The other input is ignored until
the current input-to-output handshake completes. If the request signals
on both inputs are asserted simultaneously, the arbiter must make a
random choice. This involves metastability and may take an unbounded
amount of time. A circuit implementing this core operation is a MUTEX
that accepts two request inputs (R1 and R2) but never asserts more than
one of its two outgoing grant signals (G1 or G2). Metastability, mutual
exclusion, and arbitration are interesting and challenging topics that we
discuss later in chapter 8.

As mentioned before, the latches implement the handshaking and thereby
the token flow in a circuit. All other components must be transparent to the
handshaking. This has significant implications for the implementation of these
components!

3.4. A simple example 35

Figure 3.4: An example asynchronous circuit composed of latches, forks and
joins.

3.4 A simple example

Figure 3.4 shows an example of a circuit composed of latches, forks and joins
that we will use to illustrate the token-flow behavior of an asynchronous circuit.
The structure can be described as pipeline segments and a ring connected into
a larger structure using fork and join components.

Assume that the circuit is initialized as shown in figure 3.5 at time t0: all
latches are initialized to the empty value except for the bottom two latches in
the ring that are initialized to contain a valid value and an empty value. Values
enclosed in circles are tokens, and the rest are bubbles. Assume further that
the left and right-hand environments (not shown) take part in the handshakes
that the circuit is prepared to perform. Under these conditions the operation
of the circuit (i.e., the flow of tokens) is as illustrated in the snapshots labeled
t0−t11. The left-hand environment performs one handshake cycle, inputting a
valid value followed by an empty value. Likewise, the right-hand environment
takes part in one handshake cycle and consumes a valid value and an empty
value.

To reduce the amount of illustration in figure 3.5, we show only a single
copy of the schematic for each “step,” combining what in figures 3.1 and 3.2
was illustrated as sub-steps a and b.

Because the flow of tokens is controlled by local handshaking, the circuit
could exhibit many other behaviors. For example, at time t5 the circuit is
ready to accept a new valid value from its left environment. Notice also that
if the initial state had no tokens in the ring, then the circuit would deadlock
after a few steps. It is highly recommended that the reader tries to play the
token-bubble data-flow game, perhaps using the same circuit but with different
initial states.

36 Chapter 3. Static data-flow structures

Legend:

V

V

V

V

V

V

V

E

V

E

E

E

E

V

E

E

V

VE

E

V

E

E V

V

VE

E

V

E

V

E

V

E

V

E

EV

E

E

V E

V E

E

V E

V E

E

E

E

E

EE

E

V

E

E

E E

E

E

E

E

E

E

V

V

E

E

V

V

E

E

E

E

E

t0:

t1:

t2:

t3:

E E

V

t5:

t4:

E

E

V

V

V

V

V

E

E

t6:

E E

t7:

E

t8:

E

EE

E

E

V

E

E

E

E

E

E

E

t9:

E

E

E E

E

E

E

E

E

E E

E

E

E

t10:

t10:

V Bubble E

Valid token Empty token

Bubble

Figure 3.5: A possible operation sequence of the example circuit from fig-
ure 3.4.

3.5. Simple applications of rings 37

3.5 Simple applications of rings

This section presents a few simple circuits based on one or more rings.

3.5.1 Sequential circuits

Figure 3.6 shows a straightforward implementation of a finite state machine.
Its structure is similar to a synchronous finite state machine; it consists of a
function block and a ring that holds the current state. The machine accepts an
“input token” that is joined with the “current state token.” Then the function
block computes the output and the next state, and finally, the fork splits these
into an “output token” and a “next state token.”

E

F
Input Output

V E

state
Current Next

state

Figure 3.6: Implementation of an asynchronous finite state machine using a
ring.

3.5.2 Iterative computations

A ring can also be used to build circuits that implement iterative computations.
Figure 3.7 shows a template circuit.

The idea is that the circuit will: (1) accept an operand, (2) sequence
through the same operation several times until the computation terminates,
and (3) output the result. The necessary control is not shown. The figure
shows one particular implementation. Possible variations involve locating the
latches and the function block differently in the ring as well as decomposing
the function block and putting these (simpler) function blocks between more

E

Result

FE E

1

0 0

1

Operand(s)

Figure 3.7: Implementation of an iterative computation using a ring.

38 Chapter 3. Static data-flow structures

(a)

(b)

1 1

Clock

1, 1, 2, 3, 5, 8, 13, ...

E E

token
EmptyEmpty

token

1E

bubble
Empty Valid

token
Empty

bubble token
Valid

1E 1, 1, 2, 3, 5, 8, 13, ...

Figure 3.8: (a) A synchronous circuit producing the sequence of Fibonacci
numbers. (b) A direct 4-phase asynchronous re-implementation consisting of
two nested rings.

latches. In [166] Ted Williams presents a circuit that performs division us-
ing a self-timed 5-stage ring. This design was later used in a floating-point
coprocessor in a commercial microprocessor [167].

3.5.3 Fibonacci sequence generator

Figure 3.8(a) shows a clocked synchronous circuit that produces the sequence
of Fibonacci numbers on its output port. An asynchronous re-implementation
of the Fibonacci circuit is shown in figure 3.8(b). Starting from the initial
state shown in the figure, the circuit will provide the first number in the
sequence and assert request. When the environment acknowledges the receipt
of a Fibonacci number, the circuit will compute and present the next number in
the sequence. The circuit consists of two rings. The handshake components in
an inner 3-stage ring with one token are also part of an outer 6-stage ring with
two tokens. Assuming a 4-phase bundled-data implementation, the figure also
shows the initial state of the C-elements in the Muller pipeline control path
to illustrate the wave-analogy introduced in figure 3.1 on page 31.

We will revert to the asynchronous Fibonacci circuit later in two contexts.
First, in the next section (3.6) where we introduce and explain the spread-
token semantics of static data-flow structures, and later in chapter 9 where
we develop a token-bubble-view of static data-flow structures using 2-phase
handshaking. For the latter, we will use the waveform illustration as a stepping
stone for a discussion of 2-phase handshaking.

3.6. When tokens spread 39

V

V

V

V

V

V

V V

V V

V

V

t5:

t7:

t6:

V

V

V

V V

V

V

V

V

V EV

t4:

V V

V E

V Bubble E

Valid token Empty token

Bubble

Legend:

E

E E

E

V

E E

E

E

E

V

t0:

t1:

t2:

EV

t3:

V

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L4 L5

L1 L2 L3

F1 CL1 J1

L1 L2 L3

F1 CL1 J1

L4 L5

Figure 3.9: A circuit in which tokens spread.

3.6 When tokens spread

As explained in section 3.2, and illustrated in figures 3.1 and 3.2, tokens are
copied forward, but the illustrations only showed situations where a token is
stored in a single latch except for a short time interval where the token is
copied forward. In the following, we will see that tokens may spread across
more stages and for a longer time. It is important to understand this more
elaborate spread-token semantics when designing and working with static data-
flow asynchronous circuits.

A reader wanting to cover some ground quickly may skip this section for
now and proceed with the remainder of this chapter. A reader who wants to
dig deeper into the formal underpinnings may supplement this section with
[140, 141].

Consider the circuit in figure 3.9. It is composed of five handshake latches
(denoted L1, L2, L3, L4, and L5), a fork (denoted F1), a join (denoted J1),
and a function block (denoted CL1). At time t0 latch L1 holds a valid token,
and all other latches hold empty bubbles.

40 Chapter 3. Static data-flow structures

V

V

V

VE

E V

E V

V

V V

E

V

EV

V

V V

E

E

V V

E

V

V

E E

V

E

E

V

t0:

t1:

t2:

V

t3:

V V

t7:

t5:

t6:

V

V

t4:

E

V

V

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

L1 L2 L3

F1 CL1 J1

L4 L5

Figure 3.10: Another circuit in which tokens spread.

At time t1 the valid token in L1 is copied into L2 and quickly after L1
becomes a valid bubble. Following this, at time t2, fork F1 forwards the valid
token in L2 to both its output branches. In the lower branch, the token is
copied into L4. At time t3, the token in L2 propagates through CL1 in the
upper branch, and the token in L4 is copied into L5. Strictly speaking, L4
is now holding a valid bubble (an old duplicate), but L2 is still holding the
same token as L5 – the token spreads across L2, L4 and L4. The token in
L2 does not become a bubble until fork F1 receives an acknowledgment on
both output channels. At time t4, join J1 receives a token on both its input
ports, and it outputs a token that finally, at time t5, is copied into L3. At this
moment, the same token now spreads across L2-L3 in the upper branch and
across L2-L4-L5-L3 in the lower branch. Next, at time t6, join J1 passes the
acknowledge from L3 towards CL1 and L5 and L5 now holds a valid bubble.
Finally, at time t7, the upper output port of fork F1 receives an acknowledge
from CL1. Synchronizing this with the acknowledge on the lower output that
has been pending since time t2, the fork finally produces an acknowledgment
towards L2, which now becomes a valid bubble.

It should be noted that the circuit in figure 3.9 has been devised for illus-
trative purposes. Latches L4 and L5 do no good. They could be deleted, and
this would speed up the lower branch of the circuit and reduce the latency

3.6. When tokens spread 41

E V

V

V

E V

V

V

VE

V

V V

VE

V

V E

V E

V

V

t4:

V

V

V

V V

V

t3:

t5:

t0:

EE

E

V

E

V

E

E

t1:

t2:

L4 L5

L3

J1

L1 L2

F1 CL1

L6

L4 L5

L3

J1

L1 L2

F1 CL1

L6

L4 L5

L3

J1

L1 L2

F1 CL1

L6

L4 L5

L3

J1

L1 L2

F1 CL1

L6

L4 L5

L3

J1

L1 L2

F1 CL1

L6

L4 L5

L3

J1

L1 L2

F1 CL1

L6

Figure 3.11: By adding an extra latch to the bottom branch of the circuit
in figure 3.10, the bottom branch now has a bubble, and the whole circuit
performs better.

from input to output.

The same circuit could be initialized differently, with a valid-empty token
pair in latches L5 and L4, as shown in figure 3.10. The valid token in L5
changes the time-behavior of the circuit (and also its functionality, but this
is not the point here). Again, fork F1 will forward the valid token in L2 to
both its output branches (time t2), but as latch L4 holds an empty token, and
the valid token from L2 cannot (yet) propagate into the L4-L5-branch of the
circuit. Like before, the token from L2 propagates through CL1 to the upper
input of join J1. Here it is joined with the valid token in L5, and a valid token is
copied into latch L3 (time t3). The acknowledge signal from L3 is propagated
to both input ports of join J1. In the upper branch, it quickly reaches the
upper output port of fork F1. But as the bottom L4-L5-branch has not yet
consumed the token from L2, fork F1 cannot issue an acknowledge towards
latch L2. After some activity in the bottom L4-L5-branch, L4 eventually
reaches a state where it holds an empty bubble (time t5). Latch L4 can now
finally receive the token from L2 (time t6). And when L4 acknowledges, fork
F1 synchronizes the acknowledge signals from CL1 and L4, and it produces
an acknowledge signal to L2. Not until this point, does the state of L2 change
from a valid token to a valid bubble (time t7).

It should be noted that the circuit in figure 3.10 also has poor performance.
A better design would have one extra latch, as shown in figure 3.11. This
allows two concurrent actions: The token in L2, that is forked through the
lower output of fork F1, is copied into L4. At the same time, the token in

42 Chapter 3. Static data-flow structures

(a)

body1 body2

10

{variables}

cond

{variables}

merge

(b)

body1 body2

10

10

{variables}

cond

{variables}

Figure 3.12: A template for implementing if statements.

L2 that is forked through the upper output of fork F1 will propagate through
CL1, join with the token from L6, and the token thus produced by join J1 will
be copied into L3. This circuit has better performance and the reason is the
bubble in L4 in the L4-L5-L6 branch.

After this more detailed coverage of the token-bubble dynamics of static
data-flow structures, let us now turn out attention towards building circuits
with interesting functionality.

3.7 FOR, IF, and WHILE constructs

Very often, the desired function of a circuit is expressed using a programming
language (C, C++, VHDL, Verilog, etc.). In this section, we show imple-
mentation templates for a number of typical conditional structures and loop
structures. A reader who is familiar with control-data-flow graphs, perhaps
from high-level synthesis, may recognize the great similarities between asyn-
chronous circuits and control-data-flow graphs [38, 146].

if <cond> then <body1> else <body2 >

An asynchronous circuit template for implementing an if-statement is shown
in figure 3.12(a). The data-type of the input and output channels to the if-
circuit is a record containing all variables in the <cond> expression and the
variables manipulated by <body1> and <body2>. The data-type of the output
channel from the cond block is a Boolean that controls the DEMUX and MUX
components. The FORK associated with this channel is not shown.

Since the execution of <body1> and <body2> are mutually exclusive, it
is possible to replace the controlled MUX in the bottom of the circuit with a

3.7. FOR, IF, and WHILE constructs 43

Initial tokens

0

count

E1 0

body

1 0

{variables}

{variables}

{variables}, count

Figure 3.13: A template for implementing for statements.

simpler MERGE, as shown in figure 3.12(b). The circuit in figure 3.12 contains
no feedback loops and no latches – it can be considered a large function block.
The circuit can be pipelined for improved performance by inserting latches.

for <count> do <body>

An asynchronous circuit template for implementing a for statement is shown
in figure 3.13. The data-type of the input channel to the for-circuit is a
record containing all variables manipulated in the <body> and the loop count,
<count>, that is assumed to be a non-negative integer. The data-type of the
output channel is a record containing all variables manipulated in the <body>.

The data-type of the output channel from the count block is a Boolean,
and one handshake on the input channel of the count block encloses <count>

handshakes on the output channel: <count> - 1 handshakes providing the
Boolean value “1” and one (final) handshake providing the Boolean value
“0”. Notice the two latches on the control input to the MUX. They must be
initialized to contain a data token with the value “0” and an empty token in
order to enable the for-circuit to read the variables into the loop.

After executing the for statement once, the last handshake of the count
block will steer the variables in the loop onto the output channel and put a
“0” token and an empty token into the two latches, thereby preparing the for-
circuit for a subsequent activation. The FORK in the input and the FORK on
the output of the count-block are not shown. Similarly, a number of latches
are omitted. Remember: (1) all rings must contain at least 3 latches, and
(2) for each latch initialized to hold a data-token, there must also be a latch
initialized to hold an empty token (when using 4-phase handshaking).

44 Chapter 3. Static data-flow structures

Initial tokens

0

cond

{variables}

body

{variables}

{variables}

1 0

1 0

E

Figure 3.14: A template for implementing while statements.

while <cond> do <body>

An asynchronous circuit template for implementing a while statement is shown
in figure 3.14. Inputs to (and outputs from) the circuit are the variables in
the <cond> expression and the variables manipulated by <body>. As before
in the for-circuit, it is necessary to put two latches initialized to contain a
data token with the value “0” and an empty token on the control input of the
MUX. And as before, a number of latches are omitted in the two rings that
constitute the while-circuit. When the while-circuit terminates (after zero or
more iterations), data is steered out of the loop, and this also causes the latches
on the MUX control input to become initialized properly for the subsequent
activation of the circuit.

3.8 A more complex example: GCD

Using the templates just introduced, we now design a small example circuit,
GCD, that computes the greatest common divisor of two integers. GCD is
often used as an introductory example, and figure 3.15 shows a programming
language specification of the algorithm.

In addition to its role as a design example in the current context, GCD can
also serve to illustrate the similarities and differences between different design
techniques. In chapter 11, we use the same example to illustrate the Tan-
gram language and the associated syntax-directed compilation process (sec-
tion 11.3.3 on pages 208–208).

The implementation of GCD is shown in figure 3.16. It consists of a while-
template whose body is an if-template. Figure 3.16 shows the circuit, including

3.9. Pointers to additional examples 45

input (a,b);
while a 6= b do

if a > b then a← a− b;
else b← b− a;

output (a);

Figure 3.15: A programming language specification of GCD.

1

0

GCD(A,B)

A,B

A,B

1

1

0

A>B

1

0

1

0

A−B

B−A

0

1

E

E

E E

A==B

A,B

Figure 3.16: An asynchronous circuit implementation of GCD.

all the necessary latches (with their initial states). The implementation makes
no attempt at sharing resources – it is a direct mapping following the imple-
mentation templates presented in the previous section.

3.9 Pointers to additional examples

3.9.1 A low-power filter bank

In [113], we reported on the design of a low-power IFIR filter bank for a digital
hearing aid. The circuit was designed following the approach presented in this
chapter. The paper also provides some insight into the design of low power
circuits as well as the circuit level implementation of memory structures and
datapath units.

46 Chapter 3. Static data-flow structures

Read

PC

Read

PC

ALU

REG

Write
Data

Mem.

Inst.

Mem.

On
Bolt

Is
s
u
e

D
e
c
o
d
e

F
lu

s
h

Arith.

Logic

Shift

CP0

Lock

REG

UnLock

Figure 3.17: Architecture of the ARISC microprocessor.

3.9.2 An asynchronous microprocessor

In [20], we reported on the design of a MIPS microprocessor, called ARISC.
Although there are many details to be understood in a large-scale design like
a microprocessor, the basic architecture is shown in figure 3.17 can be under-
stood as a simple data-flow structure. The solid-black rectangles represent
latches, the box-arrows represent channels, and the text-boxes represent func-
tion blocks (combinatorial circuits).

The processor is a simple pipelined design with instructions retiring in
program order. It consists of a fetch-decode-issue ring with a fixed number
of tokens. This ensures a fixed instruction prefetch depth. The issue stage
forks decoded instructions into the execute pipeline and initiates the fetch
of one more instruction. Register forwarding is avoided by a locking mecha-
nism: when an instruction is issued for execution, the destination register is
locked until the write-back has taken place. If a subsequent instruction has
a read-after-write data hazard, this instruction is stalled until the register is
unlocked. The tokens flowing in the design contain all operands and control
signals related to the execution of an instruction, i.e., similar to what is stored
in a pipeline stage in a synchronous processor. For further information, the
interested reader is referred to [20]. Other asynchronous microprocessors are
based on similar principles.

3.9.3 A fine-grain pipelined vector multiplier

The GCD circuit and the ARISC presented in the preceding sections use bit-
parallel communication channels. An example of a static data-flow structure
that uses 1-bit channels and fine grain pipelining is the serial-parallel vector
multiplier design reported in [145, 143]. Here all necessary word-level synchro-
nization is performed implicitly by the function blocks. The large number of
interacting rings and pipeline segments in the static data-flow representation

3.10. Summary 47

of the design makes it rather complex. After reading the next chapter on per-
formance analysis, the interested reader may want to look at this design; it
contains several interesting optimizations.

3.10 Summary

This chapter developed a high-level view of asynchronous design that is equiv-
alent to RTL (register transfer level) in synchronous design – static data flow
structures. The next chapter addresses performance analysis at this level of
abstraction.

48 Chapter 3. Static data-flow structures

Chapter 4

Performance

This chapter addresses the performance analysis and optimization of asyn-
chronous circuits at the level of static data-flow structures, as introduced in the
previous chapter. First, we develop a qualitative understanding, and then we
introduce some fundamental quantitative performance parameters that char-
acterize pipelines and rings built using identical stages.

4.1 Introduction

In a synchronous circuit, performance analysis and optimization is a matter of
finding the critical path, i.e., the signal path between any two registers with
the largest propagation delay. This determines the period of the clock signal.
This process is known as static timing analysis, and because the global clock
partitions the circuit into many combinatorial circuits that can be analyzed
individually, it is a rather simple task, even for a large circuit.

For an asynchronous circuit, performance analysis and optimization is a
global problem, and therefore a much more complex problem. The use of
handshaking makes the timing in one component dependent on the timing of
its neighbors, which again depends on the timing of their neighbors, etc. Fur-
thermore, the performance of a circuit does not depend only on its structure,
but also on how it is initialized and used by its environment. The performance,
for example expressed in terms of the time it takes to complete a handshake
cycle, can even exhibit transients and oscillations (as we will see in chapter 7.

We first develop a qualitative understanding of the dynamics of the token-
flow in asynchronous circuits. A good understanding of this is essential for
designing circuits with good performance. Then we introduce some quantita-
tive performance parameters that characterize pipelines and rings composed

49

50 Chapter 4. Performance

of identical stages. Using these parameters, a designer can make first-level
design decisions.

Analysis of more general and irregular structures – i.e., the general case –
will be discussed later in chapter 4 when the necessary formal notation is in
place.

Throughout the chapter, we assume 4-phase handshaking, and the exam-
ples we provide all use bundled-data circuits. The use of 4-phase handshaking
means that the static data-flow model involves: valid tokens, valid bubbles,
empty tokens, and empty bubbles.

It is left as an exercise for the reader to make the simple adaptations that
are necessary for dealing with 2-phase handshaking that involves only valid
tokens and valid bubbles.

4.2 A qualitative view of performance

4.2.1 Example 1: A FIFO used as a shift register

The fundamental concepts can be illustrated by a simple example: a FIFO
composed of a number of latches in which there are N valid tokens separated
by N empty tokens, and whose environment alternates between reading a
token from the FIFO and writing a token into the FIFO (see figure 4.1(a)).
In this way, the number of tokens in the FIFO is invariant. This example is
relevant because many designs use FIFOs in this way, and because it models
the behavior of shift registers as well as rings – structures in which the number
of tokens is also invariant.

A relevant performance figure is the throughput, which is the rate at which
tokens are input to or output from the shift register. This figure is proportional
to the time it takes to shift the contents of the chain of latches one position
to the right.

Figure 4.1(b) illustrates the behavior of an implementation in which there
are 2N latches per valid token, and figure 4.1(c) illustrates the behavior of
an implementation in which there are 3N latches per valid token. In both
examples, the number of valid tokens in the FIFO is N = 3, and the only
difference between the two situations in figure 4.1(b) and 4.1(c) is the number
of bubbles.

In figure 4.1(b), at time t1, the environment reads the valid token, D1, as
indicated by the solid channel symbol. This introduces a bubble that enables
data transfers to take place one at a time (t2−t5). At time t6, the environment
inputs a valid token, D4, and at this point, all elements have been shifted one
position to the right. Hence, the time used to move all elements one place to
the right is proportional to the number of tokens, in this case 2N = 6, time
steps.

Adding more latches increases the number of bubbles, which again increases
the number of data transfers that can take place simultaneously, thereby im-

4.2. A qualitative view of performance 51

(c) N data tokens and N empty tokens in 3N stages:

E D1EE D2

E

D3

D3

D3

D3

D1

EE

D2

E

D3

E

D4

t6:

t7:

t8:

t0:

t1:

t2:

t3:

t4:

t5:

bubble

bubble

bubble

bubble

bubble

bubble

bubble

E

t0:

t1:

t2:

t3:

bubblebubblebubble

EE

D2D3 D1

bubblebubblebubble

t4: EEE

D4

D4

E

E

bubble bubble bubble

D2D3D4

bubblebubblebubble

(a) A FIFO and its environment:

(b) N data tokens and N empty tokens in 2N stages:

D3

E EE D2

E E D2

E E

E

D1

E

E

E

D2

D2 E

E

E

D2

D2

E

ED4

D3

D3E

D2ED3D4 E

E D1ED2D3E

EE D1ED2D3D4

ED2ED3ED4 EEE

bubble bubble bubble

D2D3D4 EEEE

E ED2ED3ED4

Environment

ED2ED3D4 E

Figure 4.1: A FIFO and its environment. The environment alternates between
reading a token from the FIFO and writing at token into the FIFO.

52 Chapter 4. Performance

proving the performance. In figure 4.1(c), the shift register has 3N stages
and, therefore, one bubble per valid-empty token-pair. The effect of this is
that N data transfers can occur simultaneously, and the time used to move all
elements one place to the right is constant; 2 time steps.

If the number of latches was increased to 4N , there would be one token per
bubble, and the time to move all tokens one step to the right would be only one
time step. In this situation, the pipeline is half full, and the latches holding
bubbles act as slave latches (relative to the latches holding tokens). Increasing
the number of bubbles further would not increase the performance further. Fi-
nally, it is interesting to notice that the addition of just one more latch holding
a bubble to figure 4.1(b) would double the performance. The asynchronous
designer has great freedom in trading more latches for performance.

As the number of bubbles in a design depends on the number of latches per
token, the above analysis illustrates that performance optimization of a given
circuit is primarily a task of structural modification – circuit level optimization
like transistor sizing is of secondary importance.

4.2.2 Example 2: A shift register with parallel load

In order to illustrate another point – that the distribution of tokens and bub-
bles in a circuit can vary over time, depending on the dynamics of the circuit
and its environment – we offer another example: a shift register with parallel
load. Figure 4.2 shows an initial design of a 4-bit shift register. The circuit
has a bit-parallel input channel, din[3:0], connecting it to a data-producing
environment. It also has a 1-bit data channel, do, and a 1-bit control channel,
ctl, connecting it to a data-consuming environment. Operation is controlled by
the data consuming environment, which may request the circuit to: (ctl = 0)
perform a parallel load and to provide the least significant bit from the bit-
parallel channel on the do channel, or (ctl = 1) to perform a right shift and
provide the next bit on the do channel. In this way, the data consuming en-
vironment always inputs a control token (valid or empty) to which the circuit
always responds by outputting a data token (valid or empty). During a paral-
lel load, the previous content of the shift register is steered into the “dead end”
sink-latches. During a right shift, the constant 0 is shifted into the most sig-
nificant position – corresponding to a logical right shift. The data-consuming
environment is not required to read all the input data bits, and it may continue
reading zeros beyond the most significant input data bit.

The initial design shown in figure 4.2 suffers from two performance-limiting
inexpediencies. Firstly, it has the same problem as the shift register in fig-
ure 4.1(b) – there are too few bubbles, and the peak data rate on the bit-serial
output reduces linearly with the length of the shift register. Secondly, the
control signal is forked to all of the MUXes and DEMUXes in the design. This
implies a high fan-out of the request and data signals (which requires a cou-
ple of buffers), and synchronization of all the individual acknowledge signals

4.2. A qualitative view of performance 53

e
n

v
ir
o

n
m

e
n

t

0 1

0 1

0 1

0 1

0 1

0

10

d
in

[1
]

d
in

[2
]

d
in

[0
]

d
in

[1
]

d
in

[0
]

d
in

[3
]
d

in
[2

]

d
in

[3
:0

]

p
ro

d
u

c
in

g

e
n

v
ir
o

n
m

e
n

t

D
a

ta

c
tl

d
o

E
d

3
E

d
2

d
in

[3
]

E
d

1

0

D
a

ta

c
o

n
s
u

m
in

g
1

Figure 4.2: Initial design of the shift register with parallel load.

54 Chapter 4. Performance

(a
)

0 0 0

10
0 1

0 1

0 1

0 1

0 1

0 1

c
tl

10
0 1

0 1

0 1

0 1

0 1

0 1

c
tl

10
0 1

0 1

0 1

0 1

0 1

0 1

c
tl

d
in

[0
]

d
in

[2
]

d
in

[3
]

d
in

[3
]

d
in

[2
]

d
in

[1
]

d
in

[0
]

d
o
u
t

d
o
u
t

d
o
u
t

d
in

[0
]

d
in

[1
]

d
in

[2
]

d
in

[3
]

E
0

E
0

E
0

d
2

d
1

d
3

d
0

d
in

[1
]

E
E

E

E

d
3

d
2

0
E

0 E
E

E0
E

d
1

d
0

d
0 0 d
1

E
d

0

E
1E

E

E

d
2 E

d
2

E

E

d
3

0

E

(c
)

(b
)

Figure 4.3: Improved design of the shift register with parallel load.

4.3. Quantifying performance 55

(which requires a C-element with many inputs, possibly implemented as a tree
of C-elements). The first problem can be avoided by adding a 3rd latch to
the datapath in each stage of the circuit corresponding to the situation in fig-
ure 4.1(c). However, if the extra latches are added to the control path instead,
as shown in figure 4.3(a) on page 54, they will solve both problems.

This improved design exhibits an interesting and illustrative dynamic be-
havior: initially, the data latches are densely packed with tokens, and all the
control latches contain bubbles, figure 4.3(a). The first step of the parallel load
cycle is shown in figure 4.3(b), and figure 4.3(c) shows a possible state after the
data-consuming environment has read a couple of bits. The most-significant
stage is just about to perform its “parallel load,” and the bubbles are now in
the chain of data latches. If at this point, the data consuming environment is
paused, the tokens in the control path would gradually disappear while tokens
in the datapath would pack again. Note that at any time, the total number
of tokens in the circuit is constant!

4.3 Quantifying performance

4.3.1 Latency, throughput, and wavelength

When the overall structure of a design is being decided, it is important to deter-
mine the optimal number of latches or pipeline stages in the rings and pipeline
fragments from which the design is composed. In order to establish a basis
for first-order design decisions, this section introduces some quantitative per-
formance parameters. We restrict the discussion to 4-phase handshaking and
bundled-data circuit implementations, and we only consider rings with a sin-
gle valid token. Subsection 4.3.4, which concludes this section on performance
parameters, will comment on adapting to other protocols and implementation
styles.

The performance of a pipeline is usually characterized by two parameters:
latency and throughput (or its inverse called period or cycle time). For an
asynchronous pipeline, a third parameter, the dynamic wavelength, is impor-
tant as well. With reference to figure 4.4 and following [168, 169, 170], these
parameters are defined as follows:

Latency: The latency is the delay from the input of a data item until the
corresponding output data item is produced. When data flows in the
forward direction, acknowledge signals propagate in the reverse direction.
Consequently, two parameters are defined:

• The forward latency, Lf , is the delay from new data on the input
of a stage (Data[i−1] or Req[i−1]) to the production of the corre-
sponding output (Data[i] or Req[i]) provided that the acknowledge
signals are in place when data arrives. Lf.V and Lf.E denote the

56 Chapter 4. Performance

Data[i−1]

Req[i−1]

Ack[i] Ack[i+1]

Data[i]

Ack[i]

Data[i−1]

Ack[i+1]

Data[i]

d

Dual−rail pipeline:

Req[i]

Bundled−data pipeline:

L[i]F[i]

F[i] L[i]

Figure 4.4: Generic pipelines for definition of performance parameters.

latencies for propagating a valid token and an empty token, respec-
tively. It is assumed that these latencies are constants, i.e., that
they are independent of the value of the data. [As the forward
propagation of an empty token does not “compute” it may be de-
sirable to minimize Lf.E . In the 4-phase bundled-data design, this
can be achieved through the use of an asymmetric delay element.]

• The reverse latency, Lr, is the delay from receiving an acknowl-
edge from the succeeding stage (Ack[i+1]) until the corresponding
acknowledge is produced to the preceding stage (Ack[i]) provided
that the request is in place when the acknowledge arrives. Lr↓ and
Lr↑ denote the latencies of propagating Ack↓ and Ack↑, respec-
tively.

Period: The period, P , is the delay between the input of a valid token (fol-
lowed by its succeeding empty token) and the input of the next valid
token, i.e., a complete handshake cycle. For a 4-phase protocol this
involves: (1) forward propagation of a valid data value, (2) reverse prop-
agation of acknowledge, (3) forward propagation of the empty data value,
and (4) reverse propagation of acknowledge. Therefore, a lower bound
on the period is:

P = Lf.V + Lr↑+ Lf.E + Lr↓ (4.1)

Many of the circuits we consider in this book are symmetric, i.e., Lf.V =
Lf.E and Lr↑ = Lr↓, and for these circuits the period is simply:

P = 2Lf + 2Lr (4.2)

4.3. Quantifying performance 57

We will also consider circuits where Lf.V > Lf.E and, as we will see in
section 7.7 and again in section 10.3, the actual implementation of the
latches may lead to a period that is larger than the minimum possible
given by equation 4.1. In section 7.7, we analyze a pipeline whose period
is:

P = 2Lr + 2Lf.V (4.3)

Throughput: The throughput, T , is the number of valid tokens that flow
through a pipeline stage per unit time: T = 1/P

Dynamic wavelength: The dynamic wavelength, Wd, of a pipeline is the
number of pipeline stages that a forward-propagating token passes through
during P :

Wd =
P

Lf
(4.4)

Explained differently: Wd is the distance – measured in pipeline stages
– between successive valid or empty tokens, when they flow unimpeded
down a pipeline. Think of a valid token as the crest of a wave and its
associated empty token as the trough of the wave. If Lf.V 6= Lf.E the
average forward latency Lf = 1

2 (Lf.V + Lf.E) should be used in the
above equation.

Static spread: The static spread, S, is the distance – measured in pipeline
stages – between successive valid (or empty) tokens in a pipeline that is
full (i.e., contains no bubbles). Sometimes the term occupancy is used;
this is the inverse of S.

4.3.2 Cycle time of a ring

The parameters defined above are local performance parameters that char-
acterize the implementation of individual pipeline stages. When a number
of pipeline stages are connected to form a ring, the following parameter is
relevant:

Cycle time: The cycle time of a ring, TCycle, is the time it takes for a token
(valid or empty) to make one round trip through all of the pipeline
stages in the ring. To achieve maximum performance (i.e., minimum
cycle time), the number of pipeline stages per valid token must match the
dynamic wavelength, in which case TCycle = P . If the number of pipeline
stages is smaller, the cycle time is limited by the lack of bubbles, and if
there are more pipeline stages, the cycle time is limited by the forward
latency through the pipeline stages. In [168, 169, 170] these two modes
of operation are called bubble limited and data limited, respectively.

The cycle time of an N -stage ring in which there are one valid token,
one empty token and N − 2 bubbles can be computed from one of the
following two equations (illustrated in figure 4.5):

58 Chapter 4. Performance

cycleT

N < W :d

Tcycle =
2 N

L
N − 2 r

(Bubble limited)

N > W :d

Tcycle = N Lf

(Data limited)

N
W

P

d

Figure 4.5: Cycle time of a ring as a function of the number of pipeline stages
in it.

• When N ≥ Wd, the cycle time is limited by the forward latency
through the N stages:

TCycle(DataLimited) = N × Lf (4.5)

If Lf.V 6= Lf.E use Lf = max{Lf.V ;Lf.E}.
• When N ≤ Wd, the cycle time is limited by the reverse latency.

With N pipeline stages, one valid token and one empty token, the
ring contains N −2 bubbles, and as a cycle involves 2N data trans-
fers (N valid and N empty), the cycle time becomes:

TCycle(BubbleLimited) =
2N

N − 2
Lr (4.6)

If Lr↑ 6= Lr↓ use Lr = 1
2 (Lr↑+ Lr↓)

For the sake of completeness, it should be mentioned that a third possible
mode of operation called control limited exists for some circuit config-
urations [168, 169, 170]. This is, however, not relevant to the circuit
implementation configurations presented in this book.

The topic of performance analysis and optimization has been addressed in
some more recent papers [28, 101, 102, 39] and in some of these the term “slack
matching” is used (referring to the process of balancing the timing of forward
flowing tokens and backward flowing bubbles).

4.3. Quantifying performance 59

Lf

Lr
Ack[i]

Req[i−1] Req[i]

Ack[i+1]

Data[i]Data[i−1] CL L

ti = 1

td = 3

tc = 2

Req[i−1]

Data[i−1] Data[i]

Req[i]

Ack[i+1]Ack[i]

CL L

ti = 1

td = 3

tc = 2

(a) (b)

CC

Figure 4.6: (a) A simple 4-phase bundled-data pipeline stage, and (b) an
illustration of its forward and reverse latency signal paths.

4.3.3 Example 3: Performance of a 3-stage ring

Let us illustrate the above by a small example: a 3-stage ring composed of iden-
tical 4-phase bundled-data pipeline stages that are implemented as illustrated
in figure 4.6(a). The data path is composed of a latch and a combinatorial
circuit, CL. The control part is composed of a C-element and an inverter that
controls the latch and a delay element that matches the delay in the com-
binatorial circuit. Without the combinatorial circuit and the delay element,
we have a simple FIFO stage. For illustrative purposes the components in
the control part are assigned the following latencies: C-element: tc = 2 ns,
inverter: ti = 1 ns, and delay element: td = 3 ns.

Figure 4.6(b) shows the signal paths corresponding to the forward and
reverse latencies, and table 4.1 lists the expressions and the values of these
parameters. From these figures, the period and the dynamic wavelength for
the two circuit configurations are calculated. For the FIFO, Wd = 5.0 stages,
and for the pipeline, Wd = 3.2. A ring can only contain an integer number of

Table 4.1: Performance of different simple ring configurations.

FIFO Pipeline
Parameter Expression Value Expression Value
Lr tc + ti 3 ns tc + ti 3 ns
Lf tc 2 ns tc + td 5 ns
P = 2Lf + 2Lr 4tc + 2ti 10 ns 4tc + 2ti + 2td 16 ns
Wd 5 stages 3.2 stages
TCycle (3 stages) 6 Lr 18 ns 6 Lr 18 ns
TCycle (4 stages) 4 Lr 12 ns 4 Lf 20 ns
TCycle (5 stages) 3.3 Lr = 5 Lf 10 ns 5 Lf 25 ns
TCycle (6 stages) 6 Lf 12 ns 6 Lf 30 ns

60 Chapter 4. Performance

stages, and if Wd is not an integer, it is necessary to analyze rings with bWdc
and dWde stages and determine which yields the smallest cycle time. Table 4.1
shows the results of the analysis including cycle times for rings with 3 to 6
stages.

4.3.4 Final remarks

The above presentation made a number of simplifying assumptions: (1) only
rings and pipelines composed of identical pipeline stages were considered, (2)
it assumed function blocks with symmetric delays (i.e., circuits where Lf.V =
Lf.E), (3) it assumed function blocks with constant latencies (i.e., ignoring the
important issue of data-dependent latencies and average-case performance),
(4) it considered rings with only a single valid token, and (5) the analysis
considered only 4-phase handshaking and bundled-data circuits.

For 4-phase dual-rail implementations (where request is embedded in the
data encoding), the performance parameter equations defined in the previous
section apply without modification. For designs using a 2-phase protocol, some
straightforward modifications are necessary: there are no empty tokens, and
hence there is only one value for the forward latency Lf and one value for the
reverse latency Lr. It is also a simple matter to state expressions for the cycle
time of rings with more tokens.

It is more difficult to deal with data-dependent latencies in the function
blocks and to deal with non-identical pipeline stages. In later chapters, we will
introduce (timed) Petri nets and use these to analyze more general structures
involving rings and pipelines composed of non-identical stages.

4.4 Summary

This chapter addressed the performance analysis of asynchronous circuits at
several levels. Firstly, by providing a qualitative understanding of perfor-
mance based on the dynamics of tokens flowing in a circuit. Secondly, by
introducing quantitative performance parameters that characterize pipelines
and rings composed of identical pipeline stages. And thirdly, by introducing
dependency graphs that enable the analysis of pipelines and rings composed
of non-identical stages.

At this point, we have covered the design and performance analysis of
asynchronous circuits at the “static data-flow structures” level, and it is time
to address low-level circuit design principles and techniques. This will be the
topic of the next two chapters.

Chapter 5

Handshake circuit
implementations (four-phase)

In this chapter, we address the implementation of handshake components
using 4-phase bundled-data and 4-phase dual-rail handshaking. Implemen-
tation of circuits using 2-phase handshaking will be considered separately in
chapter 9.

First, we consider the basic set of components, introduced in section 3.3 on
page 33: (1) the latch and its degenerate forms, source and sink, (2) the uncon-
ditional data-flow control elements join, fork and merge, (3) the conditional
flow control elements MUX and DEMUX and (4) function blocks.

In addition to these basic components we will also consider the implemen-
tation of mutual exclusion elements and arbiters and touch upon the (unavoid-
able) problem of metastability. The major part of the chapter (sections 5.6–
5.9) is devoted to the implementation of function blocks, and the material
includes a number of fundamental concepts and circuit implementation styles.

5.1 The latch, the sink, and the source

As mentioned previously, the role of latches is: (1) to provide storage for valid
and empty tokens, and (2) to support the flow of tokens via handshaking with
neighboring latches.

Possible implementations of the handshake latch were shown in chapter 2:
Figure 2.9 on page 18 showed a 4-phase bundled-data latch, and figures 2.12-
2.13 on page 21 show the implementation of a 4-phase dual-rail latch.

For convenience, these are shown again in figure 5.1 along with their de-
generate forms: source and sink.

61

62 Chapter 5. Handshake circuit implementations (four-phase)

C

y[1].t

y[1].f

y[0].t

y[0].f

y−ack

x[1].t

x[1].f

x[0].t

x[0].f

x−ack

Latch

y

C

x−ack

x[1].t

x[1].f

x[0].t

x[0].f

n

x−ack

x−req

x−data n.c.

Source

Sink

Constant
n

x−data

nn

C

x−ack

x−req

x−data y−data

y−ack

y−req

Component 4−phase bundled−data 4−phase dual−rail

x−ack

x[1].t

x[1].f

x[0].t

x[0].f

c[1]

c[0]

x−ack

x−req
&

&

&

&

Constant

C

C

C

+ +

C

x

++

x

x

Latch

EN

Figure 5.1: 4-phase bundled-data and 4-phase dual-rail implementations of
the latch, the source, and the sink components – the active components that
handshake with their neighbors.

A handshake latch can be characterized in terms of the throughput, the
dynamic wavelength, and the static spread of a FIFO that is composed of
identical latches. Common to the two 4-phase latch designs mentioned above
is that a FIFO will fill with every other latch holding a valid token and every
other latch holding an empty token (as illustrated in figure 4.1(b) on page 51).
Thus, the static spread for these FIFOs is S = 2.

Ideally, one would want to pack a valid token into every level-sensitive
latch, and in chapter 10 we will address the design of 4-phase bundled-data
handshake latches that have a smaller static spread.

5.2. Fork, join and merge 63

y

y

Join

y−req

y−ack
z−ack

x−req

y

z

z−req

x−ack

x

C

M
U

X

x−ack

x−req

x−ack

x

y

z−ack

z−req

z

y−ack

y−req
y

Merge

C

C

C

Fork

Component 4−phase bundled−data 4−phase dual−rail

x−ack

y−ack
x−req
y−req

x
y z1

z0

z−req

z−ack

y.t
y.f

z−ack

z1.f
z1.t

x.f
x.t

x−ack

y−ack
z0.t
z0.f

y−ack
z−ackx−ack

x.t
y.t

z.t

y.f

z.f
x.f

y−ack

x−ack

z−ack

completion

detector

x[0].t

y[0].t

z[1].t

z[1].f

z[0].t

z[0].f

x[0].f

y[1].t
y[1].f

y[0].f

x[1].f
x[1].t

x
z

x
z

C

C C

+
Cx

z +

+

+

+

++

++

Figure 5.2: 4-phase bundled-data and 4-phase dual-rail implementations of
the fork, join, and merge components.

5.2 Fork, join and merge

Possible 4-phase bundled-data and 4-phase dual-rail implementations of the
fork, join and merge components are shown in figure 5.2. For simplicity, the
figure shows a fork with two output channels only, and join and merge com-
ponents with two input channels only. Furthermore, all channels are assumed
to be 1-bit channels. It is, of course, possible to generalize to three or more
inputs and outputs respectively and to extend to n-bit channels. Based on the
explanation given below, this should be straightforward, and it is left as an
exercise for the reader.

4-phase fork and join

A fork involves a C-element to combine the acknowledge signals on the output
channels into a single acknowledge signal on the input channel. Similarly, a

64 Chapter 5. Handshake circuit implementations (four-phase)

4-phase bundled-data join involves a C-element to combine the request signals
on the input channels into a single request signal on the output channel. The
4-phase dual-rail join does not involve any active components as the request
signal is encoded into the data.

The particular fork in figure 5.2 duplicates the input data, and the join
concatenates the input data. This happens to be the way joins and forks are
mostly used in our static data-flow structures, but there are many alternatives:
for example, the fork could split the input data, which would make it more
symmetric to the join in figure 5.2. In any case, the difference is only in how
the input data is transferred to the output. From a control point of view, the
different alternatives are identical: a join synchronizes several input channels,
and a fork synchronizes several output channels.

4-phase merge

The implementation of the merge is a little more elaborate. Handshakes on
the input channels are mutually exclusive, and the merge simply relays the
active input handshake to the output channel.

Let us consider the implementation of the 4-phase bundled-data merge
first. It consists of an asynchronous control circuit and a multiplexer that is
controlled by the input request. The control circuit is explained below.

The request signals on the input channels are mutually exclusive and may
simply be OR’ed together to produce the request signal on the output channel.

For each input channel, a C-element produces an acknowledge signal in
response to an acknowledge on the output channel provided that the input
channel has valid data. For example, the C-element driving the xack signal
is set high when xreq and zack have both gone high, and it is reset when
both signals have gone low again. As zack goes low in response to xreq going
low, it suffices to reset the C-element in response to zack going low. This
optimization is possible if asymmetric C-elements are available, figure 5.3.
Similar arguments apply for the C-element that drives the yack signal. A
more detailed introduction to generalized C-elements and related state-holding
devices is given in chapter 6, sections 6.4.1 and 6.4.5.

+

Cx−ack z−ack

x−req

z−ack
x−ack

reset

x−req

set

Figure 5.3: A possible implementation of the upper asymmetric C-element in
the 4-phase bundled-data merge in figure 5.2.

5.3. MUX and DEMUX 65

The implementation of the 4-phase dual-rail merge is fairly similar. For
illustration purposes, the figure shows an implementation with 2-bit channels.
As request is encoded into the data signals, a completion detector is used to
detect when an input channel has valid data. Acknowledge on an input channel
is produced in response to an acknowledge on the output channel provided that
the input channel has valid data. As shown for input channel y the two C-
elements may be combined. Alternatively, when the channels have a large
number of bits, it is possible to avoid C-elements with a corresponding high
fan-in, by using the alternative completion detector design shown in figure 2.13
on page 21.

2-phase fork, join and merge

Finally, a word about 2-phase bundled-data implementations of the fork, join
and merge components: The implementation of 2-phase bundled-data fork
and join components is identical to the implementation of the corresponding
4-phase bundled-data components (assuming that all signals are initially low).

The implementation of a 2-phase bundled-data merge, on the other hand,
is complex and rather different, and it provides a good illustration of why the
implementation of some 2-phase bundled-data components is complex. When
observing an individual request or acknowledge signal the transitions obvi-
ously alternate between rising and falling, but since nothing is known about
the sequence of handshakes on the input channels, there is no relationship be-
tween the polarity of a request signal transition on an input channel and the
polarity of the corresponding request signal transition on the output channel.
Similarly, there is no relationship between the polarity of an acknowledge sig-
nal transition on the output channel, and the polarity of the corresponding
acknowledge signal transition on the input channel. This calls for some kind
of storage element on each request and acknowledge signal produced by the
circuit. This brings complexity, as does the associated control logic.

5.3 MUX and DEMUX

Possible 4-phase bundled-data and 4-phase dual-rail implementations of the
MUX and DEMUX components from figure 3.3 on page 33 are shown in fig-
ure 5.4.

Let us first recapitulate the function of the two components: a MUX syn-
chronizes the control channel and the relevant input channel and relays the
data and the handshaking of the selected input channel to the output chan-
nel. The other input channel is ignored (and may have a request pending).
Similarly, a DEMUX synchronizes the control channel and the input channel
and relay the data and the handshaking of the input channel to the selected
output channel. The other output channel is silent.

66 Chapter 5. Handshake circuit implementations (four-phase)

C

C

C

C

z[1].f

z[1].t

z[0].t

z[0].f

z−ack

ctl.f ctl.t ctl−ack

x−ack

x[1].t

x[1].f

x[0].t

x[0].f

y[1].t

y[0].f

y[0].t

y[1].f

y−ack

0

y 1

MUX

M
U

X

x

y

y−ack

y−req

z

ctl_ack

z−ack

z−req

Cx−ack

x−req

n

n
n

ctl.f ctl.t

"Join"

"Join"

x[1].t

x[1].f

x[0].t

x[0].f

y[1].t

y[0].f

y[0].t

y[1].f

z[1].f

z[1].t

z[0].t

z[0].f

ctl.f ctl.t

x−ack y−ack
z−ack

ctl−ack

0

1

y

DEMUX

n

n

x−ack y−ack
z−ack

n

ctl.f ctl.t

y−req

z−req

x−req

x

ctl_ack

z

y

"Join"

"Join"

4−phase dual−rail4−phase bundled−dataComponent

+

+

+

+C

C

C

C

++
+ +

C

C

C

C

x

ctl

z C

C +

C

C

C

C

C

C

C

C

C

+

ctl

x
z

C

C

+

Figure 5.4: Implementation of the MUX and DEMUX handshake components.
The input and output data channels x, y, and z use the 4-phase bundled-data
protocol, and the control channel ctl uses the 4-phase dual-rail protocol (in
order to simplify the design).

The schematics for the bundled-data designs show channels with an ar-
bitrary number of bits, and the dual-rail designs show specific versions with
2-bit data, which is enough to illustrate the principles and to illustrate how
to generalize to more bits. Note that the bundled-data designs both use a
dual-rail control channel. The reason is that the one-hot behavior of the mu-
tually exclusive signals ctl .t and ctl .f simplifies the designs. In both circuits,

5.4. Peephole optimizations 67

ctl .t and ctl .f can be understood as two mutually exclusive requests that se-
lect between the two alternative input-to-output data transfers. Full 4-phase
bundled-data implementations may be obtained by adding a 4-phase bundled-
data to 4-phase dual-rail protocol conversion circuit to the control channel.
At the end of chapter 6, an all 4-phase bundled-data MUX will be one of the
examples we use to illustrate the design of speed-independent control circuits.

The implementation of the handshake MUX shown in figure 5.4 can be
understood as follows: The two inputs x and y are “conditioned” or joined
with the control signals ctl .t and ctl .f , respectively. This enforces mutual
exclusion among the two conditioned inputs. The rest of the circuit is then
simply a Merge. For the 4-phase bundled-data MUX, this description only
covers the control part. The datapath of the 4-phase bundled-data MUX is a
conventional multiplexer selecting the proper input.

In a similar way, the handshake DEMUX can be understood as follows:
The two outputs y and z are produced by “conditioning” the input x with
the control signals ctl .t and ctl .f directly producing the output signals for
the output channels. The acknowledge signals y-ack and z-ack are mutually
exclusive and are merged using an OR-gate. The resulting signal drives x-ack
and ctl-ack.

At this point, we can take two paths moving forward. The most natural
is to continue and dig deeper, as we will do in the subsequent section. Al-
ternatively, a reader who wants to cover some ground quickly may jump to
section 5.6.

5.4 Peephole optimizations

All the components presented so far can be classified as either driving the
handshaking and being able to store tokens (latch, source and sink) or being
transparent to handshaking (join, fork, merge, MUX and DEMUX). This clear
separation is a simplification that helps in the design of data-flow circuits.

After a circuit using these components has been designed, the next step
is to consider if combinations of components may be substituted by a smaller
implementation – possibly a single component – with the same behavior.

Below we consider a number of such optimizations.

5.4.1 DEMUX with a sink on one output

As a first example of peephole optimization, we consider the shift register with
parallel load presented in subsection 4.2.2. It contains demultiplexers where
one output is connected to a sink, as shown in figure 5.5(a). The demux and
the sink can be replaced by the circuit shown in figure 5.5(b), in some contexts
known as a “conditional send” [82]. This circuit joins and consumes a token
on the input channel and a token on the control channel, and depending on

68 Chapter 5. Handshake circuit implementations (four-phase)

y−req

x−req

"Join"

"Join"

y−ackx−ack

n
x y

ctl.f ctl.t ctl−ack

C

C

x[1].t

x[1].f

x[0].t

x[0].f

ctl.f

y−ack

y[1].t

y[1].f

y[0].t

y[0].f

x−ack

ctl−ack ctl.t

0

1

y

ctl

x y

ctl

0x

Sink

(a) (b)

(d)(c)

C

C

+

C

C

C

C

+ +

+

Figure 5.5: (a) A DEMUX with a sink on one of its outputs. (b) The schematic
symbol for a “conditional send” component with the same behavior. (c) 4-
phase bundled-data implementation. (d) 4-phase dual-rail implementation.

the value of the binary control, it either sends the input token to the output,
or it consumes it, keeping the output channel silent.

A 4-phase bundled data implementation is shown in figure 5.5(c). It repre-
sents a minor optimization. For the 4-phase dual-rail implementation shown
in figure 5.5(d), the gain is more substantial. Assuming N -bit wide input and
output channels a direct implementation of a DEMUX and a sink costs 4N+1
C-elements and N + 2 OR-gates, whereas the implementation shown in fig-
ure 5.5(d) costs only 2N + 2 C-elements and N + 2 OR-gates; in most cases
close to a 50 % reduction.

5.4.2 A DEMUX with latches on both outputs

Another example of a peephole optimization is a DEMUX with handshake
latches on both outputs, as shown in figure 5.6(a). Fused implementations
using 4-phase bundled-data and 4-phase dual-rail handshaking are shown in
figure 5.6(b) and figure 5.6(c), respectively. The optimization uses a general
idea: to avoid the C-element based conditioning of input signals (that we used
in the DEMUX) and instead condition the acknowledge signal controlling the
C-elements in the subsequent latch. In a 4-phase bundled-data design, there
is no gain unless the two C-elements related to each of the two enable-latches
are merged into 3-input C-elements. For the 4-phase bundled-data design,
the gain is substantial: for an N bit channel, this optimization replaces 2N
C-elements by a single C-element.

5.5. Memory cells 69

C

C

x[1].t

x[1].f

x[0].t

x[0].f

y[1].t

y[1].f

y[0].t

y[0].f

C

C

x−ack

ctl.f ctl.tctl−ack

y−ack

z[1].t

z[1].f

z[0].t

z[0].f

z−ack

0

1
x

y

z

ctl

n

n

y
n

C

en

z

C

en

ctl.f ctl.t

y−req

y−ack

z−ack

z−req

ctl−ack

x

x−req

x−ack

(a)

(b) (c)

C

C

C

C

C

C

C

C

+ +

+ +

+

+

C

C

Figure 5.6: (a) A DEMUX with a latch on each of its output channels. (b)
A fused 4-phase bundled-data implementation n optimized 4-phase dual-rail
implementation with the same behavior.

5.5 Memory cells

In this section, we explore the design of asynchronous memory cells. The
designs presented can be used for small memories storing a few bits. For larger
memories, efficient and smaller transistor-level designs are probably preferred.
Such memories are a large topic in itself and are beyond the scope of this book.

5.5.1 Introduction

Figure 5.7 shows a schematic symbol of a memory cell. As seen, the memory
has an input-data port, Di , an output data port, Do, and a control port, Ctl .
The control channel is assumed to be a 4-phase 1-of-n channel. For a simple
read-write memory, a 1-of-2 channel with signals ctl .r , ctl .w and acknowledge
signal, Ctl-ack is used. A more advanced memory could use a 1-of-3 control
channel and additionally offer a simultaneous read and write operation. If
implementing read-before-write, the third control signal is called Ctl .rw , and
if implementing write-before-read, it is called Ctl .wr .

70 Chapter 5. Handshake circuit implementations (four-phase)

Control channel (1−of−n):

optional:

 crl.wr
 2. clt.rw or

 0: ctl.r
 1: ctl.w

read−before−write

write−before−read

read

write

Di Do MEM

Ctl

Figure 5.7: The interface of the asynchronous memory cell.

If the operation is a write, the input channel and the control channel are
joined, and a token is consumed from both. The output channel is silent
during a read operation. If the operation is a read, a token is consumed on the
control channel, and a token is produced on the output channel. The input
channel is ignored (and may have a pending token). Reading is an unbuffered
operation; handshaking is relayed from the control port to the output port.
If the operation is a combined read-write, the input channel and the control
channel are joined, a token is consumed from both, and a token is emitted on
the output port. A handshake on the control channel encloses this operation.

A memory cell can be read or written multiple times and in any order.
This does not directly fit the data-flow paradigm where storage elements are
written once and then read once in a repeating fashion. For this reason, a
data-flow design of a memory cell needs a ring of handshake latches. Below
we first present three data-flow memory designs. Following this, we explore
an alternative and more area-efficient gate-level design that is based on a
more conventional memory cell “wrapped” in circuitry that implements the
necessary handshaking and completion detection.

5.5.2 A simple R-W data-flow memory cell

Figure 5.8 shows an implementation of a simple memory cell offering two
operations: read and write.

The core of the design is a 3-stage ring. During a read, data is forked to
the output and written back into the ring. During a write, the old value/token
stored in the cell is silently consumed by the conditional send while the new
data is being inputted.

5.5.3 A R-W-RW data-flow memory cell

A possible extension of the memory cell offers a third operation: read-before-
write; i.e., a transaction where the old value is read and a new value is then
written. The implementation is similar to the simple read-write memory cell
from figure 5.8 except for a slight extension of the control path. The control
channel is now 1-of-3. After the fork, the two 1-of-3 channels are converted to
1-of-2 channels by OR-ing two of the three mutually exclusive control signals,
as indicated in figure 5.9.

5.5. Memory cells 71

0

1
0

ctl

Do Di

VEE

Figure 5.8: Implementation of the simple R-W data-flow memory cell.

0

1
0

Do Di

VEE

ctl

1−of−3: 0: ctl.r 1:ctl.w 2:ctl.rw

1−of−2: 0: ctl.r+ctl.rw 1:ctl.w1−of−2: 0: ctl.r 1:ctl.w+ctl.rw

Figure 5.9: Implementation of a R-W-RW data-flow memory cell.

5.5.4 A R-W-WR data-flow memory cell

Another extension of the simple memory cell from figure 5.8 is a write-before-
read transaction. This design is more elaborate. It can be implemented
by first writing and then reading (all enclosed by a handshake on the control
channel), but this is slow and complex to implement. A preferred alternative
is to forward the write data directly from the input port to the output port at
the same time as it is written into the cell. An implementation of this idea is
shown in figure 5.10.

5.5.5 A more efficient R-W memory design

More efficient memory designs use a conventional bistable memory cell and
“wraps” the memory cells in control and handshake circuitry. The design we
present in the following uses a gate-level memory cell from [153, Sec. 8.5] and
adapts it to the data-flow context. Figure 5.11 shows an implementation of

72 Chapter 5. Handshake circuit implementations (four-phase)

1−of−2:
0: ctl.r
1:ctl.w+ctl.wr

0

1Di

0VEE

1−of−2: 0: ctl.r+ctl.w 1:ctl.wr

1
Do

Merge

ctl
1−of−3: 0: ctl.r 1:ctl.w 2:ctl.rw

1−of−2: 0: ctl.r 1:ctl.w+ctl.wr

Figure 5.10: Implementation of a R-W-WR data-flow memory cell.

Di[1].t

Di[1].f

Di[0].t

Di[0].f

Di−ack

Input

Do−ack

Do[1].t

Do[1].f

Do[0].t

Do[0].f

Ctl.w Ctl−ack Ctl.r

gating
Completion

detector
Write
Ack

Memory
cells

Output
handshake

+

+&

&

+

&

&

C

+

+&

&

+

&

&

C

C

C

C C

+

C

Figure 5.11: A dual-rail 4-phase implementation of a read-write memory using
memory cells based on a pair of cross-coupled NOR-gates.

5.6. Function blocks – The basics 73

a data-flow read-write memory using this cell. For illustration purposes, the
figure shows a memory storing one 2-bit word.

One bit of information is stored in a pair of cross-coupled NOR-gates.
Reading involves “adding” handshaking, similar to what was used in a source
(anding the dual-rail output signals with the Ctl .r signal). Writing to the cell
is performed by an active high signal on the input of one of the NOR-gates,
and completion of the write operation is indicated by the feedback signal from
the other NOR-gate also going high. This is detected by the AND-gates (in
the figure marked “write ack”). A completion detector then detects when all
cells in a word have been written.

A memory with multiple words can be obtained by adding address signals
to the control port. The address must first be decoded to a one-hot form,
and then each one-hot address signal is gated with Ctl .r and Ctl .w signals
producing mutually exclusive Ctl .r and Ctl .w for each word. In addition, a
merge is needed on the data outputs, and the data inputs must be connected
to all words in the memory (before the input gating).

The design can be extended with a third operation, read-after-write, or
write-after-read, by extending the control circuitry with functionality that
explicitly sequences the read and write operations in the required order.

5.6 Function blocks – The basics

This section introduces the fundamental principles of function block design,
and subsequent sections illustrates function block implementations for different
handshake protocols. The running example will be an N -bit ripple carry adder.

5.6.1 Introduction

A function block is the asynchronous equivalent of a combinatorial circuit: it
computes one or more output signals from a set of input signals. The term
“function block” is used to stress the fact that we are dealing with circuits
with purely functional behavior.

However, in addition to computing the desired function(s) of the input
signals, a function block must also be transparent to the handshaking that is
implemented by its neighboring latches. This transparency to handshaking is
what makes function blocks different from combinatorial circuits and, as we
will see, there are greater depths to this than is indicated by the word “trans-
parent” – in particular for function blocks that implicitly indicate completion
as is the case when using dual-rail or other forms of delay-insensitive signaling.

The most general scenario is where a function block receives its operands
on separate channels and produces its results on separate channels, as seen in
figure 5.12. The use of several independent input and output channels implies a
join on the input side and a fork on the output side, as illustrated in the figure.
These can be implemented separately, as explained in the previous section, or

74 Chapter 5. Handshake circuit implementations (four-phase)

block

Function

B
SUM

ADD

cin
cout

Join

Fork

A

Figure 5.12: A function block whose operands and results are provided on
separate channels requires a join of the input and a fork on the output.

L
A

T
C

H

Ack

Data

Ack

F

Input
data

Output
data

(b)(a)

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

Figure 5.13: (a) Two latches connected directly by a handshake channel and
(b) the same situation with a function block added between the latches. The
handshaking, as seen by the latches in the two situations, should be the same,
i.e., the function block must be designed such that it is transparent to the
handshaking.

they can be integrated into the function block circuitry. In the following we
restrict the discussion to a scenario where all operands are provided on a single
channel, and where all results are provided on a single channel.

We first address the issue of handshake transparency and then review the
fundamentals of ripple carry addition, in order to provide the necessary back-
ground for discussing the different implementation examples that follow. A
good paper on the design of function blocks is [108].

5.6.2 Transparency to handshaking

The general concepts are best illustrated by considering a 4-phase dual-rail
scenario – function blocks for bundled data protocols can be understood as a
special case. Figure 5.13(a) shows two handshake latches connected directly,
and figure 5.13(b) shows the same situation with a function block added be-
tween the two latches. The function block must be transparent to the hand-
shaking. Informally this means that if observing the signals on the ports of
the latches, one should see the same sequence of handshake signal transitions;
the only difference should be some slow-down caused by the latency of the
function block.

5.6. Function blocks – The basics 75

(4b)

valid

All
empty

All
valid

All
empty

Acknowledge
1

0

Time

Input data

Output data

(1)

(2a)

(2b)

(3) (4a)

(4b)

All

(1) “All inputs become defined” � “Some outputs become defined”
(2) “All outputs become defined” � “Some inputs become undefined”
(3) “All inputs become undefined” � “Some outputs become undefined”
(4) “All outputs become undefined” � “Some inputs become defined”

Figure 5.14: Signal traces and event orderings for a strongly indicating func-
tion block.

A function block is obviously not allowed to produce a request on its out-
put before receiving a request on its input. A a request on the output of the
function block should indicate that all of the inputs are valid and that all
(relevant) internal signals and all output signals have been computed. (Here
we are touching upon the principle of indication once again.) In 4-phase pro-
tocols a symmetric set of requirements apply for the return-to-zero part of the
handshaking.

Function blocks can be characterized as either strongly indicating or weakly
indicating, depending on how they behave with respect to this handshake
transparency. The signaling that can be observed on the channel between the
two latches in figure 5.13(a) was illustrated in figure 2.3 on page 13. We can
illustrate the handshaking for the situation in figure 5.13(b) in a similar way.

• A function block is strongly indicating, as illustrated in figure 5.14, if (1)
it waits for all of its inputs to become valid before it starts to compute
and produce valid outputs, and if (2) it waits for all of its inputs to
become empty before it starts to produce empty outputs.

• A function block is weakly indicating, as illustrated in figure 5.15, if (1)

76 Chapter 5. Handshake circuit implementations (four-phase)

(5)

valid

All
empty

All
valid

All
empty

Acknowledge
1

0

Time

Input data

Output data

(6b)

(3b)

(6a)

(6b)

(2)

(1) (3a)

(4)

All

(1) “Some inputs become defined” � “Some outputs become defined”
(2) “All inputs become defined” � “All outputs become defined”
(3) “All outputs become defined” � “Some inputs become undefined”
(4) “Some inputs become undefined” � “Some outputs become undefined”
(5) “All inputs become undefined” � “All outputs become undefined”
(6) “All outputs become undefined” � “Some inputs become defined”

Figure 5.15: Signal traces and event orderings for a weakly indicating function
block.

it starts to compute and produce valid outputs as soon as possible, i.e.,
when some but not all input signals have become valid, and if (2) it
starts to produce empty outputs as soon as possible, i.e. when some but
not all input signals have become empty.

For a weakly indication function block to behave correctly, it is necessary
to require that it never produces all valid outputs until after all inputs have
become valid, and that it never produces all empty outputs until after all in-
puts have become empty. This behavior is identical to Seitz’s weak conditions
in [136]. In [136] Seitz further explains that it can be proved that if the indi-
vidual components satisfy the weak conditions then any “valid combinatorial
circuit structure” of function blocks also satisfies the weak conditions, i.e., that
function blocks may be combined to form larger function blocks. By “valid
combinatorial circuit structure,” we mean a structure where no components
have inputs or outputs left unconnected and where there are no feed-back sig-
nal paths. Strongly indicating function blocks have the same property – a
“valid combinatorial circuit structure” of strongly indicating function blocks

5.6. Function blocks – The basics 77

is itself a strongly indicating function block.

Notice that both weakly and strongly indicating function blocks exhibit a
hysteresis-like behavior in the valid-to-empty and empty-to-valid transitions:
(1) some/all outputs must remain valid until after some/all inputs have become
empty, and (2) some/all outputs must remain empty until after some/all inputs
have become valid. It is this hysteresis that ensures handshake transparency,
and the implementation consequence is that one or more state holding circuits
(normally in the form of C-elements) are needed.

Finally, a word about the 4-phase bundled-data protocol. Since Req↑ is
equivalent to “all data signals are valid,” and since Req↓ is equivalent to
“all data signals are empty,” a 4-phase bundled-data function block can be
categorized as strongly indicating.

As we will see in the following, strongly indicating function blocks have
worst-case latency. To obtain actual case latency weakly indicating function
blocks must be used. Before addressing possible function block implementation
styles for the different handshake protocols, it is useful to review the basics of
binary ripple-carry addition, the running example in the following sections.

5.6.3 Review of ripple-carry addition

Figure 5.16 illustrates the implementation principle of a ripple-carry adder.

cin

ai bi a1b1anbn

di d1cicn

sn si s1

cout

Figure 5.16: A ripple-carry adder. The carry output of one stage di is con-
nected to the carry input of the next stage ci+1.

A 1-bit full adder stage implements:

s = a⊕ b⊕ c (5.1)

d = ab+ ac+ bc (5.2)

In many implementations inputs a and b are recoded as:

p = a⊕ b (“propagate” carry) (5.3)

g = ab (“generate” carry) (5.4)

k = ab (“kill” carry) (5.5)

78 Chapter 5. Handshake circuit implementations (four-phase)

. . . and the output signals are computed as follows:

s = p⊕ c (5.6)

d = g + pc or alternatively (5.7)

d = k + pc (5.8)

For a ripple-carry adder, the worst-case critical path is a carry rippling
across the entire adder. If the latency of a 1-bit full adder is tadd, the worst-
case latency of an N -bit adder is N · tadd. This is a very rare situation, and
in general, the longest carry ripple during a computation is much shorter.
Assuming random and uncorrelated operands, the average latency is log(N) ·
tadd, and if numerically small operands occur more frequently, the average
latency is even less. Using normal Boolean signals (as in the bundled-data
protocols), there is no way to know when the computation has finished, and
the resulting performance is thus worst-case.

By using dual-rail carry signals (d .t , d .f), it is possible to design circuits
that indicate completion as part of the computation and thus achieve actual
case latency. The crux is that a dual-rail carry signal, d, conveys one of the
following 3 messages:

(d .t , d .f) = (0,0) = Empty “The carry has not been computed yet”
(possibly because it depends on c)

(d .t , d .f) = (1,0) = True “The carry is 1”
(d .t , d .f) = (0,1) = False “The carry is 0”

Consequently, 1-bit adder can output a valid carry without waiting for the
incoming carry if its inputs make this possible (a = b = 0 or a = b = 1). This
idea was first put forward in 1955 in a paper by Gilchrist [51]. The same idea
is explained in [68, pp. 75-78] and in [136].

5.7 Bundled-data function blocks

5.7.1 Using matched delays

A bundled-data implementation of the adder in figure 5.16 is shown in fig-
ure 5.17. It is composed of a traditional combinatorial circuit adder and a
matching delay element. The delay element provides a constant delay that
matches the worst-case latency of the combinatorial adder. This includes the
worst-case critical path in the circuit – a carry rippling across the entire adder
– as well as the worst-case operating conditions. For reliable operation, some
safety margin is needed.

In addition to the combinatorial circuit itself, the delay element represents
a design challenge for the following reasons: to a first order the delay element
will track delay variations that are due to the fabrication process spread as
well as variations in temperature and supply voltage. On the other hand, wire

5.7. Bundled-data function blocks 79

Ack−out

comb.
circuit

s[n:1]

d

a[n:1]

b[n:1]
c

matched
delay

Req−in Req−out

Ack−in

Figure 5.17: A 4-phase bundled data implementation of the N−bit handshake
adder from figure 5.16.

delays can be significant, and they are often beyond the designer’s control.
Some design policy for matched delays is obviously needed. In a full custom
design environment, one may use a dummy circuit with an identical layout
but with weaker transistors. In an automatic standard-cell place and route
environment, one will have to accept a fairly large safety margin or do post-
layout timing analysis and trimming of the delays. The latter sounds tedious,
but it is similar to the procedure used in synchronous design where setup and
hold times are checked and delays trimmed after layout.

In a 4-phase bundled-data design an asymmetric delay element may be
preferable from a performance point of view, in order to perform the return-
to-zero part of the handshaking as quickly as possible. Another issue is the
power consumption of the delay element. In the ARISC processor design
reported in [20], the delay elements consumed 10 % of the total power.

5.7.2 Delay selection

In [117], Nowick proposed a scheme called “speculative completion.” The
basic principle is illustrated in figure 5.18. In addition to the desired function,
some additional circuitry is added that selects among several matched delays.
The estimate must be conservative, i.e., on the safe side. The estimation can
be based on the input signals and/or on some internal signals in the circuit
that implements the desired function.

For an N-bit ripple-carry adder, the propagate signals (c.f. equation 5.3)
that form the individual 1-bit full adders (c.f. figure 5.16) may be used for the
estimation. As an example of the idea, consider a 16-bit adder. If p8 = 0, the
longest carry ripple can be no longer than 8 stages, and if p12 ∧ p8 ∧ p4 = 0,
the longest carry ripple can be no longer than 4 stages. Based on such simple
estimates, a sufficiently large matched delay is selected. Again, if a 4-phase
protocol is used, asymmetric delay elements are preferable from a performance
point of view.

To the designer, the trade-off is between an aggressive estimate with a

80 Chapter 5. Handshake circuit implementations (four-phase)

Estimate

large

small

medium

Funct.

Req_in Req_out

Inputs Outputs

M
U

X

Figure 5.18: The basic idea of “speculative completion.”

large circuit overhead (area and power) or a less aggressive estimate with
less overhead. For more details on the implementation and the attainable
performance gains, the reader is referred to [117, 118].

5.8 Dual-rail function blocks

5.8.1 Delay insensitive minterm synthesis (DIMS)

In chapter 2 (page 22 and figure 2.14), we explained the implementation of an
AND gate for dual-rail signals. Using the same basic topology, it is possible
to implement other simple gates such as OR and EXOR. An inverter involves
no active circuitry as it is just a swap of the two wires.

Arbitrary functions can be implemented by combining gates in exactly
the same way as when one designs combinatorial circuits for a synchronous
circuit. The handshaking is implicitly taken care of and can be ignored when
composing gates and implementing Boolean functions. This has the important
implication that existing logic synthesis techniques and tools may be used; the
only difference is that the basic gates are implemented differently.

The dual-rail AND gate in figure 2.14 is obviously rather inefficient: 4 C-
elements and 1 OR gate totaling approximately 30 transistors – a factor of
five greater than a normal AND gate whose implementation requires only 6
transistors. By implementing larger functions, the overhead can be reduced.
To illustrate this, figure 5.19(b)-(c) shows the implementation of a 1-bit full
adder. We will discuss the circuit in figure 5.19(d) shortly.

The PLA-like structure of the circuit in figure 5.19(c) illustrates a general
principle for implementing arbitrary Boolean functions. In [145], we called this
approach DIMS – Delay-Insensitive Minterm Synthesis – because the circuits
are delay-insensitive and because the C-elements in the circuits generate all
minterms of the input variables. The truth tables have 3 groups of rows
specifying the output when the input is: (1) the empty codeword to which the
circuit responds by setting the output empty, (2) an intermediate codeword

5.8. Dual-rail function blocks 81

(a)

b.f b.t

c.f c.t

s.f s.t

d.f d.t

Generate

Kill

E E E 0 0 0 0

cba

F F F

TFF

F T F

TTF

T F F

TFT

T T F

TTT

010

1

1

0

1

0

0

1 0

1

1

0

1

0

0

0

0

0

1

1

1

1

1

1

0

1

0

0

0

NO CHANGE

Kill

Generate

s.t s.f d.t d.f

(b)

(d)(c)

C

C

C

C

C

C

C

C

b.f

c.f

b.t

c.t

a.f
a.t

C

C

+

+

+

+

s.t

s.f

d.t

d.f

1

C

C

C

C

C

C

C

C

b.f

c.f

b.t

c.t

a.f
a.t +

+

+

+

s.t

s.f

d.t

d.f

ADD

a.f a.t

Figure 5.19: A 4-phase dual-rail full-adder: (a) Symbol, (b) truth table, (c)
DIMS implementation, and (d) an optimization that makes the full adder
weakly indicating.

which does not affect the output, or (3) a valid codeword to which the circuit
responds by setting the output to the proper valid value.

The fundamental ideas explained above all go back to David Muller’s work
in the late 1950s and early 1960s [104, 103]. While [104] develops the funda-
mental theorem for the design of speed-independent circuits, [103] is a more
practical introduction, including a design example: a bit-serial multiplier using
latches and gates as explained above.

Referring to section 5.6.2, the DIMS circuits, as explained here, can be
categorized as strongly indicating, and hence they exhibit worst-case latency.
In an N -bit ripple-carry adder, the empty-to-valid and valid-to-empty transi-
tions will ripple in strict sequence from the least significant full adder to the
most significant one.

If we change the full-adder design slightly, as illustrated in figure 5.19(d), a
valid d may be produced before the c input is valid (“kill” or “generate”), and
an N -bit ripple-carry adder built from such full adders will exhibit actual-case

82 Chapter 5. Handshake circuit implementations (four-phase)

latency – the circuits are weakly indicating function blocks.

The designs in figure 5.19(c) and 5.19(d), and ripple-carry adders built from
these full adders, are all symmetric in the sense that the latency of propagating
an empty value is the same as the latency of propagating the preceding valid
value. This may be undesirable. Later in section 5.8.4 we will introduce an
elegant design that propagates empty values in constant time (with the latency
of 2 full adder cells).

5.8.2 Null Convention Logic

The C-elements and OR gates from the previous sections can be seen as n-of-
n and 1-of-n threshold gates with hysteresis, figure 5.20. By using arbitrary
m-of-n threshold gates with hysteresis – an idea proposed by Theseus Logic,
Inc., [41] – it is possible to reduce the implementation complexity. An m-
of-n threshold gate with hysteresis sets its output high when any m inputs
have gone high, and it sets its output low when all its inputs are low. This
elegant circuit implementation idea is the key element in Theseus Logic’s Null
Convention Logic. At the higher levels of design, NCL is no different from the
data-flow view presented in chapter 3, and NCL has significant similarities to
the circuit design styles presented in [103, 139, 145, 108]. Figure 5.20 shows
that OR gates and C-elements can be seen as special cases in the world of
threshold gates. The digit inside a gate symbol is the threshold of the gate.
Figure 5.21 shows the implementation of a dual-rail full adder using NCL
threshold gates. The circuit is weakly indicating.

OR−gates

1 1

2 2

3

5

1 1 1

2 2

33

4 4

C−elements

Inverter

Figure 5.20: NCL gates: m−of−n threshold gates with hysteresis (1 ≤ m ≤
n).

5.8. Dual-rail function blocks 83

d.t

2

2

3

3

b.f
b.t

c.t

c.f

a.t
a.f

s.t

s.f

d.f

Figure 5.21: A full adder using NCL gates.

5.8.3 Transistor-level CMOS implementations

The last two adder designs we will introduce are based on CMOS transistor-
level implementations using dual-rail signals. Dual-rail signals are essentially
what are produced by precharged differential logic circuits that are used in
memory structures and in logic families like DCVSL, figure 5.22 [119, 58].

In a bundled-data design, the precharge signal can be the request signal on
the input channel to the function block. In a dual-rail design, the precharge
p-type transistors may be replaced by transistor networks that detect when
all inputs are empty. Similarly, the pull-down n-type transistor signal paths
should only conduct when the required input signals are valid.

Transistor implementations of the DIMS and NCL gates introduced above
are thus straightforward. Figure 5.23 shows a transistor-level implementation
of a carry circuit for a strongly-indicating full adder. In the pull-down circuit,
each column of transistors corresponds to a minterm. In general, when imple-
menting DCVSL gates, it is possible to share transistors in the two pull-down

Precharge

B B

A

N transistor

network

Out.t

Inputs

Out.f

Precharge

Figure 5.22: A precharged differential CMOS combinatorial circuit. By
adding the cross-coupled p-type transistors labeled “A” or the (weak)
feedback-inverters labeled “B,” the circuit becomes (pseudo)static.

84 Chapter 5. Handshake circuit implementations (four-phase)

b.f

c.f

c.t

b.f

c.f

c.t

b.t

c.f

b.t

b.f

c.t

d.f

b.f

a.f

c.f

b.f

c.f

d.t

b.t

c.f

b.t

c.t

b.f

c.t

b.t

c.t

b.t

a.f

a.t a.t

a.ta.f a.f a.f a.ta.f a.t a.t

Figure 5.23: Transistor-level implementation of the carry signal for the
strongly indicating full adder from figure 5.19(c).

networks, but in this particular case, it has not been done in order to better
illustrate the relationship between the transistor implementation and the gate
implementation in figure 5.19(c).

The high stacks of p-type transistors are obviously undesirable. They may
be replaced by a single transistor controlled by an “all empty” signal generated
elsewhere. Finally, we mention that the weakly-indicating full adder design
presented in the next section includes optimizations that minimize the p-type
transistor stacks.

5.8.4 Martin’s adder

In [93], Martin addresses the design of dual-rail function blocks in general,
and he illustrates the ideas using a very elegant dual-rail ripple-carry adder.
The adder has a small transistor count, it exhibits actual case latency when
adding valid data, and it propagates empty values in constant time – the adder
represents the ultimate in the design of weakly indicating function blocks.

Looking at the weakly-indicating transistor-level carry circuit in figure 5.23,
we see that d remains valid until a, b, and c are all empty. If we designed a
similar sum circuit, its output s would also remain valid until a, b, and c are
all empty. The weak conditions in figure 5.15 only require that one output
remains valid until all inputs have become invalid. Hence, it is allowed to split
the indication of a, b, and c being empty among the carry and the sum circuits.

In [93], Martin uses some very illustrative directed graphs to express how
the output signals indicate when input signals and internal signals are valid or
empty. The nodes in the graphs are the signals in the circuit, and the directed
edges represent indication dependencies. Solid edges represent guaranteed de-
pendencies, and dashed edges represent possible dependencies. Figure 5.24(a)

5.8. Dual-rail function blocks 85

Propagate

s1

a1b1

d1 c1c2

b2a2

d2

s2

b3a3

d3

s3

c3

c3

d2 d1

c2

d3

s3 s2 s1

c1

a3, b3 a1,b1

c3

d2 d1

c2

d3

s3 s2 s1

c1

a3, b3 a2, b2 a1, b1

a2, b2

(b)

(c)

(a)

Ripple−carry adder:

Validity indication:

Empty indication:

Kill /Generate

Figure 5.24: (a) A 3-stage ripple-carry adder and graphs illustrating how valid
data (b) and empty data (c) propagate through the circuit (Martin [93]).

shows three full adder stages of a ripple-carry adder, and figures 5.24(b) and
5.24(c) show how valid and empty inputs respectively propagate through the
circuit.

The propagation and indication of valid values is similar to what we dis-
cussed above in the other adder designs, but the propagation and indication of
empty values is different and exhibits constant latency. When the outputs d3,
s3, s2, and s1 are all valid, this indicates that all input signals and all internal
carry signals are valid. Similarly, when the outputs d3, s3, s2, and s1 are all
empty, this indicates that all input signals and all internal carry signals are
empty – the ripple-carry adder satisfies the weak conditions.

The corresponding transistor implementation of a full adder is shown in
figure 5.25. It uses 34 transistors, which is comparable to a traditional combi-
natorial circuit implementation.

The principles explained above apply to the design of function blocks in
general. “Valid/empty indication (or acknowledgement), dependency graphs,”
as shown in figure 5.24, are a very useful technique for understanding and
designing circuits with low latency and the weakest possible indication.

86 Chapter 5. Handshake circuit implementations (four-phase)

b.f

a.t

c.t

c.f

c.t

c.f

c.t

b.t

c.f

b.f

a.f

c.t

b.f

a.t

c.f

a.f

b.t

s.f

s.t

a.f

b.t

a.t

a.f

b.f

c.f

a.f b.f

d.f

b.f

a.f

b.t

a.t

a.t

b.t a.t b.t

c.t

d.t

Figure 5.25: The CMOS transistor implementation of Martin’s adder [93, Fig.
3].

5.9 Hybrid function blocks

The final adder we present has 4-phase bundled-data input and output chan-
nels and a dual-rail carry chain. The design exhibits characteristics similar to
Martin’s dual-rail adder presented in the previous section: actual case latency
when propagating valid data, constant latency when propagating empty data,
and a moderate transistor count. The basic structure of this hybrid adder is
shown in figure 5.26. Each full adder is composed of a carry circuit and a sum
circuit. Figure 5.27(a)-(b) shows precharged CMOS implementations of the
two circuits. The idea is that the circuits precharge when Reqin = 0, evaluate
when Reqin = 1, detect when all carry signals are valid, and use this infor-
mation to indicate completion, i.e., Reqout↑. If the latency of the completion
detector does not exceed the latency in the sum circuit in a full adder, then a
matched delay element is needed, as indicated in figure 5.26.

Req_in

C

Completion
detector

Precharge/Evaluate
all cy and sum circuits

++ +

sumsum

sn si

sum

s1 Req_out

c1.t

d1.fci.f

ci.t d1.tdi.t

di.fdn.f

dn.t

c1.f

cin

cout

carry carry carry

bn bi b1a1aian

cn.f

cn.t

Figure 5.26: Block diagram of a hybrid adder with 4-phase bundled-data
input and output channels and with an internal dual-rail carry chain.

5.9. Hybrid function blocks 87

(b)

Req_inReq_in

Req_in

c.t

a baa

bb c.f

a b

d.t

d.f

Req_in

Req_in

a a

b b b b

c.t c.f

s

Req_in

d.t

d.f

(c)
Req_in

c.f

a

Req_in

a

c.t

a

bb

a

(a)

Figure 5.27: The CMOS transistor implementation of a full adder for the
hybrid adder in figure 5.26: (a) a weakly indicating carry circuit, (b) the sum
circuit, and (c) a strongly indicating carry circuit.

The size and latency of the completion detector in figure 5.26 grow with the
size of the adder. In wide adders, the latency of the completion detector may
significantly exceed the latency of the sum circuit. An interesting optimization
that reduces the completion detector overhead – possibly at the expense of a
small increase in overall latency (Reqin↑ to Reqout↑) – is to use a mix of
strongly and weakly indicating function blocks [111]. Following the naming
convention established in figure 5.16 on page 77, we could make, for example,
adders 1, 4, 7, . . . weakly indicating, and all other adders strongly indicating.
In this case, only the carry signals out of stages 3, 6, 9, . . . need to be checked to
detect completion. For i = 3, 6, 9, . . . di indicates the completion of di−1 and
di−2 as well. Many other schemes for mixing strongly and weakly indicating
full adders are possible. The particular scheme presented in [111] exploited the
fact that typical-case operands (sampled audio) are numerically small values,
and the design detects completion from a single carry signal.

88 Chapter 5. Handshake circuit implementations (four-phase)

Summary – function block design

The previous sections have explained the basics of how to implement function
blocks and have illustrated this using a variety of ripple-carry adders. The
main points were “transparency to handshaking” and “actual case latency”
through the use of weakly-indicating components.

Finally, a word of warning to put things into the right perspective: to
some extent, the ripple-carry adders explained above over-sell the advantages
of average-case performance. It is easy to get carried away with elegant circuit
designs, but it may not be particularly relevant at the system level:

• In many systems, the worst-case latency of a ripple-carry adder may
simply not be acceptable.

• In a system with many concurrently active components that synchronize
and exchange data at high rates, the slowest component at any given
time tends to dominate the system performance. Hence, the average-case
performance of a system may not be nearly as good as the average-case
latency of its individual components.

• In many cases, addition is only one part of a more complex compound
arithmetic operation. For example, the final design of the asynchronous
filter bank presented in [113] did not use the ideas presented above.
Instead, we used entirely strongly-indicating full adders because this al-
lowed an efficient two-dimensional precharged compound add-multiply-
accumulate unit to be implemented.

5.10 Mutual exclusion and arbitration

5.10.1 Mutual exclusion

Some handshake components (including MERGE) require that the commu-
nication along several (input) channels is mutually exclusive. For the simple
static data-flow circuit structures we have considered so far, this has been the
case, but in general, one may encounter situations where a resource is shared
between several independent parties/processes.

The basic circuit needed to deal with such situations is a mutual exclusion
element (MUTEX). A possible implementation is shown in figure 5.28.

The input signals R1 and R2 are two requests that originate from two
independent sources, and the task of the MUTEX is to pass these inputs to
the corresponding outputs G1 and G2 in such a way that at most one output
is active at any given time. If only one input request arrives, the operation is
trivial. If one input request arrives well before the other, the latter request is
blocked until the first request is de-asserted.

A problem arises when both input signals are asserted at the same time.
The two cross-coupled gates in the first stage of the mutex is a bi-stable circuit

5.10. Mutual exclusion and arbitration 89

R1

R2

Bistable

&

&

G2

G1

G1

G2M
U

T
E

X

Metastability filter

x2

x1R1

R2

Figure 5.28: The mutual exclusion element: symbol and possible implemen-
tation.

that now receives requests to enter each of its two stable states at the same
time. This may cause the circuit to produce non-digital output signals x1 and
x2 hovering halfway between logic 0 and logic 1. This is a metastable state.
In general, the circuit will recover to one of the two valid states quickly, but
it is important to note that there is no upper limit on how long it may take.
The purpose of the second stage, the metastability filter, is to prevent the
undefined values on x1 and x2 from propagating to the outputs. It does this
by driving signals G1 and G2 low until the bistable enters a valid digital state.

We will discuss metastability in much greater detail in chapter 8. The
above should suffice in this chapter where focus is on implementation of the
set of handshake components.

5.10.2 Arbitration

The MUTEX can be used to build a handshake arbiter that can be used
to control access to a resource that is shared between several autonomous,
independent parties. One possible implementation is shown in figure 5.29.

The MUTEX ensures that signals G1 and G2 at the a’–aa’ interface are
mutually exclusive. Following the MUTEX are two AND gates whose purpose
it is to ensure that handshakes on the (y1, A1) and (y2, A2) channels at the
b’–bb’ interface are mutually exclusive: y2 can only go high if A1 is low and

bb’

&

&

C

C

R0
A0

R1

A1

R2

A2

A
R

B
IT

E
R

+ R0

A0

y1

y2

G1

M
U

T
E

X

R2 G2

G1R1

A1

R1

R2

A2

G2

A1

A2

a’

aa’

b’

Figure 5.29: The handshake arbiter: symbol and possible implementation.

90 Chapter 5. Handshake circuit implementations (four-phase)

y1 can only go high if signal A2 is low. In this way, if handshaking is in
progress along one channel, it blocks handshaking on the other channel. As
handshaking along channels (y1, A1) and (y2, A2) are mutually exclusive, the
rest of the arbiter is simply a MERGE, c.f., figure 5.2 on page 63. If data
needs to be passed to the shared resource, a multiplexer is needed in exactly
the same way as in the MERGE. The multiplexer may be controlled by signals
y1 and/or y2.

5.11 Summary

This chapter addressed the implementation of the various handshake com-
ponents: latch, fork, join, merge, function blocks, mux, demux, mutex, and
arbiter). A significant part of the material addressed principles and techniques
for implementing function blocks.

Chapter 6

Speed-independent control
circuits

This chapter provides an introduction to the design of asynchronous se-
quential circuits. It explains in detail one well-developed specification and
synthesis method: the synthesis of speed-independent control circuits from
signal transition graph specifications.

6.1 Introduction

Over time many different formalisms and theories have been proposed for the
design of asynchronous control circuits (e.g., sequential circuits or state ma-
chines). The multitude of approaches arises from the combination of: (a)
different specification formalisms, (b) different assumptions about delay mod-
els for gates and wires, and (c) different assumptions about the interaction
between the circuit and its environment. Full coverage of the topic is far
beyond the scope of this book. We start by presenting some of the basic as-
sumptions and characteristics of the various design methods and give pointers
to relevant literature. Then we explain in detail one method: the design of
speed-independent circuits from signal transition graphs – a method that is
supported by a well-developed public domain tool, Petrify.

A good starting point for further reading is a book by Myers [107]. It
provides in-depth coverage of the various formalisms, methods, and theories for
the design of asynchronous sequential circuits, and it provides a comprehensive
list of references.

91

92 Chapter 6. Speed-independent control circuits

input−output mode:
Synchronous:

Clock

Current state Next state

Asynchronous

Huffman style

fundamental mode:

Muller style

Asynchronous

LogicLogic

Inputs Outputs

Logic

Figure 6.1: (a) A synchronous sequential circuit. (b) A Huffman style asyn-
chronous sequential circuit with buffers in the feedback path, and (c) a Muller
style asynchronous sequential circuit with wires in the feedback path.

6.1.1 Asynchronous sequential circuits

To start the discussion, figure 6.1 shows a generic synchronous sequential cir-
cuit and two alternative asynchronous control circuits: a Huffman style fun-
damental mode circuit with buffers (delay elements) in the feedback signals,
and a Muller style input-output mode circuit with wires in the feedback path.

The synchronous circuit is composed of a set of registers holding the current
state and a combinational logic circuit that computes the output signals and
the next state signals. When the clock ticks, the next state signals are copied
into the registers, thus becoming the current state. Reliable operation only
requires that the next state output signals from the combinational logic circuit
are stable in a time window around the rising edge of the clock, an interval
that is defined by the setup and hold time parameters of the register. Between
two clock ticks, the combinational logic circuit is allowed to produce signals
that exhibit hazards. The only thing that matters is that the signals are ready
and stable when the clock ticks.

In an asynchronous circuit, there is no clock, and all signals have to be
valid at all times. This implies that at least the output signals that are seen
by the environment must be free from all hazards. To achieve this, it is some-
times necessary to avoid hazards on internal signals as well. This is why the
synthesis of asynchronous sequential circuits is difficult. Because it is diffi-
cult, researchers have proposed different methods that are based on different
(simplifying) assumptions.

6.1.2 Hazards

For the circuit designer, a hazard is an unwanted glitch on a signal. Figure 6.2
shows four possible hazards that may be observed. A circuit that is in a stable
state does not spontaneously produce a hazard – hazards are related to the
dynamic operation of a circuit. This again relates to the dynamics of the input

6.1. Introduction 93

Dynamic−01 hazard:

Static−1 hazard:

Static−0 hazard:

1

00

1

1 0 11 0

0 1 1 00

1

0

0

1

1

0

Desired signal Actual signal

Dynamic−10 hazard:

Figure 6.2: Possible hazards that may be observed on a signal.

signals as well as the delays in the gates and wires in the circuit. A discussion
of hazards is therefore not possible without stating precisely which delay model
is being used and what assumptions are made about the interaction between
the circuit and its environment. There are greater theoretical depths in this
area than one might think at first glance.

Gates are normally assumed to have delays. In section 2.5.3, we also dis-
cussed wire delays, and in particular, the implications of having different delays
in different branches of a forking wire. In addition to gate and wire delays, it
is also necessary to specify which delay model is being used.

6.1.3 Delay models

A pure delay that simply shifts any signal waveform later in time is perhaps
what first comes to mind. In the hardware description language VHDL, this is
called a transport delay. It is, however, not a very realistic model as it implies
that the gates and wires have infinitely high bandwidth. A more realistic
delay model is the inertial delay model. In addition to the time-shifting of
a signal waveform, an inertial delay suppresses short pulses. In the inertial
delay model used in VHDL, two parameters are specified: the delay time and
the reject time, and pulses shorter than the reject time are filtered out. The
inertial delay model is the default delay model used in VHDL.

These two fundamental delay models come in several flavors, depending on
how the delay time parameter is specified. The simplest is a fixed delay, where
the delay is constant. An alternative is a min-max delay where the delay is
unknown but within a lower and upper bound: tmin ≤ tdelay ≤ tmax. A more
pessimistic model is the unbounded delay where delays are positive (i.e., not
zero), unknown and unbounded from above: 0 < tdelay <∞. This is the delay
model that is used for gates in speed-independent circuits.

It is intuitive that the inertial delay model and the min-max delay model
both have properties that help filter out some potential hazards.

94 Chapter 6. Speed-independent control circuits

6.1.4 Fundamental mode and input-output mode

In addition to the delays in the gates and wires, it is also necessary to formalize
the interaction between the circuit being designed and its environment. Again,
strong assumptions may simplify the design of the circuit. The design methods
that have been proposed over time all have their roots in one of the following
assumptions:

Fundamental mode: The circuit is assumed to be in a state where all input
signals, internal signals, and output signals are stable. In such a stable
state, the environment is allowed to change one input signal. After that,
the environment is not allowed to change the input signals again until
the entire circuit has stabilized. Since internal signals such as state
variables are unknown to the environment, this implies that the longest
delay in the circuit must be calculated, and the environment is required
to keep the input signals stable for at least this amount of time. For this
to make sense, the delays in gates and wires in the circuit have to be
bounded from above. The limitation on the environment is formulated
as an absolute time requirement.

The design of asynchronous sequential circuits based on fundamental
mode operation was pioneered by David Huffman in the 1950s [63, 64].

Input-output mode: Again the circuit is assumed to be in a stable state.
Here the environment is allowed to change the inputs. When the circuit
has produced the corresponding output (and it is allowable that there
are no output changes), the environment is allowed to change the inputs
again. There are no assumptions about the internal signals, and it is,
therefore, possible that the next input change occurs before the circuit
has stabilized in response to the previous input signal change.

The restrictions on the environment are formulated as causal relations
between input signal transitions and output signal transitions. For this
reason, the circuits are often specified using trace-based methods where
the designer specifies all possible sequences of input and output signal
transitions that can be observed on the interface of the circuit. Signal
transition graphs, introduced later, are such a trace-based specification
technique.

The design of asynchronous sequential circuits based on the input-output
mode of operation was pioneered by David Muller in the 1950s [104, 103].
As mentioned in section 2.5.1, these circuits are speed-independent.

6.1.5 Synthesis of fundamental mode circuits

In the classic work by Huffman, the environment was only allowed to change
one input signal at a time. In response to such an input signal change, the

6.1. Introduction 95

s3s0 00 01 11 c10
Inputs a,b Output

s0 s1s2 − 0

s1s3−−

s2 s3 −−

s3 s5s4−

s4s0

s5s0 − −

0

0

1

1

1

− −

s1 s2

s3

s4 s5

00/0

00/0

11/1
10/0

11/1

10/0 01/0

01/0

Primitive flow tableMealy type state diagram

ab/c

01/1 10/1

01/1 10/1

00/0

11/1

Burst mode specification

s0

a+b+/c+

a−b−/c−

Figure 6.3: Some alternative specifications of a Muller C-element: a Mealy
state diagram, a primitive flow table, and a burst-mode state diagram.

combinational logic will produce new outputs, of which some are fed back,
figure 6.1(b). In the original work, it was further required that only one
feedback signal changes (at a time) and that the delay in the feedback buffer
is large enough to ensure that the entire combinational circuit has stabilized
before it sees the change of the feedback signal. This change may, in turn, cause
the combinational logic to produce new outputs, etc. Eventually, through a
sequence of single signal transitions, the circuit reaches a stable state where
the environment is again allowed to make a single input change. Another way
of expressing this behavior is to say that the circuit starts in a stable state
(which is defined to be a state that persists until an input signal changes).
In response to an input signal change, the circuit steps through a sequence of
transient, unstable states, until it eventually settles in a new stable state. This
sequence of states is such that from one state to the next, only one variable
changes.

The interested reader is encouraged to consult [79], [151], or [107] and to
specify and synthesize a C-element. The following gives a flavor of the design
process and the steps involved:

• The design may start with a state graph specification that is very similar
to the specification of a synchronous sequential circuit. This is optional.
Figure 6.3 shows a Mealy type state graph specification of the C-element.

The classic design process involves the following steps:

• The intended sequential circuit is specified in the form of a primitive flow
table (a state table with one row per stable state). Figure 6.3 shows the
primitive flow table specification of a C-element.

• A minimum-row reduced flow table is obtained by merging compatible
states in the primitive flow table.

96 Chapter 6. Speed-independent control circuits

• The states are encoded.

• Boolean equations for output variables and state variables are derived.

Later work has generalized the fundamental mode approach by allowing a
restricted form of multiple-input and multiple-output changes. This approach
is called burst mode [34, 24]. When in a stable state, a burst-mode circuit waits
for a set of input signals to change (in arbitrary order). After such an input
burst has completed, the machine computes a burst of output signals and new
values of the internal variables. The environment is not allowed to produce
a new input burst until the circuit has completely reacted to the previous
burst – fundamental mode is still assumed, but only between bursts of input
changes. For comparison, figure 6.3 also shows a burst-mode specification of a
C-element. Burst-mode circuits are specified using state graphs that are very
similar to those used in the design of synchronous circuits. Several mature
tools for synthesizing burst-mode controllers have been developed in academia
[43, 172]. These tools are available in the public domain.

6.2 Signal transition graphs

The rest of this chapter is devoted to the specification and synthesis of speed-
independent control circuits. These circuits operate in input-output mode,
and they are naturally specified using signal transition graphs (STGs). An
STG is a Petri net, and it can be seen as a formalization of a timing diagram.
The synthesis procedure that we explain in the following consists of: (1) Cap-
turing the behavior of the intended circuit and its environment in an STG. (2)
Generating the corresponding state graph and adding state variables if needed.
(3) Deriving Boolean equations for the state variables and outputs.

6.2.1 Petri nets and STGs

Briefly, a Petri net [2, 128, 106] is a graph composed of directed arcs and two
types of nodes: transitions and places. Depending on the interpretation that
is assigned to places, transitions, and arcs, Petri nets can be used to model
and analyze many different (concurrent) systems. Some places can be marked
with tokens, and the Petri net model can be “executed” by firing transitions.
A transition is enabled to fire if there are tokens on all of its input places, and
an enabled transition must eventually fire. When a transition fires, a token is
removed from each input place, and a token is added to each output place. We
will show an example shortly. Petri nets offer a convenient way of expressing
choice and concurrency.

It is important to stress that there are many variations of and extensions to
Petri nets – Petri nets are a family of related models and not a single, unique,
and well-defined model. Often certain restrictions are imposed in order to

6.2. Signal transition graphs 97

Timing diagramC−element and dummy environment

a

b

c
etc.

a
c

b

b+

b−

a+

a−

c−

c+

STG

b+

c+

b−

c−

a+

a−

Petri net

Figure 6.4: A C-element and its “well-behaved” dummy environment, its
specification in the form of a timing diagram, the Petri net formalization of
the timing diagram, and the corresponding STG.

make the analysis for certain properties practical. The STGs we consider in
the following belong to such a restricted subclass: an STG is a 1-bounded
Petri net in which only simple forms of input choice are allowed. The exact
meaning of “1-bounded” and “simple forms of input choice” will be defined at
the end of this section.

In an STG, the transitions are interpreted as signal transitions, and the
places and arcs capture the causal relations between the signal transitions.
Figure 6.4 shows a C-element and a “well behaved” dummy environment that
maintains the input signals until the C-element has changed its outputs. The
intended behavior of the C-element could be expressed in the form of a timing
diagram, as shown in the figure. Figure 6.4 also shows the corresponding Petri
net specification. The Petri net is marked with tokens on the input places
to the a+ and b+ transitions, corresponding to state (a, b, c) = (0, 0, 0). The
a+ and b+ transitions may fire in any order, and when they have both fired
the c+ transition becomes enabled to fire, etc. Often STGs are drawn in a
simpler form where most places have been omitted. Every arc that connects
two transitions is then thought of as containing a place. Figure 6.4 shows the

98 Chapter 6. Speed-independent control circuits

STG specification of the C-element.
A given marking of a Petri net corresponds to a possible state of the system

being modeled, and by executing the Petri net and identifying all possible
markings it is possible to derive the corresponding state graph of the system.
The state graph is generally much more complex than the corresponding Petri
net.

An STG describing a meaningful circuit enjoys certain properties, and for
the synthesis algorithms used in tools like Petrify to work, additional properties
and restrictions may be required. An STG is a Petri net with the following
characteristics:

1. Input free choice: The selection among alternatives must only be
controlled by mutually exclusive inputs.

2. 1-bounded: There must never be more than one token in a place.

3. Liveness: The STG must be free from deadlocks.

An STG describing a meaningful speed-independent circuit has the following
characteristics:

4. Consistent state assignment: The transitions of a signal must strictly
alternate between + and − in any execution of the STG.

5. Persistency: If a signal transition is enabled, it must take place, i.e., it
must not be disabled by another signal transition. The STG specifica-
tion of the circuit must guarantee persistency of internal signals (state
variables) and output signals, whereas it is up to the environment to
guarantee persistency of the input signals.

In order to be able to synthesize a circuit implementation, the following char-
acteristic is required:

6. Complete state coding (CSC): Two or more different markings of
the STG must not have the same signal values (i.e., correspond to the
same state). If this is not the case, it is necessary to introduce extra state
variables such that different markings correspond to different states. The
synthesis tool Petrify does this automatically.

6.2.2 Some frequently used STG fragments

For the newcomer, it may take a little practice to become familiar with spec-
ifying and designing circuits using STGs. This section explains some of the
most frequently used templates from which one can construct complete speci-
fications.

The basic constructs are: fork, join, choice, and merge; see figure 6.5. The
choice is restricted to what is called input free choice: the transitions following

6.2. Signal transition graphs 99

Fork

Join

Choice

Merge

Figure 6.5: Petri net fragments for fork, join, free choice and merge constructs.

P2

Choice

Merge

Join

Fork
T1

T5

T6

T8

T2 T3 T4

P1

P3 P4

P5 P6 P7

P8

T7

P9

Figure 6.6: An example Petri net that illustrates the use of fork, join, free
choice, and merge.

the choice place must represent mutually exclusive input signal transitions.
This requirement is quite natural; we only specify and design deterministic
circuits. Figure 6.6 shows an example Petri net that illustrates the use of
fork, join, free choice, and merge constructs. The example system will either
perform transitions T6 and T7 in sequence, or it will perform T1 followed by
the concurrent execution of transitions T2, T3 and T4 (which may occur in
any order), followed by T5.

Towards the end of this chapter we will design a 4-phase bundled-data
version of the MUX component from figure 3.3 on page 33. For this, we need
some additional constructs: a controlled choice and a Petri net fragment for
the input end of a bundled-data channel.

Figure 6.7 shows a Petri net fragment where place P1 and transitions T3
and T4 represent a controlled choice: a token in place P1 will engage in either
transition T3 or transition T4. The choice is controlled by the presence of

100 Chapter 6. Speed-independent control circuits

T2

T5

P1

T0

T1

P2 P1: Controlled Choice

Mutually exclusive "paths"

T3 T4

P3

P0
P0: Free Choice

Figure 6.7: A Petri net fragment including a controlled choice.

a token in either P2 or P3. It is crucial that there can never be a token in
both these places at the same time, and in the example, this is ensured by the
mutually exclusive input signal transitions T1 and T2.

Figure 6.8 shows a Petri net fragment for a component with a one-bit input
channel using a 4-phase bundled-data protocol. It could be the control channel
used in the MUX and DEMUX components introduced in figure 3.3 on page 33.
The two transitions dummy1 and dummy2 do not represent transitions on
the three signals in the channel; they are dummy transitions that facilitate
expressing the specification. These dummy transitions represent an extension
to the basic class of STGs.

Note also that the four arcs connecting:
place P5 and transition Ctl+
place P5 and transition Ctl−
place P6 and transition dummy2
place P7 and transition dummy1

have arrows at both ends. This is a shorthand notation for an arc in each
direction. Note also that there are several instances where a place is both an
input place and an output place for a transition. Place P5 and transition Ctl+
is an example of this.

The overall structure of the Petri net fragment can be understood as fol-
lows: At the top is a sequence of transitions and places that capture the
handshaking on the Req and Ack signals. At the bottom is a loop composed
of places P6 and P7 and transitions Ctl+ and Ctl− that captures the control
signal changing between high and low. The absence of a token in place P5,
when Req is high, expresses the fact that Ctl is stable in this period. When
Req is low, and a token is present in place P5, Ctl is allowed to make as many
transitions as it desires. When Req+ fires, a token is put in place P4 (which is
a controlled choice place). The Ctl signal is now stable, and depending on its

6.3. The basic synthesis procedure 101

P0

Req

Ack

Ctl

Bundled data interface

Ctl Req/Ack

Ctl−

Ctl+

Ack+

Req−

Ack−

Do the "Ctl=0" action Do the "Ctl=1" action

dummy1dummy2

P1

P2

P6 P7

Req+

P3

P4

P5

Figure 6.8: A Petri net fragment for a component with a one-bit input channel
using a 4-phase bundled-data protocol.

value, one of the two transitions dummy1 or dummy2 will become enabled and
eventually fire. At this point, the intended input-to-output operation – that
is not included in this example – may take place, and finally, the handshaking
on the control port finishes (Ack+; Req−; Ack−).

6.3 The basic synthesis procedure

The starting point for the synthesis process is an STG that satisfies the re-
quirements listed on page 98. From this STG, the corresponding state graph is
derived by identifying all of the possible markings of the STG that are reach-
able given its initial marking. The last step of the synthesis process is to derive
Boolean equations for the state variables and output variables.

We will go through a number of examples by hand in order to illustrate the
techniques used. Since the state of a circuit includes the values of all of the
signals in the circuit, the computational complexity of the synthesis process
can be large, even for small circuits. In practice, one would always use one of

102 Chapter 6. Speed-independent control circuits

the CAD tools that has been developed – for example Petrify that we introduce
later.

6.3.1 Example 1: a C-element

c
ab

00 01 10

0

1

0 0

11

0* 0

1* 1 1 1

c = ab + ac + bc

C element and its environment State Graph

Karnaugh map for C

0*0*0

10*0 0*10

110*

01*1 1*01

001*

1*1*1

a
c

b

Figure 6.9: State graph and Boolean equation for the C-element STG from
figure 6.4.

Figure 6.9 shows the state graph corresponding to the STG specification
in figure 6.4 on page 97. Variables that are excited in a given state are marked
with an asterisk. Also shown in figure 6.9 is the Karnaugh map for output
signal c. The Boolean expression for c must cover states in which c = 1 and
states where it is excited, c = 0∗ (changing to 1). To better distinguish excited
variables from stable ones in the Karnaugh maps, we will use R (rising) instead
of 0∗ and F (falling) instead of 1∗ throughout the rest of this book.

It is comforting to see that we can successfully derive the implementation
of a known circuit, but the C-element is too simple to illustrate all aspects of
the design process.

6.3.2 Example 2: a circuit with choice

The following example provides a better illustration of the synthesis proce-
dure, and in a subsequent section, we revert to this example and explain more
efficient implementations. The example is simple – the circuit has only 2 in-
puts and 2 outputs – and yet it brings forward all relevant issues. The example
is due to Chris Myers of the University of Utah who presented it in his 1996
course EE 587 “Asynchronous VLSI System Design.” The example has roots
in the papers [10, 9].

6.3. The basic synthesis procedure 103

Environment
a

b

c

d

a

b

c

d

Figure 6.10: The example circuit from [10, 9].

P0

001*0

10*00

1100*

110*1

1111*

0*0*00

1*110

01*10

010*0

14

6

4

0

8

12

2

15

13

a+

b+

d+

c+d−

c−

b−

b+

c+

a−

b+ a+

c+ b+

d+

c+
a−

b−

c−

d−

P1

Figure 6.11: The STG specification and the corresponding state graph.

x3

x2

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

+

&

&

c = d + a b + b c

d
a

b
c

&

& +

b

a
d

c

Karnaugh map:

Boolean equation for c:

An atomic complex gate:

Using simple gates:

x1

&

Figure 6.12: The Karnaugh map, the Boolean equation, and two alternative
gate-level implementations of output signal c.

104 Chapter 6. Speed-independent control circuits

Figure 6.10 shows a specification of the circuit. The circuit has two inputs
a and b and two outputs c and d, and the circuit has two alternative behaviors,
as illustrated in the timing diagram. The corresponding STG specification is
shown in figure 6.11, along with the state graph for the circuit. The STG
includes only the free choice place P0 and the merge place P1. All arcs that
directly connect two transitions are assumed to include a place. The states in
the state diagram have been labeled with decimal numbers to ease filling out
the Karnaugh maps.

The STG satisfies all of the properties 1-6 listed on page 98, and it is thus
possible to proceed and derive Boolean equations for output signals c and d.
[Note: In state 0 both inputs are marked to be excited, (a, b) = (0∗, 0∗), and
in states 4 and 8, one of the signals is still 0 but no longer excited. This is a
problem of notation only. In reality, only one of the two variables is excited in
state 0, but we don’t know which one. Furthermore, the STG is only required
to be persistent with respect to the internal signals and the output signals.
Persistency of the input signals must be guaranteed by the environment].

For output c, figure 6.12 shows the Karnaugh map, the Boolean equation,
and two alternative gate implementations: one using a single atomic And-Or-
Invert gate, and one using simple AND and OR gates. Note that there are
states that are not reachable by the circuit. In the Karnaugh map, these states
correspond to don’t cares. The implementation of output signal d is left as an
exercise for the reader (d = abc).

6.3.3 Example 2: Hazards in the simple gate implementation

The STG in figure 6.10 satisfies all of the implementation conditions 1-6 (in-
cluding persistency), and consequently, an implementation where each output
signal is implemented by a single atomic complex gate, is hazard free. In the
case of c, we need a complex And-Or gate with inversion of input signal a.
In general, such an atomic implementation is not feasible, and it is necessary
to decompose the implementation into a structure of simpler gates. Unfortu-
nately, this will introduce extra variables, and these extra variables may not
satisfy the persistency requirement that an excited signal transition must even-
tually fire. Speed-independence preserving logic decomposition is, therefore, a
very interesting and relevant topic [15, 80].

The implementation of c using simple gates that is shown in figure 6.12 is
not speed-independent; it may exhibit both static and dynamic hazards, and it
provides a good illustration of the mechanisms behind hazards. The problem
is that the signals x1, x2, and x3 are not included in the original STG and
state graph. A detailed analysis that includes these signals would not satisfy
the persistency requirement. Below we explain possible failure sequences that
may cause a static-1 hazard and a dynamic-10 hazard on output signal c.
Figure 6.13 illustrates the discussion.

6.3. The basic synthesis procedure 105

Potential static−1 hazard. Potential dynamic−10 hazard.

13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

a b

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

101100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

a b

d

b c

d

b c

01
2

6

14

10

3

7

15

118 9

12

Figure 6.13: The Karnaugh maps for output signal c showing state sequences
that may lead to hazards.

A static-1 hazard may occur when the circuit goes through the following
sequence of states: 12, 13, 15, 14. The transition from state 12 to state
13 corresponds to d going high, and the transition from state 15 to state
14 corresponds to d going low again. In state 13, c is excited (R), and it
is supposed to remain high throughout states 13, 15, 14, and 6. States
13 and 15 are covered by the cube d, and state 14 is covered by cube
bc that is supposed to “take over” and maintain c = 1 after d has gone
low. If the AND gate with output signal x2 that corresponds to cube bc
is slow, we have the problem - the static-1 hazard.

A dynamic-10 hazard may occur when the circuit goes through the follow-
ing sequence of states: 4, 6, 2, 0. This situation corresponds to the upper
AND gate (with output signal x1) and the OR gate relaying b+ into c+
and b− into c−. However, after the c+ transition, the lower AND gate,
x2, becomes excited (R) as well, but the firing of this gate is not indi-
cated by any other signal transition – the OR gate already has one input
high. If the lower AND gate (x2) fires, it will later become excited (F)
in response to c−. The net effect of this is that the lower AND gate (x2)
may superimpose a 0-1-0 pulse onto the c output after the intended c−
transition has occurred.

In the above, we did not consider the inverter with input signal a and
output signal x3. Since a is not an input to any other gate, this decomposition
is SI.

In summary, both types of hazards are related to the circuit going through
a sequence of states that are covered by several cubes that are supposed to
maintain the signal at the same (stable) level. The cube that “takes over”
represents a signal that may not be indicated by any other signal. In essence,

106 Chapter 6. Speed-independent control circuits

logic

Set
logic

Reset
zCz

SR

Reset
logic

Set

latch

logic

SR flip−flop implementation: Standard C−element implementation:

Figure 6.14: Possible implementation templates using (simple) state holding
elements.

it is the same problem that we touched upon in section 2.2 on page 14, and in
section 2.4.3 on page 20 – an OR gate can only indicate when the first input
goes high.

6.4 Implementations using state-holding gates

6.4.1 Introduction

During operation, each variable in the circuit will go through a sequence of
states where it is (stable) 0, followed by one or more states where it is excited
(R), followed by a sequence of states where it is (stable) 1, followed by one or
more states where it is excited (F), etc. In the above implementation, we were
covering all states where a variable, z, was high or excited to go high (z = 1
and z = R = 0∗).

An alternative is to use a state-holding device such as a set-reset latch. The
Boolean equations for the set and reset signals need only cover the z = R = 0∗
states and the z = F = 1∗ states respectively. This leads to simpler equations
and potentially simpler decompositions. Figure 6.14 shows the implementation
template using a standard set-reset latch and an alternative solution based on
a standard C-element. In the latter case, the reset signal must be inverted.
Later, in section 6.4.5, we discuss alternative and more elaborate implemen-
tations, but for the following discussion, the basic topologies in figure 6.14
suffice.

At this point it is relevant to mention that the equations for when to set
and reset the state-holding element for signal z can be found by rewriting
the original equation (that covers states in which z = R and z = 1) into the
following form:

z = “Set” + z · “Reset” (6.1)

For signal c in the above example (figure 6.12 on page 103), we would get the
following set and reset functions: cset = d+ab and creset = b (which is identical
to the result in figure 6.15 in section 6.4.3). Furthermore, it is obvious that
for all reachable states (only) the set and reset functions for a signal z must

6.4. Implementations using state-holding gates 107

never be active at the same time:

“Set” ∧ “Reset” ≡ 0

The following sections will develop the idea of using state-holding elements,
and we will illustrate the techniques by re-implementing example 2 from the
previous section.

6.4.2 Excitation regions and quiescent regions

The above idea of using a state-holding device for each variable can be formal-
ized as follows:

An excitation region, ER, for a variable z, is a maximally-connected set of
states in which the variable is excited:

• ER(z+) denotes a region of states where z = R = 0*

• ER(z−) denotes a region of states where z = F = 1*

A quiescent region, QR, for a variable z, is a maximally-connected set of
states in which the variable is not excited:

• QR(z+) denotes a region of states where z = 1

• QR(z−) denotes a region of states where z = 0

For a given circuit, the state space can be disjointly divided into one or more
regions of each type.

The set function (cover) for a variable z:

• must contain all states in the ER(z+) regions

• may contain states from the QR(z+) regions

• may contain states not reachable by the circuit

The reset function (cover) for a variable z:

• must contain all states in the ER(z−) regions

• may contain states from the QR(z−) regions

• may contain states not reachable by the circuit

In section 6.4.4 below, we will add what is known as the monotonic cover
constraint or the unique entry constraint in order to avoid hazards:

• A cube (product term) in the set or reset function of a variable must
only be entered through a state where the variable is excited.

Having mentioned this last constraint, we have above a complete recipe
for the design of speed-independent circuits where each non-input signal is
implemented by a state holding device. Let us continue with example 2.

108 Chapter 6. Speed-independent control circuits

ER2(c−)

QR1(c+)

QR1(c−)

ER1(c+)

ER2(c+)

001*0

10*00

1100*

110*1

1111*

0*0*00

1*110

01*10

010*0

14

6

4

0

8

12

2

15

13

2

6

14

10

3

7

15

118 9

12 13

54

0 1

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1 1

R

R

F

c−reset = b

a+

c−set = d + a b

b+

d+

c+d−

c−

b−

b+

c+

a−

Figure 6.15: Excitation and quiescent regions in the state diagram for signal
c in the example circuit from figure 6.10, and the corresponding derivation of
equations for the set and reset functions.

6.4.3 Example 2: Using state-holding elements

Figure 6.15 illustrates the above procedure for example 2 from sections 6.3.2
and 6.3.3. As before, the Boolean equations (for the set and reset functions)
may need to be implemented using atomic complex gates in order to ensure
that the resulting circuit is speed-independent.

6.4.4 The monotonic cover constraint

A standard C-element based implementation of signal c from above, with the
set and reset functions implemented using simple gates, is shown in figure 6.16
along with the Karnaugh map from which the set and reset functions are
derived. The set function involves two cubes d and ab that are input signals
to an OR gate. This implementation may exhibit a dynamic-10 hazard on the
cset-signal in a similar way to that discussed previously. The Karnaugh map
in figure 6.16 shows the sequence of states that may lead to a malfunction: (8,
12, 13, 15, 14, 6, 0). Signal d is low in state 12, high in states 13 and 15, and
low again in state 14. This sequence of states corresponds to a pulse on d.
Through the OR gate, this creates a pulse on the cset signal that causes c to
go high. Later in state 2, c will go low again. This is the desired behaviour.
The problem is that the internal signal x1 that corresponds to the other cube
in the expression for cset becomes excited (x1 = R) in state 6. If this AND
gate is slow, this may produce an unintended pulse on the cset signal after c
has been reset again.

If the cube ab (that covers states 4, 5, 7, and 6) is reduced to include
only states 4 and 5, corresponding to cset = d + abc, we avoid the problem.

6.4. Implementations using state-holding gates 109

c−reset

Cx1

c−set

10

11

01

10110100

00

c d

a b

0

0 x x x

x x

x x 1

0 1

R

R

F c−reset = b

c−set = d + a b

& +a
d

b

b
c

1

2

6

14

10

3

7

15

118 9

12 13

54

0 1

Figure 6.16: Implementation of c using a standard C-element and simple
gates, along with the Karnaugh map from which the set and reset functions
were derived.

The effect of this modification is that the OR gate is never exposed to more
than one input signal being high, and when this is the case, we do not have
problems with the principle of indication (c.f. the discussion of indication and
dual-rail circuits in chapter 2). Another way of expressing this is that a cover
cube must only be entered through states belonging to an excitation region.
This requirement is known as:

• the monotonic cover constraint: only one product term in a sum-
of-products implementation is allowed to be high at any given time.
Obviously, the requirement need only be satisfied in the states that are
reachable by the circuit, or alternatively

• the unique entry constraint: cover cubes may only be entered through
excitation region states.

6.4.5 Circuit topologies using state-holding elements

In addition to the set-reset flip-flop and the standard C-element based tem-
plates presented above, there are a number of alternative solutions for imple-
menting variables using a state-holding device.

A popular approach is the generalized C-element that is available to the
CMOS transistor-level designer. Here the state-holding mechanism and the
set and reset functions are implemented in one (atomic) compound structure
of n- and p-type transistors. Figure 6.17 shows a gate-level symbol for a
circuit where zset = ab and zreset = bc along with dynamic and static CMOS
implementations.

An alternative implementation that may be attractive to a designer using
a standard cell library that includes (complex) And-Or-Invert gates is shown
in figure 6.18. The circuit has the interesting property that it produces both

110 Chapter 6. Speed-independent control circuits

P

N
"Set"

"Reset"

P
"Reset"

N
"Set" "Reset"

"Set"

N

P

zz

z−set = a b

z−reset = b c

Dynamic (and pseudostatic) CMOS implementation:

Gate level symbol:

Static CMOS implementation:

+

−

a

b
c

zC

b

c b

c

a

b
b

a

a

b

c

z

Figure 6.17: A generalized C-element: gate-level symbol, and some CMOS
transistor implementations.

c

&

&

&

&

+

+

Set

Reset

z

z

a
b

b

Figure 6.18: An SR implementation based on two complex And-Or-Invert
gates.

6.5. Initialization 111

the desired signal z and its complement z, and during transitions, it never
produces (z, z) = (1, 1). Again, the example is a circuit where zset = ab and
zreset = bc.

6.5 Initialization

Initialization is an important aspect of practical circuit design, and unfortu-
nately it has not been addressed in the above. The synthesis process assumes
an initial state that corresponds to the initial marking of the STG, and the
resulting synthesized circuit is a correct speed-independent implementation of
the specification provided that the circuit starts in the same initial state. Since
the synthesized circuits generally use state-holding elements or circuitry with
feedback loops, it is necessary to actively force the circuit into the intended
initial state.

Consequently, the designer has to do a manual post-synthesis hack and
extend the circuit with an extra signal, which, when active, sets all state-
holding constructs into the desired state. Normally the circuits will not be
speed-independent with respect to this initialization signal; it is assumed to
be asserted for long enough to cause the desired actions before it is de-asserted.

For circuit implementations using state-holding elements such as set-reset
latches and standard C-elements, initialization is trivial provided that these
components have special clear/preset signals in addition to their normal inputs.
In all other cases, the designer has to add an initialization signal to the relevant
Boolean equations explicitly. If the synthesis process is targeting a given cell
library, the modified logic equations may need further logic decomposition,
and as we have seen, this may compromise speed-independence.

The fact that initialization is not included in the synthesis process is ob-
viously a drawback, but normally one would implement a library of control
circuits and use these as building blocks when designing circuits at the more
abstract “static data-flow structures” level as introduced in chapter 3.

Initializing all control circuits, as outlined above, is a simple and robust
approach. However, the initialization of asynchronous circuits based on hand-
shake components may also be achieved by an implicit approach that exploits
the function of the circuit to “propagate” initial signal values into the circuit.
This is called self-initialization, [153].

6.6 Summary of the synthesis process

The previous sections have covered the basic theory for synthesizing SI con-
trol circuits from STG specifications. The style of presentation has deliber-
ately been chosen to be an informal one, with emphasis on examples and the
intuition behind the theory and the synthesis procedure.

112 Chapter 6. Speed-independent control circuits

The theory has roots in work done by the following Universities and groups:
University of Illinois [104], MIT [21, 22], Stanford [9], IMEC [160, 171], St.
Petersburg Electrical Engineering Institute [161], and the multinational group
of researchers who have developed the Petrify tool [27] that we introduce in
the next section. This author has attended several discussions from which
it is clear that in some cases the concepts and theories have been developed
independently by several groups, and we refrain from attempting a precise
history of the evolution. The reader who is interested in digging deeper into
the subject is encouraged to consult the literature; in particular the book by
Myers [107].

In summary the synthesis process outlined in the previous sections involves
the following steps:

1. Specify the desired behavior of the circuit and its (dummy) environment
using an STG.

2. Check that the STG satisfies properties 1-5 on page 98: 1-bounded,
consistent state assignment, liveness, only input free choice, controlled
choice, and persistency. An STG satisfying these conditions is a valid
specification of an SI circuit.

3. Check that the specification satisfies property 6 on page 98: complete
state coding (CSC). If the specification does not satisfy CSC, it is nec-
essary to add one or more state variables or to change the specification
(which is often possible in 4-phase control circuits where the down-going
signal transitions can be shuffled around). Some tools (including Petrify)
can insert state variables automatically, whereas re-shuffling of signals –
which represents a modification of the specification – is a task for the
designer.

4. Select an implementation template and derive the Boolean equations
for the variables themselves, or for the set and reset functions when
state holding devices are used. Also decide if these equations can be
implemented in atomic gates (typically complex AOI-gates) or if they
are to be implemented by structures of simpler gates. These decisions
may be set by switches in the synthesis tools.

5. Derive the Boolean equations for the desired implementation template.

6. Manually modify the implementation such that the circuit can be forced
into the desired initial state by an explicit reset or initialization signal.

7. Enter the design into a CAD tool and perform simulation and layout of
the circuit (or the system in which the circuit is used as a component).

6.7. Petrify: A tool for synthesizing SI circuits from STGs 113

6.7 Petrify: A tool for synthesizing SI circuits from
STGs

Petrify is a public domain tool for manipulating Petri nets and for synthesiz-
ing SI control circuits from STG specifications. It is the result of significant
international research collaboration [27, 26]. It is available from
http://www.cs.upc.es/~jordicf/petrify/.

Petrify is a typical command-line UNIX program with many options and
switches. STGs are specified in ascii text-files, that can subsequently be dis-
played graphically.

As a circuit designer, one would probably prefer a push-button synthesis
tool that accepts a specification and produces a circuit. Petrify can be used
this way, but it is more than this. If you know how to play the game, it is an
interactive tool for specifying, checking, and manipulating Petri nets, STGs,
and state graphs. In the following section, we provide some examples of how
to design speed-independent control circuits.

Input to Petrify is an STG described in a simple textual format. Using the
program draw astg that is part of the Petrify distribution (and that is based
on the graph visualization package ‘dot’ developed at AT&T), it is possible
to produce a drawing of the STGs and state graphs. The graphs are “nice,”
but the topological organization may be very different from how the designer
thinks about the problem. Even the simple task of checking that an STG
entered in textual form is indeed the intended STG may be difficult.

To help ease this situation, a graphical STG entry and simulation tool
called VSTGL (Visual STG Lab) was developed at the Technical University
of Denmark. It is available from VSTGL http://vstgl.sourceforge.net/,
but by now, it is dated and may not install easily.

More recently the, researchesr at University of Newcastle has developed
a tool called WorkCraft that is an elaborate framework for working with a
range of graph-based models used for synthesizing and analyzing asynchronous
circuits as well as for analyzing models of concurrent systems in a broader and
more general context. WorkCraft has an easy to use graphical user interface,
and Petrify is embedded within WorkCraft along with a related synthesis tool
called MPSAT and many other useful plug-ins. WorkCraft is available from
https://workcraft.org

Petrify (and MPSAT) can solve CSC violations by inserting state variables,
and can be controlled to target the implementation templates introduced in
section 6.4:

• The -cg option will produce a complex-gate circuit (one where each non-
input signal is implemented in a single complex gate).

• The -gc option will produce a generalized C-element circuit. The out-
puts from Petrify are the Boolean equations for the set and reset func-
tions for each non-input signal.

114 Chapter 6. Speed-independent control circuits

• The -gcm option will produce a generalized C-element solution where
the set and reset functions satisfy the monotonic cover requirement. Con-
sequently, the solution can also be mapped onto a standard C-element
implementation where the set and reset functions are implemented using
simple AND and OR gates.

• The -tm option will cause Petrify to perform technology mapping onto
a gate library that can be specified by the user. Technology mapping
can not be combined with the -cg and -gc options.

In the following section, we will show some example circuits drawn from the
previous chapters of the book. The STGs and the solutions are produced using
VSTGL and Petrify. The reader is encouraged to redo some of the examples
using WorkCraft.

6.8 Design examples using Petrify

In the following we illustrate the use of Petrify by specifying and synthesizing:
(a) example 2 – the circuit with choice, (b) a control circuit for the 4-phase
bundled-data implementation of the latch from figure 3.3 on page 33, and (c) a
control circuit for the 4-phase bundled-data implementation of the MUX from
figure 3.3 on page 33. For all of the examples, we assume push channels only.

6.8.1 Example 2 revisited

As a first example, we synthesize the different versions of example 2 that we
have already designed manually. Figure 6.19 shows the STG as it is entered
into VSTGL. The corresponding textual input to Petrify (the ex2.g file) and
the STG as Petrify may visualize it, are shown in figure 6.20. Note in fig-
ure 6.20 that an index is added when a signal transition appears more than
once in order to facilitate the textual input.

Using complex gates

> petrify ex2.g -cg -eqn ex2-cg.eqn

The STG has CSC.

File generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

from <ex2.g> on 6-Mar-01 at 8:30 AM

....

The original TS had (before/after minimization) 9/9 states

Original STG: 2 places, 10 transitions, 13 arcs ...

Current STG: 4 places, 9 transitions, 18 arcs ...

It is a Petri net with 1 self-loop places

...

> more ex2-cg.eqn

6.8. Design examples using Petrify 115

P0

c+

b+

P1

c-

b-

a-

d-

c+

a+

b+

d+d+d+d+d+d+d+d+

Figure 6.19: The STG of example 2 as it is entered into VSTGL.

EQN file for model ex2

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 7.00

INORDER = a b c d;

OUTORDER = [c] [d];

[c] = b (c + a’) + d;

[d] = a b c’;

Using generalized C-elements:

> petrify ex2.g -gc -eqn ex2-gc.eqn

...

> more ex2-gc.eqn

EQN file for model ex2

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 12.00

INORDER = a b c d;

OUTORDER = [c] [d];

[0] = a’ b + d;

[1] = a b c’;

116 Chapter 6. Speed-independent control circuits

.model ex2

.inputs a b

.outputs c d

.graph

P0 a+ b+

c+ P1

b+ c+

P1 b-

c- P0

b- c-

a- P1

d- a-

c+/1 d-

a+ b+/1

b+/1 d+

d+ c+/1

.marking { P0 }

.end

Chapter 6: Speed-independent control circuits 105

.model ex2

.inputs a b

.outputs c d

.graph

P0 a+ b+

c+ P1

b+ c+

P1 b-

c- P0

b- c-

a- P1

d- a-

c+/1 d-

a+ b+/1

b+/1 d+

d+ c+/1

.marking { P0 }

.end

INPUTS: a,b
OUTPUTS: c,d

P0

a+ b+

b+/1 c+

c-

P1

b-

d+

c+/1 a-

d-

Figure 6.20. The textual description of the STG for example 2 and the drawing of the STG that
is produced by Petrify.

The original TS had (before/after minimization) 9/9 states

Original STG: 2 places, 10 transitions, 13 arcs ...

Current STG: 4 places, 9 transitions, 18 arcs ...

It is a Petri net with 1 self-loop places

...

> more ex2-cg.eqn

EQN file for model ex2

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 7.00

INORDER = a b c d;

OUTORDER = [c] [d];

[c] = b (c + a’) + d;

[d] = a b c’;

Using generalized C-elements:
> petrify ex2.g -gc -eqn ex2-gc.eqn

...
> more ex2-gc.eqn

EQN file for model ex2

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 12.00

Figure 6.20: The textual description of the STG for example 2 and the drawing
of the STG that is produced by Petrify.

[d] = d c’ + [1]; # mappable onto gC

[c] = c b + [0]; # mappable onto gC

The equations for the generalized C-elements should be interpreted ac-
cording to equation 6.1 on page 106

Using standard C-elements and set/reset functions that satisfy the mono-
tonic cover constraint:

> petrify ex2.g -gcm -eqn ex2-gcm.eqn

...

> more ex2-gcm.eqn

EQN file for model ex2

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 10.00

INORDER = a b c d;

OUTORDER = [c] [d];

[0] = a’ b c’ + d;

[d] = a b c’;

[c] = c b + [0]; # mappable onto gC

Again, the equations for the generalized C-element should be “interpreted”
according to equation 6.1 on page 106.

6.8. Design examples using Petrify 117

6.8.2 A control circuit for a 4-phase bundled-data latch

Figure 6.21 shows an asynchronous handshake latch with a dummy environ-
ment on its left and right side. The latch can be implemented using a normal
N-bit wide transparent latch, and the control circuit we are about to design.
A driver may be needed for the latch control signal Lt. In order to make the
latch controller robust and independent of the delay in this driver, we may
feed the buffered signal (Lt) back such that the controller knows when the
signal has been presented to the latch. Figure 6.21 also shows fragments of
the STG specification – the handshaking of the left and right-hand environ-
ments, and ideas about the behavior of the latch controller. Initially, Lt is
low, and the latch is transparent, and when new input data arrives, they flow
through the latch. In response to Rin+, and provided that the right-hand
environment is ready for another handshake (Aout = 0), the controller may
generate Rout+ right away. Furthermore, the data should be latched, Lt+,
and an acknowledge sent to the left-hand environment, Ain+. A symmetric
scenario is possible in response to Rin− when the latch is switched back into
the transparent mode. Combining these STG fragments results in the STG
shown in figure 6.22.
Running Petrify yields the following:

> petrify lctl.g -cg -eqn lctl-cg.eqn

The STG has CSC.

File generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

from <lctl.g> on 6-Mar-01 at 11:18 AM

...

The original TS had (before/after minimization) 16/16 states

Original STG: 0 places, 10 transitions, 14 arcs (0 pt + ...

Current STG: 0 places, 10 transitions, 12 arcs (0 pt + ...

It is a Marked Graph

.model lctl

.inputs Aout Rin

.outputs Lt Rout Ain

.graph

Rout+ Aout+ Lt+

Lt+ Ain+

Aout+ Rout-

Rin+ Rout+

Ain+ Rin-

Rin- Rout-

Ain- Rin+

Rout- Lt- Aout-

Aout- Rout+

Lt- Ain-

.marking { <Aout-,Rout+> <Ain-,Rin+> }

.end

118 Chapter 6. Speed-independent control circuits

EN
EN

EN = 1: Latch holds data

The control circuit

A handshake latch

EN = 0: Latch is transparent

Latch controller

Lt−Lt+

Rin+

Ain+

Rin−

Ain−

Rin+ Aout−

Rout+

Ain+

Rin− Aout+

Rout−

Ain−

Rout+

Aout+

Rout−

Aout−

Right−hand environmentLeft−hand environment

L
a
tc

h
Lt

Rin

Ain

Rout

Aout

Lt

Rin

Ain

Rout

Aout

Figure 6.21: A 4-phase bundled-data handshake latch and some STG frag-
ments that capture ideas about its behavior.

Rout+

Rin+

Lt+

Ain+

Rin-

Rout-

Lt-

Ain-

Aout-

Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+Aout+

Figure 6.22: The resulting STG for the latch controller (as input to VSTGL).

6.8. Design examples using Petrify 119

> more lctl-cg.eqn

EQN file for model lctl

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 7.00

INORDER = Aout Rin Lt Rout Ain;

OUTORDER = [Lt] [Rout] [Ain];

[Lt] = Rout;

[Rout] = Rin (Rout + Aout’) + Aout’ Rout;

[Ain] = Lt;

The equation for [Rout] may be rewritten as:

[Rout] = Rin Aout’ + Rout (Rin + Aout’)

which can be recognized to be a C-element with inputs Rin and Aout’.

6.8.3 A control circuit for a 4-phase bundled-data MUX

After the above two examples, where we have worked out already well-known
circuit implementations, let us now consider a more complex example that
cannot (easily) be done by hand. Figure 6.23 shows the handshake multiplexer
from figure 3.3 on page 33. It also shows how the handshake MUX can be
implemented by a “regular” combinational circuit multiplexer and a control
circuit. Below we design a speed-independent control circuit for a 4-phase
bundled-data MUX.

The MUX has three input channels, and we must assume they are con-
nected to three independent dummy environments. The dots remind us that

OutData

Ctl CtlAck

In0Ack
In0Req

In1Data

In0data

OutAck
OutReq

CtlReq

Handshake MUX

0

1

In0

In1
Out

Ctl

0

1

In1Req
In1Ack

Figure 6.23: The handshake MUX and the structure of a 4-phase bundled-
data implementation.

120 Chapter 6. Speed-independent control circuits

Ctl.t+

CtlAck+

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+ Ctl.f+

CtlAck+

OutReq+

P2P1 P0

Ctl.t- Ctl.f-

CtlAck- CtlAck-

Figure 6.24: The STG specification of the control circuit for a 4-phase
bundled-data MUX using a 4-phase dual-rail control channel. Combined with
the STG fragment for a bundled-data (control) channel, the resulting STG for
an all 4-phase dual-rail MUX is obtained (figure 6.25).

the channels are push channels. When specifying the behavior of the MUX
control circuit and its (dummy) environment, it is essential to keep this in
mind. A typical error when drawing STGs is to specify an environment with a
more limited behavior than the real environment. For each of the three input
channels, the STG has cycles involving (Req+;Ack+;Req−;Ack−; etc.), and
each of these cycles is initialized to contain a token.

As mentioned previously, it is sometimes easier to deal with control chan-
nels using dual-rail (or in general 1−of−N) data encodings since this implies
dealing with one-hot (decoded) control signals. As a first step towards the STG
for a MUX using entirely 4-phase bundled-data channels, figure 6.24 shows an
STG for a MUX where the control channel uses dual-rail signals (Ctl .t , Ctl .f
and CtlAck). This STG can then be combined with the STG-fragment for
a 4-phase bundled-data channel from figure 6.8 on page 101, resulting in the
STG in figure 6.25. The “intermediate” STG in figure 6.24 emphasizes the fact
that the MUX can be seen as a controlled join – the two mutually exclusive
and structurally identical halves are basically the STGs of a join.

Below is the result of running Petrify, this time with the -o option that
writes the resulting STG (possibly with state signals added) in a file rather
than to stdout.

6.8. Design examples using Petrify 121

Ctl-

Ctl+

CtlReq+

P5

P2

P3

P4

OutReq+

CtlAck+

CtlAck-

CtlReq-

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+

P1

P0

P6

CtlReq-

CtlAck+

CtlAck-

Figure 6.25: The final STG specification of the control circuit for the 4-phase
bundled-data MUX. All channels, including the control channel, are 4-phase
bundled-data.

> petrify MUX4p.g -o MUX4p-csc.g -gcm -eqn MUX4p-gcm.eqn

State coding conflicts for signal In1Ack

State coding conflicts for signal In0Ack

State coding conflicts for signal OutReq

The STG has no CSC.

Adding state signal: csc0

The STG has CSC.

> more MUX4p-gcm.eqn

EQN file for model MUX4p

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 29.00

INORDER = In0Req OutAck In1Req Ctl CtlReq In1Ack In0Ack OutReq

CtlAck csc0;

OUTORDER = [In1Ack] [In0Ack] [OutReq] [CtlAck] [csc0];

[In1Ack] = OutAck csc0’;

122 Chapter 6. Speed-independent control circuits

[In0Ack] = OutAck csc0;

[2] = CtlReq (In1Req csc0’ + In0Req Ctl’);

[3] = CtlReq’ (In1Req’ csc0’ + In0Req’ csc0);

[OutReq] = OutReq [3]’ + [2]; # mappable onto gC

[5] = OutAck’ csc0;

[CtlAck] = CtlAck [5]’ + OutAck; # mappable onto gC

[7] = OutAck’ CtlReq’;

[8] = CtlReq Ctl;

[csc0] = csc0 [8]’ + [7]; # mappable onto gC

As can be seen, the STG does not satisfy CSC (complete state coding)
as several markings correspond to the same state vector, so Petrify adds an
internal state-signal csc0. The intuition is that after CtlReq− the Boolean
signal Ctl is no longer valid, but the MUX control circuit has not yet finished
its job. If the circuit can’t see what to continue doing from its input signals, it
needs an internal state variable in which to keep this information. The signal
csc0 is an active-low signal: it is set low if Ctl = 0 when CtlReq+ and it is
set back to high when OutAck and CtlReq are both low. The fact that the
signal csc0 is high when all channels are idle (all handshake signals are low)
should be kept in mind when dealing with reset, c.f. section 6.5.

The exact details of how the state variable is added can be seen from the
STG that includes csc0, which is produced by Petrify before it synthesizes the
logic expressions for the circuit.

It is sometimes possible to avoid adding a state variable by re-shuffling
signal transitions. It is not always obvious what yields the best solution. In
principle, more concurrency should improve performance, but it also results in
a larger state-space for the circuit, and this often tends to result in larger and
slower circuits. A discussion of performance also involves the interaction with
the environment. There is plenty of room for exploring alternative solutions.

In figure 6.26 we have removed some concurrency from the MUX STG
by ordering the transitions on In0Ack/In1Ack and CtlAck (In0Ack+ ≺
CtlAck+, In1Ack+ ≺ CtlAck+ etc.). This STG satisfies CSC, and the re-
sulting circuit is marginally smaller:

> more MUX4p-gcm.eqn

EQN file for model MUX4pB

Generated by petrify 4.0 (compiled 22-Dec-98 at 6:58 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"

Estimated area = 27.00

INORDER = In0Req OutAck In1Req Ctl CtlReq In1Ack In0Ack OutReq CtlAck;

OUTORDER = [In1Ack] [In0Ack] [OutReq] [CtlAck];

[0] = Ctl CtlReq OutAck;

[1] = Ctl’ CtlReq OutAck;

[2] = CtlReq (Ctl’ In0Req + Ctl In1Req);

[3] = CtlReq’ (In0Ack’ In1Req’ + In0Req’ In0Ack);

6.9. Summary 123

Ctl-

Ctl+

CtlReq+

P5

P2

P3

P4

OutReq+

CtlAck+

CtlAck-

CtlReq-

OutReq+

OutAck+

In1Ack+

In1Req-

OutReq-

OutAck-

In1Ack-

OutAck+

In0Req+

In0Ack+

In0Req-

OutReq-

OutAck-

In0Ack-

In1Req+

P1

P0

P6

CtlReq-

CtlAck+

CtlAck-

Figure 6.26: The modified STG specification of the 4-phase bundled-data
MUX control circuit.

[OutReq] = OutReq [3]’ + [2]; # mappable onto gC

[CtlAck] = In1Ack + In0Ack;

[In1Ack] = In1Ack OutAck + [0]; # mappable onto gC

[In0Ack] = In0Ack OutAck + [1]; # mappable onto gC

6.9 Summary

This chapter has provided an introduction to the design of asynchronous se-
quential (control) circuits with the main focus on speed-independent circuits
and specifications using STGs. The material was presented from a practical
view in order to enable the reader to go ahead and design his or her own speed-
independent control circuits. This, rather than comprehensiveness, has been
our goal, and as mentioned in the introduction, we have largely ignored im-
portant alternative approaches including, burst-mode and fundamental-mode
circuits.

124 Chapter 6. Speed-independent control circuits

Chapter 7

Performance analysis using
timed Petri nets

We now continue the thread we left at the end of chapter 4 and address quan-
titative performance analysis of more general structures involving rings and
pipelines composed of non-identical pipeline stages.

7.1 Timed Petri nets

In chapter 6, we introduced Petri nets [128, 2, 106] as a means to specify the
behavior of a desired circuit, i.e., as a starting point for synthesis. Petri nets
are also useful for modeling and analysis of existing circuits. In this chapter,
we explore the use of timed Petri nets [129, 164] – Petri nets annotated with
delay information – for performance analysis of asynchronous circuits.

The delay information can be annotated to either transitions or places, and
such Petri nets are called timed-transition Petri nets (TTPN) and timed-place
Petri nets (TPPN), respectively.

Figure 7.1 shows timed Petri nets for the C-element and dummy environ-
ment example from figure 6.4 in section 6.2.1. The annotated propagation
delays of the inverters are 1 ns and 2 ns respectively, and the propagation de-
lay of the C-element is 4 ns. For the timed transition Petri net, the shaded
boxes indicate which components are modeled by which Petri net fragments.
As seen, each gate gives rise to two transitions and their input places; one for
the up-going and one for the down-going transition of the signal.

In figure 7.1 delays are fixed constant values. It is possible to use other
delay models including those discussed in section 6.1.3 as well as stochastic
delay models. In the following, we limit to constant delays.

In a TTPN, when a transition is enabled, it fires after the designated delay.
In a TPPN, when a token flows into a place, it experiences a delay before

125

126 Chapter 7. Performance analysis using timed Petri nets

Timing diagram

C−element and dummy environment

C

Inv Inv

Inv Inv

C−elem

C−elem

(b) (c)

(d)

(a)

b+

b−

c−

a+

a− 1 ns

c+

b+

b−

c−

a+

a−

c+

Timed place Petri net

1 ns

1 ns

Timed transition Petri net

0
time

c

1 ns

2 4 6 8 10 12 14 16 18 20

2 ns

4 ns

2 ns

4 ns

2 ns

4 ns 4 ns

2 ns

4 ns 4 ns

a
c

b

1 ns

4 ns2 ns

b

a

Figure 7.1: Timed Petri net models of the C-element with dummy environ-
ment example from section 6.2.1 and figure 6.4.

it can be consumed by a transition. A TPPN, like the one in figure 7.1(c),
allows modeling of (single output) gates with different propagation delays from
different inputs to the output. In a TTPN, on the other hand, the delay is
the same from all inputs to the output. It should be noted that a TTPN can
be expanded by adding a transition and a place before every transition in the
original TTPN in order to model different delays from different inputs. In the

7.2. Sub-classes of Petri nets 127

following, when considering TTPNs, we sometimes omit “trivial places” and
draw STGs instead of Petri nets, as we also did in chapter 6.

By inspecting the TTPN model in figure 7.1, it is relatively easy to realize
that the output of the C-element oscillates with a period of 12 ns. For just
marginally more complex timed Petri nets this may no longer be possible and
the execution of a timed Petri net may even be different for different initial
markings. Below we will review some classic results and elaborate on this. But
first we need to introduce a number of Petri-net sub-classes whose properties
affect their timing analysis.

7.2 Sub-classes of Petri nets

Petri nets come in many flavors and can be very general and very expressive.
In this section, we present several restricted classes of Petri nets [106] that are
simpler to analyze. The restrictions are defined by structural limitations. We
have already discussed one such restriction, one-bounded Petri nets, whose
practical implication is a close correspondence between the Petri net model
and the circuit itself.

A Petri net graph is a 3-tuple (S, T,W) where S is a finite set of places,
T is a finite set of transitions, and W is a finite set of directed arcs. Each arc
connects from a transition to a place, or from a place to a transition. This
means that S and T are disjoint and therefore, that no object can be both a
place and a transition.

In a state machine (SM), every transition has one incoming arc and one
outgoing arc, and all markings have exactly one token. As a consequence,
there can not be concurrency (the single token follow one path through the
Petri net), but there can be choice (i.e., nondeterminism). In the Petri net
literature “choice” is often called “confusion”.

In a marked graph (MG), [25] sometimes called an event graph (EG), every
place has one incoming arc, and one outgoing arc. This means that there can
not be conflict, but there can be concurrency.

In a free choice net (FC), every arc from a place to a transition is either
the only arc from that place or the only arc to that transition. This means
that there can be both concurrency and conflict, but not at the same time.

In chapter 6, we discussed free choice and controlled choice. Controlled
choice is more general than free choice in the sense that it involves concurrency
(multiple tokens) in combination with choice.

To illustrate the above definitions, we mention that the Petri net in Fig-
ure 7.1 is a marked graph. All markings have two tokens, and transitions on
signals a and b are concurrent.

An example of a state machine is shown in Figure 7.2. The observant reader
may recognize that the figure shows a full Petri net corresponding to the signal
transition graph in Figure 6.11 in subsection 6.3.2 (Example 2). Any marking

128 Chapter 7. Performance analysis using timed Petri nets

1 ns

d− c+

1 ns

1 nsc−

c+

b+

a− d+

b+

a+

b− 1 ns
1 ns

1 ns

1 ns1 ns

1 ns

1 ns

Figure 7.2: Timed transition Petri net corresponding to the STG in Fig-
ure 6.11 in subsection 6.3.2 (Example 2). The Petri net is a state machine.

b−a+ b+ a−

Figure 7.3: A Petri net that is both a marked graph and a state machine.

has exactly one token and depending on the input free choice made after place
P0, the token cycles through the shorter cycle CS = C(b+, c+, b−, d−) or the
longer cycle CL = (a+, b+, d+, c+, d−, a−, b−). The Petri net is a TTPN
where a delay of 1 ns is associated with each transition.

A Petri net can be both a state machine and a marked graph if there is
neither choice nor concurrency. Figure 7.3 shows an example.

The relation between the different classes of Petri nets is illustrated in
Figure 7.4. In this book, we limit to the following classes: state machines,
marked graphs, and Petri nets with free choice and controlled choice, hence
the category “Other forms of choice.” The interested reader is referred to [106]
for an exhaustive classification.

7.3 Timing analysis of timed Petri nets

For a clocked circuit, performance is often characterized by the maximum pos-
sible clock frequency, and this frequency corresponds to the “critical path” of
the circuit – the maximum propagation delay along any combinational circuit

7.3. Timing analysis of timed Petri nets 129

All Petri nets

machinegraph
Marked

Free choice

Extended free choice

Other forms of choice

State

Figure 7.4: Graphical illustration of Petri net classes and their relationship.

path from some flip-flop and into some flip-flop. In an asynchronous circuit,
that has no clock, an equivalent measure is the cycle time for a handshake,
or expressed more precisely, the maximum time separation between successive
(rising) transitions of one of the handshake signals, for example request.

For the marked graph in Figure 7.1, it is relatively easy to realize that the
time separation between successive c+ transitions is 12 ns corresponding to a
token cycling the longest path (b+, c+, b−, c−).

For the state machine in Figure 7.2, the situation is more complicated. De-
pending on the outcome of the free choice, the token cycle through the shorter
sequence (b+, c+, b−, d−) or the longer sequence (a+, b+, d+, c+, d−, a−, b−)
producing an execution trace that can be any interleaving of long and short
sequence. This means that there are four answers to a question like “what
is the time separation between successive b+ transitions.” The four answers
correspond to the following combination of long (L) and short (S) sequences:
9 ns for L;S, 8 ns for L;L, 5 ns for S;L, and 4 ns for S;S. If instead, we ask for the
maximum or the minimum time separation between successive b+ transitions,
we can get unique answers.

The general message to take from this is that it is not possible to perform
a mechanical analysis of a timed Petri net with choice (i.e., a state machine
or a free choice net). In many cases, it is possible to work with separate Petri
nets, one for each possible choice, and then analyze these separately.

Most of the circuits we are interested in can be modeled using Petri nets
that are one-bounded, strongly connected, marked graphs. “One-bounded”
means that places never contain more than one token and “strongly connected”
means that for any two places, there exists a path that connects them. In such
restricted Petri nets, the number of tokens in a cycle remains the same after
any firing sequence, and all the transitions have the same cycle time [129].

130 Chapter 7. Performance analysis using timed Petri nets

The minimum average cycle time is given by:

TCycle = max

{
Tk
Nk

; k = 1, 2, . . . q

}
(7.1)

where q is the number of simple cycles in the graph (simple meaning that
nodes are only visited once). For a given cycle, Tk is the sum of the delays
associated with the transitions (or places) in the cycle, and Nq is the number
of tokens in the cycle.

For the marked graph in Figure 7.1, there are four cycles, all with a single
token:

C1 = C(a+; c+; a−, c−) with a total delay of 10 ns
C2 = C(a+; c+; b−, c−) with a total delay of 11 ns
C3 = C(b+; c+; a−, c−) with a total delay of 11 ns
C4 = C(b+; c+; b−, c−) with a total delay of 12 ns

Thus, the average cycle time is Tcycle = 12 ns.

The above is quite intuitive, but in the general case, things are more com-
plex than our simple example suggests. The time separation between succes-
sive rising or falling transitions may exhibit some variation. When the circuit
starts operating after being reset, an initial aperiodic timing behavior may
be observed before the timing behavior settles into a periodic mode. This
periodic behavior may show a constant time separation between successive
transitions on the same signal, or it may show a repeating pattern of different
time separations. The cycle time computed using equation 7.1 is the average
time separation in a steady-state – or starting from time t = 0, the average as
the number of executed cycles approaches infinity.

A few examples derived from [96] illustrates this. The examples are timed
place Petri nets (TPPN). In a TPPN tokens wait for the specified amount of
time before eventually engaging in the firing of the transition that they enable.
It is assumed that the tokens have initially been waiting longer than the spec-
ified delay time and therefore, that the enabled transitions fire immediately at
time t = 0.

Figure 7.5 shows a TPPN that has a single critical cycle, C(c, d). Regard-
less of the initial marking, the firing sequence settles into the same repeating
sequence of transitions, and in the steady-state, the time separation between
subsequent occurrences of the same transition is constant.

Figure 7.6 shows the same TPPN with the same two initial markings, but
with different delays such that there are now two critical cycles C(a, b) and
C(c, d) both with a cycle time of 5. For both initial markings, the timing
behavior settles into a mode where the time separation between successive
occurrences of the same transition is constant, but the repeating steady-state
sequences of transitions are different.

7.3. Timing analysis of timed Petri nets 131

a

11

(a)

2 1 3 2 1 3

211

(b)

a b c d dcb

2

(a):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event c b a d c b a d c b a d c b

(b):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event b a b a c b a d c b a d c

c d

Figure 7.5: A Timed place Petri net with different initial markings. With
one dominating cycle, the TPPN settles into the same repeating sequence
regardless of the initial marking. In the steady-state, the time separation
between successive occurrences of a given transition is constant.

3

2 1 3

21

(b)

a b c d dcba

2 1 3

21

(a)

3

(a):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event c b d a c b d a c b d a c b

(b):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event b c a d b c a d b c a d b c

Figure 7.6: A Timed place Petri net with different initial markings. It has two
dominating cycles, and the two initial markings in (a) and (b) result in different
steady-state sequences. The time separation between successive occurrences
of a given transition is constant and identical in both cases.

132 Chapter 7. Performance analysis using timed Petri nets

(b)

e

a

d

b

c

1

2

3

33

11

1 1

e

a

d

b

c

1

2

3

33

11

1 1

(a)

(a):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event b a e b a e b a

d c d c d c

(b):
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event b d a c d b c a b c d a

e e e

Figure 7.7: A Timed place Petri net with different initial markings; (a) and
(b). The different markings lead to different timing behaviors.

Finally, figure 7.7 shows another TPPN with different initial markings and
with multiple critical cycles. The two different markings illustrated in Fig-
ure 7.7(a) and (b) result in the execution traces shown below the Petri nets.
For the TPPN in figure 7.7(a), the steady-state time separation between suc-
cessive transitions of some signal is constant, 6 time-units. For the TPPN in
figure 7.7(b), the steady-state time separation between successive transitions
of some signal alternates between 4 and 8 time-units.

The average is still 6 time-units as would be computed using equation 7.1,
but if a circuit with such oscillating behavior is used in a context where the
worst-case is important, it is the 8 time-units that matter. This could be
the case if the asynchronous circuit is used in combination with a clocked
circuit. Similar issues need to be considered for a possible initial non-steady-
state behavior. In such scenarios, it is the worst-case time separation between
events that matters, but let us first explore how far we can go with the simpler
average cycle time and equation 7.1.

7.4. Example 3 revisited: Analysis using a TTPN 133

7.4 Example 3 revisited: Analysis using a TTPN

Let us now revisit the last example circuit we considered in section 4.3.3. This
circuit, called “example 3,” is a ring composed of 3 identical pipeline stages.
The full circuit is shown again in figure 7.8(a). The relationship between circuit
fragments and fragments of a corresponding TTPN is shown in figure 7.8(b).
Each gate output signal in the circuit causes two transitions in the Petri net:
one for the up-going and one for the down-going transition of the signal. The
delay elements are considered as single input single output gates (like the
inverters). The full TTPN for the control circuit is shown in figure 7.8(c). To
ease reading this figure, signals are named after the gates that drive the signals
(“d” for delay element, “C” for C-element, and “i” for inverter).

For the TTPN model, we need an initial marking. This should correspond
to a snapshot of a possible state that can be observed during the normal
operation of the circuit. A natural choice would be the reset state. The
cyclic behavior of the circuit means that the circuit “visits” this state during
operation as well. Figure 7.8(d) shows an abstract data-flow representation of
the 3-stage ring. An empty token has just been copied into the third stage.
This corresponds to a situation where the three C-elements in the control
circuit (C1, C2, C3) are (1, 0, 0), i.e., C3 has just performed a falling transition.
This corresponds to the two tokens in the bottom right corner of Figure 7.8(c).
The next C-element transition will be C2 that will make a rising transition.
This transition will be enabled by the token on arc (c1+, d2+) after it has fired
transition d2+, and by the token on arc (c3−, i2+) after it has fired transition
i2+.

The cycle time can be computed by using equation 7.1. The graph has
many (simple) cycles all with exactly one token:

One cycle, C(d1+, c1+, d2+, c2+, d3+, c3+), corresponds to the forward
propagation of rising transitions and it has cycle time P = 15 ns. A similar
cycle with the same cycle time is C(d1−, c1−, d2−, c2−, d3−, c3−) that cor-
responds to the forward propagation of falling transitions. The longest cycle
turns out to be: C(i2+, c2+, i1−, c1−, i3+, c3+, i2−, c2−, i1+, c1+, i3−, c3−).
It corresponds to the single bubble in the data-flow representation that sup-
ports the three forward propagations of a valid token and the three forward
propagations of an empty token that is needed to completely cycle the pat-
tern of tokens and bubbles as discussed in section 3.2. The cycle time of
this longest cycle is P = 18 ns. The TTPN has six more cycles, all with
a similar structure and all with the same cycle time, P = 16 ns. Three we
can call “3-up-1-down” (referring to the C-element transitions), for exam-
ple C(i1+, c1+, d2+, c2+, d3+, c3+, i2−, c2−). By horisontal mirroring we get
three similar cycles that we can call “3-down-1-up”.

It is comforting to see that the maximum cycle time C = 18 ns corresponds
to what we calculated in table 4.1 in section 4.3.3.

134 Chapter 7. Performance analysis using timed Petri nets

CL

CL CL

td = 3 td = 3

ti = 1
ti = 1

ti = 1

tc = 2 tc = 2tc = 2

R1 R2 R3

Stage 1 Stage 2 Stage 3

Channel 3 Channel 1 Channel 2 Channel 3

Ack 3

Data 3

Ack 1

Req 1

Data 1

Req 2

Ack 1
Ack 3

Control

Data 2 Data 3

Req 3Req 3

L L L

Data−path

ENEN EN

C C C

B

A

B

A

0−>1 transition of Req[i]: 1−>0 transition of Req[i]:

Req[i]+

Req[i−1] −
Req[i] −

Ack[i] −Ack[i+1]+

Ack[i]+Ack[i+1] −

VEV

Next action

VE E

Last action

3 ns 3 ns 3 ns2 ns

1 ns

2 ns

1 ns

2 ns

1 ns

d1+

3 ns

c2+c1+ c3+

3 ns 3 ns2 ns

1 ns

2 ns

i2+ 1 ns

2 ns

1 nsi1+ i3+

c1−d1− c2− c3−

i3−i2−i1−

d2+ d3+

d3−d2−

C

(b)

Req[i−1]+

C

(c)

(d)

Figure 7.8: (a) A simple 3-stage ring composed of identical pipeline stages
(example 3 from section 4.3.3). (b) Relationship between fragments in the
schematic and fragments of the corresponding TTPN. (c) The full TTPN
model of the control circuit of the 3 stage ring. (d) The initial marking of
the TTPN corresponds to the state after “last action” and before “next ac-
tion.”

7.5. Example 3 revisited: Analysis using a simplified TPPN 135

d1+

c2−

A

3 ns

5 ns

A

3 ns 3 ns

c3− c1−

3 ns

3 ns

3 ns

5 ns 5 ns

5 ns

2 ns

c1+
5 ns

3 ns

1 ns

c1+ c2+ c3+
5 ns

3 ns

Req[i]+

Ack[i]+Ack[i+1] − i1+

2 ns

c1+

5 ns

C

(c)

(a)

i

c
d

Req[i−1]+

(d)

(b)

Figure 7.9: Simplifying the TPPN model of exmple 3. (a) Circuit fragment
for a rising transition. (b) The corresponding full TPPN fragment. (c) Ab-
stracting away internal signals i and d. The delays of their input places are
added to the delays of the input places of signal c. As a final simplification,
trivial-places (places with one input arc and one output arc) are omitted as
in an STG. (d) The final simplified TPPN for example 3 with the same initial
marking as used in figure 7.8.

7.5 Example 3 revisited: Analysis using a simplified
TPPN

The Timed transition Petri net in figure 7.8 is quite heavy. If we use a timed
place Petri net instead and apply some trivial simplifications, we get a sim-
pler Petri net that is easier to work with and analyze. This is illustrated in
figure 7.9. The simplification consists of substituting a straight sequence of
transitions and places by a single transition and a single place. To this place,
we associate a delay that corresponds to the sum of the delays in all the places
in the straight sequence of transitions and places. By “straight sequence” we
mean that the transitions and places all have a single input and a single output
edge. In this way, we hide the signals corresponding to the omitted transitions.

The resulting simplified TPPN has the same (average) cycle time (com-

136 Chapter 7. Performance analysis using timed Petri nets

puted using equation 7.1), but it may not exhibit all the possible timing be-
haviors as of the full TPPN. To realize this, consider the TPPN in figure 7.6.
If we hide signal e we will have a place with a delay of 3 in the a-to-b path,
similar to the other clockwise connections, d-to-c, c-to-d, and b-to-a. And in
the initial marking, there will be a token in the place on the (new direct) a-to-d
path. This gives us the same timing behavior as in figure 7.6(a). The oscillat-
ing behavior of figure 7.6(b) cannot be produced by the simplified TPPN, so
a designer should be careful when working with circuits where the worst-case
cycle-time matters.

7.6 Example 4: A four stage ring

As discussed earlier, a 4-stage ring with one valid token, one empty token, and
two bubbles may have a better performance. Figure 7.10(a) shows the abstract
static data-flow view, and Figure 7.10(b) shows the corresponding TTPN.

There are now two “bubble cycles” marked A and B, and they each have
one token. This supports rising and falling C-element transitions to happen
concurrently. The dominating cycle is now the forward propagation of the
rising (or the falling) transitions, P = 20 ns. As we already knew from table 4.1
on page 59, the extra stage did not help in this particular case.

7.7 Example 5: A pipeline with asymmetric delay
elements

In all the previous examples, we have analyzed rings. Let us now consider a
pipeline. Here the typical performance-related question is: At what rate will
data-tokens flow through the pipeline? Or alternatively: What is the time
separation between successive data-tokens flowing through the pipeline? To
analyze this, we need to analyze a “sufficiently long” pipeline. We will discuss
the meaning of “sufficiently long” shortly.

Intuitively we need to study and analyze a pipeline stage sandwiched be-
tween identical pipeline stages to have a realistic model of the environment
of the pipeline stage we consider. Figure 7.11(a) shows a pipeline consisting
of three identical stages connected to an ideal source and an ideal sink. We
assume a four-phase bundled data implementation using a Muller pipeline as
the control circuit, and we assume that we use asymmetric matched delays
as illustrated in figure 7.11(b). By using asymmetric delay elements we hope
to improve performance by minimizing the forward and reverse latencies for
empty-tokens. The full TTPN model is shown in figure 7.11(c).

In order to obtain a strongly connected TTPN model, we add a dummy
producer and a dummy consumer. A dummy producer in the input handshake
channel can be modeled by an inverter (i.e., by connecting Ack- to Req+ and by

7.7. Example 5: A pipeline with asymmetric delay elements 137

B

i4+

i4−

c4−

c1−

B

A

c4−

B

c3−

A

B

d4−

c4+d4+

1 ns

2 ns3 ns

1 ns

2 ns

5 ns

5 ns

3 ns

5 ns

3 ns3 ns3 ns3 ns

3 ns3 ns3 ns

5 ns

5 ns5 ns
c2−

V EV EVV E E

Before Next actions

5 ns5 ns

A

c1+ c4+c3+

3 ns3 ns 3 ns2 ns

1 ns

2 ns

1 ns

d1+

3 ns

c2+c1+

3 ns2 ns

1 ns

2 ns

i2+ 1 nsi1+

c1−d1− c2−

i2−i1−

d2+

d2−

A

c3+

3 ns 2 ns

1 nsi3+

d3+

3 ns 2 ns

1 ns

c3−

i3−

d3−

c2+

(a)

(c)

(b)

Figure 7.10: (a) A simple 4-stage ring composed of identical pipeline stages
similar to those in figure 7.8. (a) Data flow structure view to help identify the
initial marking of the TTPN. (b) The resulting full TTPN. (c) A simplified
TPPN.

connecting Ack+ to Req-), and a dummy consumer on the output channel can
be modeled by a buffer (i.e., by connecting Req+ to Ack+ and by connecting
Req- to Ack-). A possible initial state is that the pipeline is completely empty.
An incoming Valid-token will then fall through the pipeline. In the TTPN in
figure 7.11(c), this corresponds to the C-elements making rising transitions. To
enable this, all c+ transitions have a token on the input place corresponding
to the acknowledge signal from the successor pipeline state.

Two cycles are marked in figure 7.11(c):

138 Chapter 7. Performance analysis using timed Petri nets

16 ns

EFV

Source SinkStage 2 Stage 3Stage 1

ti = 1

L

td(1−>0) = 1

2 ns

1 ns

2 ns

1 ns

2 ns

1 ns

c2+ c3+

2 ns

1 ns

2 ns

i2+ 1 ns

2 ns

1 nsi3+

c1−d1− c2− c3−

i3−i2−i1−

d2+ d3+

d3−d2−

1 ns 1 ns 1 ns

5 ns 5 ns 5 ns

Source Sink

d1+

i1+s+

s−

d2

i2

c2

c1+

Ack

Req

Ack

Req

Source Sink

CLData Data

s
td(0−>1) = 5

EN

 tc = 2

Stage 2

20 ns

EFEF E

(c)

C
(b)

(a)

Figure 7.11: (a) A pipeline composed of identical stages. The pipeline is ini-
tially empty, and the source is about to inject a valid token. (b) The pipeline
stages are identical and use a 4-phase bundled data implementation with asym-
metric matched delays. The source is modeled using an inverter, and the sink
is modeled by simply setting Ack <= Req (c) A detailed TTPN model of the
pipeline and its environment. The marking corresponds to the initial state
described above; all C’elements are low, and the source has just raised Req.

7.8. Worst-case timing analysis 139

C1 = C(d2+, c2+, i1−, c1−, d2−, c2−, i1+, c1+) with TCycle = 16 ns

C2 = C(d2+, c2+, d3+, c3+, i2−, c2−, i1+, c1+) with TCycle = 20 ns

Cycle C2 is the critical cycle, and hence the time separation between succes-
sive data-tokens flowing through the pipeline is 20 ns. Using the terminology
from section 4.3.1, we say that the pipeline has a period P = 20 ns.

Recalling the definition of per-stage forward and reverse latencies from
section 4.3.1, the pipeline stage we consider here has the following parameters:

Lf.V = td(0→1) + tc = 5 ns + 2 ns = 7 ns

Lf.E = td(1→0) + tc = 1 ns + 2 ns = 3 ns

Lr↑ = Lr→ = ti + tc = 3 ns

Using these parameters we see that cycles C1 and C2 corresponds to the
following periods respectively:

P1 = td2(0→1) + tc2︸ ︷︷ ︸
Lf.V

+ ti1 + tc1︸ ︷︷ ︸
Lr↓

+ td2(1→0) + tc2︸ ︷︷ ︸
Lf.E

+ ti1 + tc1︸ ︷︷ ︸
Lr↑

= Lf.V + Lf.E + 2Lr = 16 ns

P2 = td2(0→1) + tc2︸ ︷︷ ︸
Lf.V

+ td3(0→1) + tc3︸ ︷︷ ︸
Lf.V

+ ti2 + tc2︸ ︷︷ ︸
Lr↓

+ ti1 + tc1︸ ︷︷ ︸
Lr↑

= 2Lr + 2Lf.V = 20 ns

Note that period P1 is the minimum possible period given by equation 4.1
on page 56, and that period P2, the actual period of the pipeline, is the
period given in equation 4.3 on page 57. This example illustrates an important
lesson: that for some (simple) handshake latch implementations (here using
a Muller pipeline stage), it may not be possible to reduce the cycle time by
using function blocks with asymmetric delays (Lf.E < Lf.V).

In later chapters, we will consider other 4-phase latch controllers that can
take advantage of a lower Lf.E , and we will consider two-phase designs where
there is no Lf.E and no Lr↑ and where therefore, this issue does not exist.

7.8 Worst-case timing analysis

So far, we have discussed timing analysis based on equation 7.1 that gives
us the minimum average cycle time of a timed maked graph. This is very
useful to make first-order design decisions and optimizations. In figure 7.6, we
showed an example where the cycle time steadily alternates between 4 and 8
time-units with an average of 6 time-units as calculated using equation 7.1.

140 Chapter 7. Performance analysis using timed Petri nets

We also mentioned that similar (perhaps aperiodic) fluctuations may occur
after reset before a steady-state behavior is reached.

In some cases, for example when the asynchronous circuit in question is
used in combination with a synchronous circuit, it is necessary to design for
the worst-case cycle time, or in the more general case, the worst-case time
separation between some important events. In our context, events are signal
transitions.

This is a harder problem to solve than the average case problem. Early
work in this area was performed by Hulgaard et al. [67, 65]. Later works
with a focus on asynchronous circuits are [96, 62]. A circuit designer may be
more interested in analyzing a given circuit than in the underlying theories and
algorithms and should look for software packages that implement the proposed
analysis algorithms. The author has experience with a tool [95] based on the
methods presented in [96] and with a tool [74] based on Hulgaard’s algorithm.
Work using the latter is presented in [73, 72, 75].

Chapter 8

Metastability, arbitration, and
synchronization.

Digital circuits operate on 0s and 1s, and this binary abstraction rests on the
assumption that the setup-time and hold-time of all state holding elements
(e.g., flip-flops and latches) are satisfied. This cannot always be guaranteed
and may cause non-digital values persisting for some unbounded amount of
time. This phenomenon is called metastability, it is unavoidable, and it must
be properly dealt with.

In this chapter, we address three issues: (i) What is metastability and
what causes it. (ii) How to quantify the effects of metastability. (iii) How
to properly deal with metastability in order to design reliable circuits that
perform synchronization and arbitration.

8.1 What is metastability?

In a clocked circuit, metastability can occur if an input signal to a flip-flop
makes a transition at a point in time that violates the setup and hold times
required by the flip-flop. In this case, where the flip-flop is sampling an input
signal in transition, the flip-flop literally has to decide if the input signal made
its transition before or after the rising edge of the clock, i.e., decide who
was first. In an asynchronous circuit, a similar situation may occur if two
input signals to a set-reset bistable (as used in the MUTEX in section 5.10)
are asserted at almost the same time. Like the flip-flop we just described,
the mutex has to decide who was first. The two situations are illustrated in
figure 8.1, and as indicated, it is unclear what value the output will take.

The crux of the matter is that there is no upper limit on how long time it
may take to make the required discrete (e.g., binary) decision, and during this
period, where the circuit is undecided, it may produce a non-digital output,

141

142 Chapter 8. Metastability, arbitration, and synchronization.

&

&

Set

Reset

Clk

D
Q

Q

Q

Q

??

??Q

Clk

Q

D

(a)

??

??Q

Q

Reset

Set

(b)

Figure 8.1: (a) A D flip-flop exposed to a data signal that transition simul-
taneously with the clock. (b) an asynchronous set-reset bistable where at one
point set and reset are both asserted at the same time.

which, if not properly dealt with, may cause a system failure.

Figure 8.2(a) shows a simple bistable element composed of two cross-
coupled inverters and figure 8.2(b) shows a plot combining the DC-transfer
characteristic of the two inverters. The latter shows the two stable states (0
and 1) as well as a metastable state where the two DC-transfer curves cross.

A mechanical equivalent of a bistable is shown in figure 8.2(c). Here a
ball can lie stable in one of two lows, representing states ’0’ and ’1’. To flip
the state, the ball has to be rolled over a top. If we start pushing the ball
towards the opposite state, but stop pushing when the ball is somewhere near
the top, the ball may hesitate for some time before falling to one or the other
side. In rare cases, the ball is left almost perfectly balanced at the top, and
it may hesitate for a very long time, before randomly falling into one of the
two stable states. It is even possible that the ball is perfectly balanced at the
top and stays there forever. The ball hesitating at the top for some time is a
metastable state.

Before discussing circuits in more detail, let us look at some additional
examples from every-day life in order to consolidate our understanding of the
nature of the problem.

Imagine that you are presented to pictures taken at the finish line of differ-
ent 100-meter runs (for simplicity involving only two contestants), and imagine
that your task is to identify the winner based on the picture shown to you.
Imagine further that the time you take to decide is measured. In cases where
the decision is obvious, you are fast. In cases where it is less obvious who won,
you dwell longer, analyzing the picture more carefully, and in some few cases
where it is almost impossible to make a decision, you dwell very long, perhaps

8.1. What is metastability? 143

VQ

VQ

QQ Stable ’1’

Stable ’0’

Metastable

Metastable

Stable ’1’Stable ’0’

(a)

(b)

(c)

Figure 8.2: (a) A bistable built from a pair of cross-coupled inverters. (b)
A plot combining the DC-transfer characteristics of the two inverters. (c) A
mechanical equivalent of a bistable.

even indefinitely. These extended periods of time, where you “have not yet
decided,” is metastability.

Another situation, that we have all experienced, is when two people are
walking towards each other in a sidewalk or corridor. In order to pass each
other, one or both has to yield by making a step to the side. Sometimes
both persons step to the same side, leaving the situation unresolved. This
may continue more times before the two persons eventually manage to pass
each other. This is an example of an oscillating metastable behaviour, and as
before, it results in an additional delay before a well-defined digital output is
reached.

Early examples of metastability in electronic circuits appeared in the first
digital computers where signals from pushbuttons were input to clocked cir-
cuitry. If such an asynchronous input signal is switching close to the rising
edge of the clock, and if the signal is forked to several subsystems, then there is
a possibility that one subsystem may see the signal as being 0 and that another
subsystem may see it as being 1. Such inconsistent interpretations of a signal
may result in faulty behavior. The situation can be countered by connecting
each asynchronous input signal to a single flip-flop whose output is then used
inside the circuit. Early computers like ENIAC are reported to have used
such “input-buffering” flip-flops [85]. During the 1940’s-1970’s many digital
designers believed that the use of such buffer flip-flops was enough, reasoning
that if a buffer-flip-flop just missed seeing an input signal being asserted at a
given clock tick, then it would see it at the next clock tick.

The fact that a flip-flop whose setup time or hold time is violated may

144 Chapter 8. Metastability, arbitration, and synchronization.

take an unbounded time to settle into a stable digital state was identified and
addressed as early as in 1952 [85]. This paper contributed an analysis showing
that the probability of a flip-flop not having settled to a stable state reduces
exponentially with the time allocated to wait for this. As mentioned, this fact
and its implications were not widely understood, and it was not until 1973
that measurements confirmed the existence of metastability, i.e., unbounded
settling time [18].

Interestingly, versions of this paper were rejected with reviewer comments
like [100]: “Of course. So what” and “this can’t be true because flip-flops only
deal with zeros and ones” and “if this problem really existed, it would be so
important that everybody knowledgeable in the field would have to know about
it . . . I’m an expert and I don’t know about it, so therefore it must not exist.”

A flip-flop is a bistable circuit, and often both the output value Q and
its complement Q are available. The measurements presented in [18] show
that metastability can take two forms: (1) “halfway metastability” where both
outputs (Q and Q) start switching but then hang halfway between 0 and 1
for some extended time. (2) “oscillating metastability” where the two out-
puts oscillate in phase: (Q,Q) = (0, 0); (1, 1); (0, 0); . . ., before some imbalance
eventually causes the circuit to settle into a stable state; (0,1) or (1,0). The
two situations are shown in figure 8.3.

The mechanical bistable illustrated in figure 8.2(c) and the task of declaring
winners in the 100-meter run are examples of “halfway metastability.” Con-
sidering the cross-coupled inverters in figure 8.2(a), halfway metastability tend
to occur when the propagation delays of the inverters are dominated by the
rise and fall times of the inverters, as is usually the case in CMOS technology.
Oscillating metastability tend to occur when the propagation delays of the
inverters are larger than the rise and fall times of the inverters. The example
with two people meeting in a narrow corridor is an illustration of oscillating
metastability.

Using a transistor-level simulator like SPICE, it is possible to initialize Q
and Q with voltage levels very close to the metastable point in figure 8.2(b)
and perform a transient simulation showing how the circuit works its way out
of metastability. In a similar way, it is possible to initialize both Q and Q close
to logic 1 (or logic 0) and observe oscillating metastability. In both cases, a
small imbalance is needed in order for the simulation to reach a stable state,
and the closer to the balancing point the circuit is initialized, the longer it
takes for the circuit to reach a stable state.

8.2 Quantifying metastability

Now that we have developed an intuitive understanding of metastability, the
next step is to try and quantify it, i.e., to quantify the probability that metasta-
bility occurs and persists beyond some given time-interval.

8.2. Quantifying metastability 145

Clk

D
Q

Q

Clk

Q

D

Q

(a)

Clk

Q

D

Q

Clk

Q

D

Q

(b)

(d)

"Oscillating" metastability

tcQ,prop

(c)

"Halfway" metastability

Figure 8.3: (a) A D-flip-flop with outputs Q and Q. (b) A normal situation
where the input signal D satisfies the required setup and hold times. The
propagation delay from Clk to Q is tcQ,prop. If the input signal D makes a
transition almost simultaneously with the rising edge of the clock, the flip-
flop becomes metastable for some time. This can be in the form of “halfway
metastability” as shown in (c) or “oscillating metastability” as shown in (d).

Figure 8.4 shows the response time of a flip-flop as a function of the time
separation between the arrival time of the input data and the rising edge of

tsu th

tcQ,prop

0
tdata

t res

Figure 8.4: (a) Response time (tres) of a flip-flop as a function of the arrival
time of data relative to the clock. If the input satisfies the setup and hold times
of the flip-flop, the response time is simply the propagation delay (tcQ,prop).

146 Chapter 8. Metastability, arbitration, and synchronization.

the clock. When the input changes more than the setup time, tsu, before the
clock, the response time is the propagation delay of the flip-flop, tpd, and when
the input changes after the hold time, th the flip-flop remains stable. If the
input transitions within the setup-time to hold-time interval, the response can
increase steeply, and as illustrated in figure 8.4, the input may arrive at a time
where the response time is unbounded. These situations are metastability.

A similar situation exists for a MUTEX (section 5.10). Here the arrival
time is the arrival time of one of the request signals relative to the other. The
analysis below is for a flip-flop, but it applies for a MUTEX as well if signal
Clk is substituted by signal R1, and signal Data is substituted by signal R2.

If P (mett) denotes the probability of a flip-flop being metastable for a
period of time of t or longer (within an observation interval of one second),
and if this situation is considered a failure, then we may calculate the mean
time between failure as:

MTBF =
1

P (mett)
(8.1)

The probability P (mett) may be calculated as:

P (mett) = P (mett|mett=0) · P (mett=0) (8.2)

where:

• P (mett|mett=0) is the probability that the flip-flop is still metastable at
time t given that it was metastable at time t = 0 (i.e., at the beginning
of a clock period, right after the rising edge of the clock).

• P (mett=0) is the probability that the flip-flop enters metastability within
an observation interval of one second.

The probability P (mett=0) can be calculated as follows: the flip-flop will go
metastable if the inputs, Data and Clk, are exposed to transitions that occur
almost simultaneously, i.e., within some small time window ∆ ∼ tsu + th.

If we assume that the data signal and the clock signal are uncorrelated
and that they have average switching frequencies fData and fClk respectively,
then:

P (mett=0) = ∆ · fClk · fData (8.3)

which can be understood as follows: within an observation interval of one sec-
ond, the input signal Data makes 1/fData attempts at hitting one of the 1/fClk
time intervals of duration ∆ where the flip-flop is vulnerable to metastability.

The probability P (mett|mett=0) is determined as:

P (mett|mett=0) = e−t/τ (8.4)

where τ expresses the ability of the flip-flop to exit the metastable state sponta-
neously. This equation can be explained in two different ways and experimen-
tal results have confirmed its correctness. One explanation is that the cross

8.2. Quantifying metastability 147

fClk ∆ τ

180 nm CMOS ASIC [53] 200 MHz 50 ps 10 ps
28 nm CMOS ASIC [52] 1 GHz 20 ps 10 ps

180 nm CMOS [8] 17 ps
65 nm CMOS [8] 6.0 ps
22 nm CMOS [8] 7.12 ps
65 nm CMOS [7] 10 ps 90 ps

Textbook [30, Ch. 28] 500 MHz 200 ps 100 ps

Table 8.1: Published values for τ and ∆ for different process nodes. Field left
blank when information not available.

coupled inverters have no memory of how long they have been metastable,
and that the only probability distribution that is “memoryless” is an expo-
nential distribution. Another explanation is that a small-signal model of the
cross-coupled inverters at the metastable point has a single dominating pole.

Combining equations 8.1–8.4 we obtain

P (mett) = ∆ · fData · fClk · e−t/τ (8.5)

expressing the probability that a metastable situation occur and persist for
longer than time t within an observation interval of one second.

If we allocate time tr for recovery from metastability, and consider it a fail-
ure if metastability lasts longer, then the mean time between failure (MTBF)
is the inverse of equation 8.5:

MTBF =
etr/τ

∆ · fData · fClk
(8.6)

Experiments and simulations have shown that this equation is reasonably
accurate provided that tr is not very small, and experiments or simulations
may be used to determine the two parameters ∆ and τ .

Actual values for ∆ and τ are not that easy to find in the open literature.
Table 8.1 lists some values from a selection of sources. Due to the nature of
the problem, selecting conservative values is advised. A bit simplistic, and
very much on the safe side, one can set ∆ = tsu + th [30]. Realistic values
are significantly smaller. The other parameter, τ , appears in the exponent
and plays a dominating role. In technologies down to 65 nm CMOS, τ scaled
proportionally to FO4 (the typical propagation delay in an inverter driving
four equally sized inverters) [8]: τ ≈ 0.45 · FO4. For technologies smaller
than 65 nm, τ no longer scales proportionally to FO4, and in a modern 22 nm
CMOS technology τ ≈ 1.0 · FO4. The “scaling gap” between FO4 and τ is
expected to increase as technologies shrink further. The values for τ stated
in table 8.1 are for typical process parameters, a nominal supply voltage, and

148 Chapter 8. Metastability, arbitration, and synchronization.

Count

END4

Clkt

t r

C (no error)

D (no error)

E (no error)

C (error)

D (error)

E (error)

t2t1 t r+t0 t r+t0 t1 t r+t2

D1

Clk

D2

D3

DUT

A

C

B

D E

In

Clk

In

B

A

Figure 8.5: A circuit used for metastability characterization.

room temperature. In worst-case process-voltage-temperature corners, τ may
vary considerably. Intuitively variations in τ should track variations in FO4,
but this is not always the case. Results have been published, showing that in
some situations, τ is larger when the temperature is lower [173, 7].

A possible experiment, from which τ and ∆ can be determined, is shown
in figure 8.5 [3, 8]. Two independent (uncorrelated) pulse generators generate
Clk and Data. Flip-flop D1 is the device under test (DUT) that occasionally
goes metastable. The output of D1 is fed to two flip-flops: D3 that is clocked
after some delay, tr, (the allowed resolution time, here when Clk makes a
falling transition), and D2, that is clocked at the next clock tick (at which
time D1 is assumed to have recovered from metastability). If the value in

8.2. Quantifying metastability 149

D2 is considered “correct,” then it may be considered an error, caused by
metastability that has not yet resolved, if the value in D3 is different. The
XOR gate compares the two signals, and the result is clocked into D4, whose
output can be used as an enable signal for a counter. The timing diagram in
figure 8.5 shows the operation of the circuit when metastability has resolved
before tr (no error) and when metastability persists beyond tr (error).

The experiment is left for hours or days, and at the end the count value
is read. The MTBF for a given value of tr, is the time the experiment has
been running divided by the count of metastable events. By changing the duty
cycle of the clock signal, it is possible to alter tr. If the duty cycle cannot be
changed, a controllable delay element may be used to produce a delayed clock
for D3 and D4. Alternatively, the clock period may be varied, thereby varying
the time where the clock is high. Another option when using an FPGA is
to use a digital clock manager component to produce a clock signal and a
90-degree phase-shifted version of the clock signal.

The MTBF determined using this circuit can be used in conjunction with
equation 8.6 to determine τ and ∆. By taking the natural logarithm of both

10
10

10
15

10
20

10
25

10
30

10
35

10
 5

10
 −5

31.7 million
years

Age of the
 universe

t r (ps)300 400 500 600 700 800 900 1000100 200

MTBF ln(MTBF)(s)

f Clkf Data∆

1
f Data) f Clk∆

10
 0

.

.

80.6 = 35 ln(10)

69.1 = 30 ln(10)

57.6

46.1

34,5

23.0

11.5

0

− 11.5

1.16 days

317 years

− 14.6 =
− ln (

Figure 8.6: A plot of MTBF (and ln(MTBF)) as a function of the allowed
resolution time tr. From the plot τ and ∆ can be determined.

150 Chapter 8. Metastability, arbitration, and synchronization.

sides of equation 8.6, we get:

ln(MTBF) =
tr
τ
− ln(∆ · fData · fClk) (8.7)

For a given experiment, the term ln(∆ ·fData ·fClk) is constant, and conse-
quently ln(MTBF) is a linear function of t. Figure 8.6 shows a semilogarith-
mic plot of MTBF for different values of tr. By fitting these measured points
to a straight line, ∆ and τ and can be determined. The slope of the line is 1/τ ,
and ln(∆ · fData · fClk) is the extrapolated intersection with the y-axis from
which ∆ is easily obtained. Knowing ∆, τ can be computed from any point
on the line. The experiment ignores many subtle details of the internals of a
master-slave flip-flop, but it is adequate when tr is not too small. As we are
interested in reliable circuits with a high MTBF, we do not deal with small
values of tr.

The graph in figure 8.6 is for a circuit using fClk = 1.0 GHz and fData =
0.1 GHz. From the graph we obtain ∆ = 20 ps and τ = 10 ps.

8.3 Dealing with metastability

Now that we understand that metastability is unavoidable, the next step is
how to deal with it. Below we cover the two fundamental situations: mutual
exclusion in asynchronous circuits and synchronization in clocked circuits. In
a later section, we address communication and synchronization in multi-clock
systems.

8.3.1 Mutual exclusion and arbitration

Figure 8.7 shows the MUTEX circuit from figure 5.28 on page 89. The in-
put signals R1 and R2 are two requests that originate from two independent
sources, and the task of the MUTEX is to pass these inputs to the correspond-
ing grant outputs G1 and G2 in such a way that at most one output is active
at any given time.

R1

R2

Bistable

&

&

G2

G1

G1

G2M
U

T
E

X

Metastability filter

x2

x1R1

R2

Figure 8.7: The mutual exclusion element: symbol and possible implementa-
tion (copy of figure 5.28 on page 89).

8.3. Dealing with metastability 151

The circuit consists of a pair of cross-coupled NAND gates implementing an
asynchronous set-reset bi-stable and a metastability filter. The cross-coupled
NAND gates enable one input to block the other. If both inputs are asserted
at the same time, the circuit becomes metastable, with both signals x1 and x2
halfway between supply and ground. The metastability filter prevents these
undefined values from propagating to the outputs – signals G1 and G2 are both
driven low, until signals x1 and x2 differ by more than a transistor threshold
voltage.

The metastability filter in figure 5.28 is a CMOS transistor-level imple-
mentation from [92]. An NMOS predecessor of this circuit appeared in [136].
Gate-level implementations are also possible: the metastability filter can be
implemented using two buffers whose logic thresholds have been made partic-
ularly high (or low) by “trimming” the strengths of the pull-up and pull-down
transistor paths ([119, section 2.3]). For example, a 4-input NAND gate with
all its inputs tied together implements a buffer with a particularly high logic
threshold. The use of this idea in the implementation of mutual exclusion
elements is described in [4, 156].

In conclusion the MUTEX deals with metastability by taking as long as it
needs to decide, and it always outputa well-defined digital signals.

If an asynchronous circuit containing one or more MUTEX’es is required
to perform some computation, one can calculate the response time using nom-
inal propagation delays. And for a certain amount of extra time allocated
for recovery from metastability, it is possible to calculate the corresponding
MTBF. Or vice versa.

8.3.2 Synchronization

Figure 8.8 shows different ways of dealing with an asynchronous input signal.
In figure 8.8(a) nothing is done, the input is just fed to the logic in the clocked
system. In figure 8.8(b), the asynchronous input is synchronized using one
synchronizer flip-flop, and in figure 8.8(c), a pair of synchronizer flip-flops.

The solution in figure 8.8(c) using a pair of flip-flops is the “standard
solution.” The first flip-flop, S1, may go metastable quite often, but only if
it stays metastable for an entire clock period will the second flip-flop, S2, go
metastable and cause problems. If the period of the clock signal is tClk, the
clock-to-Q propagation delay of a flip-flop is tcQ,prop and the setup time of a
flip-flop is tsu and if we do not want synchronizer flip-flop S2 to go metastable,
then the time available for flip-flop S1 to recover from metastability is:

tr = tClk − tcQ,prop − tsu (8.8)

As an example, we consider a circuit with a clock period of 1.0 ns (corre-
sponding to a frequency of 1.0 GHz), and an asynchronous input signal that
switches with an average frequency of 1.0 MHz. If we assume tcQ,prop = 100 ps,

152 Chapter 8. Metastability, arbitration, and synchronization.

D Q

D Q
D Q

D Q
D QD Q

Asynchronous

environment

CL
1

n

m

Clock

CL
1

n

m

Clock

CL
1

n

m

Clock

Clock domain

(a)

(b)

(c)

State

State

State

S1

S1 S2

Synchronizer

Figure 8.8: Different synchronizer organizations: (a) No synchronizer. (b)
A single flip-flop synchronizer. (c) A “standard” synchronizer using a pair of
flip-flops.

tsu = 100 ps, τ = 10 ps and ∆ = 20 ps, then the MTBF when using a pair of
synchronizer flip-flops can be calculated as follows:

MTBF =
etr/τ

∆ · fData · fClk

=
e800/10

20 ps · 1, 0MHz · 500MHz
(8.9)

= 2.5 · 1030 sec

= 8.0 · 1022 years

In situations where the clock signal has a low frequency, it may be OK to
use just a single flip-flop for synchronization, as shown in Figure 8.8(b). In this
case, the time for recovery from metastability is reduced by the propagation
delay in the combinational logic, CL: tr = tClk − (tCL,prop + tcQ,prop + tsu).
Using fClk = 500 MHz, tCL,prop = 500 ns and the flip-flop timing parameters
from before we (again) get MTBF = 8.0 · 1022 years.

The MTBF can be made arbitrarily high by extending the circuit in fig-
ure 8.8(a) with more flip-flops. For example, the MTBF for a three-stage

8.3. Dealing with metastability 153

synchronizer (allowing two cycles for recovery) becomes:

MTBF =
2 · etr/τ

∆ · fData · fClk
(8.10)

Finally, figure 8.8(a) shows a flawed circuit that completely ignores syn-
chronization. Not only may the register marked State go metastable quite
often. It is also very likely that this causes the combinational logic, marked
CL,to compute inconsistent output signals. An example is a state transition
that flips the value of multiple flip-flops in the state register. In addition to
the frequent occurrence of metastability, this may cause inconsistencies and,
most likely, a faulty behavior.

In section 8.4 we will address how to perform synchronization when data is
communicated from one clock domain to another, but first, it is time to address
a more fundamental issue and distinguish between time-safe and value-safe
systems.

8.3.3 Time-safe and value-safe systems

The previous two subsections showed two basic ways of dealing with metasta-
bility: A mutex always produces a valid digital output, but its propagation
delay is unbounded.

A synchronizer, on the other hand, always responds after a fixed time, but
there is a non-zero probability that its output is a non-digital value.

In general, when a decision has to be made and metastability is unavoid-
able, the resulting systems are either time-safe or value-safe [19] depending on
how metastability is dealt with:

Time-safe systems are systems that guarantee to produce a result in bounded
time, but where there is a non-zero probability that the result is not a
proper digital value.

Value-safe systems are systems that guarantee to produce a proper digital
result, but where there is no upper bound on the time it takes.

The distinction between value-safe and time-safe systems is a fundamental
one, but in practice, both may lead to the same fault/problem: An airplane
may crash into a mountain if a binary obstacle detecting device responds in
time but with a metastable sensor reading (“maybe”), or if the sensor is too
late at producing a binary reading. However, there is one important difference.
When metastability is unavoidable, a value-safe organization may be preferable
over a time-safe organization. This is because the time it takes for a value-safe
circuit to compute a result is only prolonged by the time that the mutex’es
and arbiters in the circuit actually spend being metastable. In contrast, in
a time-safe system, extra time is allocated for synchronization every time a
signal is synchronized.

154 Chapter 8. Metastability, arbitration, and synchronization.

If we revert to our example with the 100 meter runs: If you are allowed to
look at each picture for as long as you need to make a decision – at which point
you ask to see the next picture – then you have a value-safe setup (and a setup
that mimics an asynchronous circuit): You always identify the winner, but the
time you take is unknown. There is no upper bound on how long you take
to process a set of pictures. In an alternative time-safe setup, you are shown
new pictures at a fixed rate. Here you may not have decided when shown
the next picture, but the time taken to process a set of pictures is constant.
This situation resembles a synchronous circuit with a free-running clock. If
your task is to process a set of 100 pictures, and if you are assigned a certain
time for the job, then you may do a better job with a value-safe arrangement
than if you operate with a time-safe arrangement. The reason is that you only
take longer time when metastability actually occurs. You may still have some
pictures left unprocessed at the end of the assigned time interval, but it is
far fewer than the number of pictures where you fail to declare a winner in a
time-safe arrangement where you spend exactly one-hundreds of the allocated
time processing each of the 100 pictures. If metastability does not occur, you
waste time waiting for the next picture.

Finally, we mention that asynchronous systems are typically value-safe
and that synchronous systems involving arbitration or synchronization are
usually time-safe because of the free-running clock. However, if the clock
generator being used allow individual clock periods to be stretched by an
arbitrary amount of time when metastability occurs, then it is possible to build
value-safe clocked systems. We address this later in sections 8.4.4 and 8.4.5.

8.3.4 Additional comments and a word of warning

The cross-coupled inverters in figure 8.2(a) represent a quite accurate model
for analyzing a mutex coming out of metastability. For a flip-flop, that is
composed of a master latch and a slave latch, i.e., two bi-stables, it may be
too simplistic. However, experience and analysis show that if the allowed
recovery time (tr) is not too small (which you anyway do not want), then the
model is still a reasonable “fit.”

As the MTBF is sensitive to the value of τ , this parameter must be eval-
uated conservatively to be on the safe side. In order to make τ small, the
bistable circuitry in mutex’es and in flip-flops have to be designed with a high
gain in the feedback loop, with fast low VT transistors, and with minimum
parasitic capacitance on the two internal nodes. For this reason, flip-flops
designed for use in synchronizers are different from flip-flops used for storing
data, and some cell libraries contain both types of flip-flops. Finally, we ob-
serve that some data flip-flops are designed using pass-transistors and weak
feedback bleeder-inverters. These have a small loop gain and are not suited
for use as synchronizers.

So far, we have only discussed metastability related to an incoming data

8.4. Synchronization in multi-clock systems 155

signal relative to a clock signal. Metastability can also occur when a reset
signal is de-asserted. Reset is typically an asynchronous input produced from
a push-button. Flip-flops may have synchronous reset or asynchronous reset.
In both cases, a decision has to be made: was reset de-asserted before of after
the clock? Therefore, flip-flops with synchronous or asynchronous reset, are
all vulnerable to metastability. For this reason, the reset signal to a flip-flop
must always be synchronized to the clock. And as is the case for data signals,
the reset signal should only be synchronized once. If not, counters in different
modules may not show the same values.

Finally, you should keep in mind that there is no way that a simulation
can be used to verify that a system containing synchronizers always works
correctly. You have to have faith in your design and the analysis done – be a
careful and conservative skeptic.

8.4 Synchronization in multi-clock systems

For many reasons, it is preferable to organize large and complex systems as
a collection of individually clocked modules and to use asynchronous com-
munication among these modules: It simplifies clock distribution and timing
closure, and it enables voltage and frequency scaling of individual modules.
The term globally-asynchronous locally-synchronous (GALS) is widely used
to denote such systems, and there is a rich literature on the topic. In the
following, we address the fundamentals. For the interested reader, we provide
pointers to additional literature [105, 19].

8.4.1 A simple handshake interface

A 2-phase or 4-phase bundled data handshake channel connecting two inde-
pendent clock domains can be implemented by synchronizing the incoming
handshake signals to the local clock. Figure 8.9 shows an implementation of
a push channel where the synchronization of a signal is done using a pair of
flip-flops.

A novice into synchronization and metastability may think that the data
signals should also be synchronized. This is a huge mistake! When flip-flops
become metastable, the output eventually and randomly becomes 0 or 1. This
happens for each bit and consequently may result in corrupted data. The
transmitter may assert the request signal and provide valid data in the same
cycle, but as the synchronizer delays the request signal, the data has been
stable for more than a clock period when the receiver sees the synchronized
request signal. A state machine in the receiver can thus simply produce a clock-
enable signal for an input register, or it can postpone the acknowledgment and
directly use the incoming data.

All the channel types (nonput, push, pull, and biput) introduced later in
section 10.1.1 can be implemented using variations of the circuit in figure 8.9.

156 Chapter 8. Metastability, arbitration, and synchronization.

Data
Producer

Clk_P

Req

Consumer

Clk_C

Ack

Figure 8.9: A bundled-data channel connecting two clock domains. Signals
Req and Ack are synchronized.

The design in figure 8.9 is simple, reliable, and widely used, but because every
transition of a handshake signal is synchronized, the maximum throughput is
in the order of one data item for every 4-6 clock cycles. This assumes that
the clock frequencies of the transmitter and the receiver are roughly the same,
and whether it is 4 or 6 cycles depends on the implementation of the state
machines (Mealy or Moore).

To increase the throughput, the number of signal transitions/events that
need synchronization must be reduced. This can be done in a number of ways.
The simplest is to increase the bit-width of the data. An extension of this is
to introduce multiple buffers allowing the transmitter and receiver to operate
in parallel. One option is to use two buffers in an alternating fashion.

A more advanced setup using three buffers can completely hide the syn-
chronization latency. The transmitter can be filling one buffer, the receiver can
be emptying another buffer, and in parallel with this, ownership of the third
buffer may be transferred from the transmitter to the receiver or from the re-
ceiver to the transmitter. The transfer of ownership requires synchronization
of signals. A straightforward design use a pair of handshake signals per buffer.
Alternatively, it can be noted that the buffers are used in a cyclic fashion, and
that the request and acknowledge signals in figure 8.9 can be interpreted as “I
have filled a new buffer” and “I have emptied oldest buffer”. As is often the
case, this organization is sacrificing increased latency in return for improved
throughput.

8.4.2 Using a dual-ported memory

A simple and widely used approach is a dual-ported (or multi-ported) random
access memory that allows individual clocks on the different ports. The block
RAMs found in most FPGAs support this. As long as a write operation to
a memory location does not collide with another read or write to the same
address, everything is fine. Coordination among different clocked modules

8.4. Synchronization in multi-clock systems 157

Di

ADRi

Write

Clki

Dual port

RAM

Do

Read

ADRo

Clko

Sync

Write pointer
Counter

INC
Read pointer

Comp Comp

Data out

Read

Clk out

Empty

INC

Counter

Write

Clk in

Full

Sync

Data in

Figure 8.10: A dual-clock FIFO built using a dual-ported memory and read
and write pointers.

accessing the memory can be enforced by separate flags or handshake signals
that must be synchronized, as described in the previous subsection.

8.4.3 Using a dual-clock FIFO

Another way of reducing the number of synchronization events is to use a
dual-clock FIFO queue. A shallow FIFO can be implemented using a small
set of discrete registers. A FIFO with more capacity can be built using a
random access memory accessed using read and write pointers. The pointers
wrap around and the memory is used as a circular buffer. The read pointer
points at the memory address holding the oldest data, and the write pointer
points to the first free memory location. Figure 8.10 shows the interface and
the implementation of such a dual-clock FIFO.

The write port of the FIFO, including the write pointer, uses the clock
of the transmitter, and the read port, including the read pointer, uses the
clock of the receiver. To produce the signals Full and Empty, it is necessary
to communicate the value of the read and write pointers to the opposite clock
domain. As the pointers always increment (occasionally wrapping around),
and assuming that the capacity of the FIFO is a power of two, it is possible
to use Gray-encoding of the counters. This ensures that from one count to
the next, only a single bit changes. In this case, it is safe to pass the count
value through a synchronization register. By doing this, and by using only a
single layer of synchronization (as in figure 8.8(b)), it is possible to reduce the
latency for producing the signals Full and Empty.

The design in figure 8.10 is so widely used that in some FPGA chips, every
block RAM comes with dedicated circuitry implementing address pointers, the
necessary synchronization circuitry, and the full/empty detection logic.

158 Chapter 8. Metastability, arbitration, and synchronization.

C
∆

Req

Ack

Clock

Figure 8.11: A ring-oscillator-based clock-generator that allows stretching of
individual clock periods as well at stopping the clock completely during certain
time periods.

8.4.4 Value-safe clocking with metastability

The MUTEX element in 8.7 consists of a bi-stable circuit and a metastability
filter. If we add a similar metastability filter to the outputs Q and Q of a
D-flip-flop, it becomes possible to detect when the flip-flop is metastable. This
information can be used to stretch those clock-periods where metastability
occurs. Such an arrangement is a value-safe clocked system. This idea was
proposed in [124] and has been explored in many subsequent works. A more
recent paper [105] contains a unified presentation of a range of systems using
stretchable and stoppable clocks that we adopt here.

Figure 8.11 shows a fundamental circuit that can be used to design systems
with stretchable and stoppable clocks. The right-hand side is a ring oscillator
(a delay element and inverter) extended with a C-element. The C-element
allows a left hand environment to control the operation through signals Req
and Ack. The C-element waits for both its inputs meaning that if the left-hand
environment is fast, the circuit works as a free-running oscillator with a duty
cycle of 50 % and a period of two times the delay of the delay element, the
inverter, and the C-element. This could be implemented by connecting Ack
to Req through an inverter. It is interesting to note that the resulting circuit
is identical to the circuit in figure 2.15.

If the Req input to the asymmetric C-element in figure 8.11 is the last input
to switch, then the current clock-period is extended until Req transitions. This
can be exploited to occasionally stretch a clock period in case one or more
flip-flops in the circuit go metastable. In this way, the next clock pulse can be
postponed until metastability has ceased. The result is a value-safe clocked
circuit.

Figure 8.12 shows an arrangement performing value-safe synchronization
of an asynchronous input. The signal Met from the metastability detector is
asserted when the first synchronizer flip-flop, S1, is metastable, and it is de-
asserted when metastability has ceased. Note that it is the rising transition of
the clock signal that is controlled. This means that only the phase where the
clock is low is stretched.

8.4. Synchronization in multi-clock systems 159

D Q

Asynchronous

environment

C

CL
1

n

m State

S1 S2

Clock domainSynchronizer

D D Q
Q

Q

MD

∆Clk

detector

Met

Metastability

Stretchable clock generator

Clk

Figure 8.12: Value-safe synchronization using a metastability detector and a
clock generator capable of stretching the low phase of the clock.

8.4.5 Value-safe clocking without metastability

In some situations, we can control a stretchable clock generator, like the one
in figure 8.12, using circuitry that does not involve any metastability.

Metastability is related to making a binary decision based on two or more
unrelated signals. In many situations, a synchronous module is only waiting
for a single input signal to transition. In a system with a free-running clock,
this leads to the question: “did the input transition before or after the clock”?
As we know by now, this may cause metastability. If it is possible to stretch
individual clock periods, for example by using the stretchable clock generator
from figure 8.12, then the situation reduces to a “wait for the input condition
and then proceed” – a situation that does not involve a choice and therefore
avoids metastability. In [19], an early work that covers most of the funda-
mentals, this class of systems is called escapement systems, named after the
mechanism in a mechanical watch where the pendulum interacts with the rest
of the mechanism to allow it to advance one step.

We will use a concrete example to explain how an escapement system works.
Figure 8.13(a) shows a module with an asynchronous interface that computes
some function in a sequential manner. The module has an internal clock but
it is not exposed to the interface. A Start signal indicates the validity of the
input, and a Finish signal indicate the validity of the output. As shown, the
Start and Finish signals follow a 4-phase protocol.

The operation of the module is controlled by a state machine with six
states, and the state graph for the machine is shown in figure 8.13(b). The

160 Chapter 8. Metastability, arbitration, and synchronization.

Clocked circuit

controlled by

FSM

C

Inputs

Outputs

Start

Done

State

Clk

n m
Inputs

Start Done

Outputs

(a)
(b)

Done<=’0’

Done<=’1’

S0

S5S4

S3

S2 S1

Start=’0’

Start=’1’

S0

Start

Start

S5

S1

S2

S3

S4

∆

Stretchable clock generator

Clk

Inputs

Outputs

Start

Done

(c)

S1 S2 S3 S4 S5 S1S0S0

(d)

Figure 8.13: An asynchronous module implemented as an internally clocked
circuit. By stretching specific clock periods, synchronization and metastability
is avoided. Such an organization is called an escapement system [19].

8.5. A taxonomy of timing organizations 161

state graph is used for illustration purposes; it has no intended use. In state
S0 the machine waits for start to go high, and then it transitions to state
S1. Likewise, in state S5 the machine waits for start to go low, and then
it transitions to state S0. In a normal state graph, states S5 and S0 would
have a self-loop that is taken when Start has not yet taken the value that the
machine is waiting for. In the circuit we consider here, the machine will never
spend more than one clock cycle in S5 and S0. Instead, as we will see below,
the clock periods where the machine is in states S5 and S0 may be stretched
while the machine is waiting for the start to go low or high, respectively. This
is the reason for the new notation using the wave-style state-transition-arcs
annotated with the condition that the machine is waiting for. This notation
is from [19].

For simplicity, we assume a one-hot state encoding. Figure 8.13(c) shows
how a stretchable clock generator can be controlled by the state, and the Start
signal, and figure 8.13(d) shows a timing diagram providing details on how the
circuit operates.

The example circuit in figure 8.13 has a single asynchronous input signal,
Start. In the general case, there may be more asynchronous inputs. As long
as the machine is only waiting for a single asynchronous input in any given
state, there is no metastability. Hence, the circuit in figure 8.13 can easily be
extended to handle more input signals or additional handshake channels.

8.5 A taxonomy of timing organizations

So far, if a system involves more than one clock, we have assumed that the
clocks are uncorrelated, i.e., that input signals from the environment of a
clocked module are asynchronous with respect to the clock used in the module.

In many cases, there is some relation between the different clocks, and
this can be exploited and/or may need to be considered when several clocked
modules are composed to build larger systems. The following classes of timing
organizations can be identified [98]:

Synchronous: Systems with a single global clock that is available everywhere
without any skew.

Mesochronous: Systems with a single clock-oscillator where different branches
of the clock distribution network have different delays causing some phase
difference among the different instances of the clock signal. As trans-
mitters and receivers operate at the exact same rate, flow control is not
needed. Some works [29, 149] assume a “fixed” or “static” phase differ-
ence. A more general assumption is that the phase difference is unknown
but upwards bounded. Solutions typically involve delay elements used
to align the data and the clock, or “time elasticity” implemented using
dual-clock FIFOs.

162 Chapter 8. Metastability, arbitration, and synchronization.

Plesiochronous: Systems where each clocked module has its own clock os-
cillator. All the clock oscillators have the same nominal frequency, but
there may be a small frequency mismatch, such as a few parts per million.
An example is several clock oscillators built using crystals with the same

nominal frequency. In a linear pipeline-arrangement of clocked modules,
the frequency difference can be dealt with by adjusting the phase of the
clock and by occasionally dropping or adding bits at specific points in
the data-stream, typically between data-frames.

Periodic: The periods of the clocks have some mutual ratio, and this knowl-
edge can be exploited to identify where it is safe to transfer data and
avoid metastability.

Asynchronous: The clocks in the different modules are independent and
uncorrelated.

8.6 Examples of timing organizations

To illustrate the fundamentals introduced in this chapter, this section provides
examples of synchronization and timing organizations: (i) a bit-serial ple-
siochronous communication interface, (ii) several FIFO-based mesochronous
communication links that completely avoid metastability, and (iii) clocked cir-
cuits achieving better than worst-case performance (including both time-safe
and value-safe solutions).

8.6.1 Plesiochronous bit-serial communication

In the field of telecommunication, bit-serial transmission of data is widely
used. Ideally, the clocks in the different networked units should have the
same frequency, but because each unit has its own clock oscillator, the whole
system is plesiochronous. The connection between two plesiochronous modules
is usually a bit-serial link without an associated clock signal. Instead, by using
some form of encoding of the data, the receiver can regenerate the clock from
the incoming signal. An example of such an encoding is an 8 bit - to -10 bit code
where a byte of data is converted into a 10 bit symbol. The 10 bit symbols are
encoded in a way that ensures an almost equal number of 0s and 1s in a 10 bit
symbol (resulting in zero DC voltage on the cable) as well as frequent switching
between 0 and 1 allowing a clock recovery circuit, typically a phase-locked loop
(PLL), to regenerate the senders clock.

In this way, the input side of a plesiochronous module operates using a
regenerated version of the sender’s clock, and somewhere inside the module,
data has to be transferred to the domain using the locally generated clock.

The frequency of the bit serial communication is often very high, making it
impossible to synchronize and implement clock domain crossing of individual

8.6. Examples of timing organizations 163

Clock domain

boundary

PLL

n

1

Data

ClkS’

ClkP’

Data

ClkP’’

ClkS’’ClkP’’

n

1

Clk’’

Module B

DeSer Ser

PLL

Clock domain

boundary

n

1

Clock domain

boundary

Data

ClkP’’

ClkP’ ClkS’

Clk’

Module A

Ser

Data
n

1

ClkS’’

ClkP’’

Module C

DeSer

1

1

Figure 8.14: A number of plesoichronous modules (A, B, and C) connected
in series. Module B is shown in its entirety. For modules A and C, only the
part interfacing with module B is shown.

164 Chapter 8. Metastability, arbitration, and synchronization.

bits. An alternative possibility is to synchronize data after the 10 bit-to-8 bit
decoder. If this is still too fast, larger blocks of data must be synchronized as
a single atom.

Figure 8.14 shows an example with three plesiochronous modules connected
in series. Module A is driven by clock Clk′. From this, clocks ClkS′ and ClkP ′

are generated. ClkS′ is used for the high speed serial transmission. ClkP ′ has
a frequency that is n times lower than ClkS′ and is used by the part of the
circuit that operates on parallelized data.

Similarly, module B is driven by clock Clk′′. The PLL in module B extracts
the clock from the incoming bitstream. This extracted version of ClkS′ is

called ĈlkS′. This extracted clock is used by the de-serializer that produces

data in parallel form along with an extracted version of ClkP ′ called ̂ClkP ′.
The parallelized data is then transferred from the ̂ClkP ′ domain to the ClkP ′′

domain. The details of this are not shown in the figure. A possible solution
is to use a dual-clock FIFO supplemented by the ability to drop or insert
data in-between frames of data, as explained previously. Further details are
beyond the scope of this text; our aim here is only to illustrate the basics of a
plesiochronous organization.

8.6.2 Mesochronous communication links

If the phase difference is constant, the incoming data can be delayed such that
it satisfies the setup and hold times of the register receiving the data. For a
wide datapath, it may become too expensive to delay all the data signals, and
an alternative solution that delays the clock signal instead may be preferred.
More advanced solutions use variable delay elements in combination with some
control that dynamically adapts to the phase of the incoming data. For ex-
amples of such circuits, the interested reader is referred to [29, Section 10.3.1].
Some of these adaptive solutions involve metastability, and therefore cannot
be 100 % reliable.

It is possible to avoid metastability by using a FIFO to provide time-
elasticity between a transmitter and a receiver. Figure 8.15 illustrates this.
As we saw in section 8.4.3, the generation of the full and empty signals may
involve metastability. However, if the FIFO is initialized to be half full, and
if the mesochronous transmitter and receiver writes and reads a data item in
every clock cycle, then the FIFO remains roughly half full. A phase difference
between the transmitter and the receiver will fill or drain the FIFO relative to
the initial state. If the phase difference is upwards bounded, it is possible to
select the capacity of the FIFO such that it never runs full or empty. In this
case, the full and empty signals remain un-asserted, and data can be streamed
one item per clock and without metastability. In general, the FIFO need only
have a capacity of 3-5 words to absorb a phase difference of half a clock period,
and the RAM and pointer-based implementation shown in figure 8.10 may be
too expensive. More efficient implementations of shallow FIFO’s are presented

8.6. Examples of timing organizations 165

Skew

ReceiverTransmitter

Read

ClkRx

Data_out

Full

ClkTx

Write

Full

Data_in

Dual clock FIFO

Skew

ClkTx ClkRx

Clk

Figure 8.15: A dual clock FIFO can be used to connect a mesochronous
transmitter and receiver. If it initialized half full, the FIFO can absorb a
certain phase difference without becoming completely full or empty.

in [121, 165, 1].
An interesting alternative is to replace the dual-clock FIFO in figure 8.10

by an asynchronous FIFO. This idea was first presented in [54, 56], where the
arrangement is called STARI (self-timed at receivers input). Figure 8.16(a)
shows an implementation using a 2-phase bundled-data FIFO (the divide by
two circuits toggles the request and acknowledge signals when the clock signal
makes a rising transition). The key idea in the design is to avoid metastability
by making two timing assumptions: (1) the time for a request-acknowledge
handshake on the ports of the FIFO is always shorter than the clock period,
and (2) the phase difference between the transmitter and the receiver is up-
wards bounded such that the FIFO never runs full or empty.

As seen in figure 8.16, the clock signal of the transmitter is used to drive
the request signal on the input port of the FIFO, and the corresponding ac-
knowledge signal is ignored based on the assumption it precedes the next clock
tick and the fact that the FIFO is never full. In a similar way, the clock of
the receiver is used to drive the acknowledge signal on the output port of the
FIFO. And as seen, the corresponding request signal is ignored based on the
assumption that it precedes the next clock tick, and based on the fact that the
FIFO is never empty. The FIFO is assumed to use 2-phase handshaking, and
the “:2” components toggle their outputs every time the clock makes a rising
transition.

It is crucial that the timing assumptions regarding the speed and capacity
of the FIFO are thoroughly verified. A timed-transition Petri net model of the
STRAI communication link is analyzed in [66]. This analysis is somewhat in-
volved. In the following, we offer an alternative analysis offering more intuitive
insights.

Firstly, we note that the mesochronous environment of the FIFO means
that the FIFO can be understood as a shift register or ring (as analyzed in sec-
tion 4.3). A FIFO or ring has minimum handshake cycle-time when the num-

166 Chapter 8. Metastability, arbitration, and synchronization.

(a)

ClockReset

:2
:2

Data_out

N.C.
Ack_in

Req_in

Data_in

N.C.
Ack_out

Req_out

FIFO
Transmitter Receiver

(b)

FIFO is faster than clock

Wd
per token

due to skew due to skew

FIFO is filled FIFO is drained

FIFO stages

Clock period

Cycle time of a Req−Ack handshake

Skew Skew

Figure 8.16: (a) An asynchronous FIFO used to connect a mesochronous
transmitter and receiver. If initialized half full, the FIFO can absorb some
phase difference between the transmitter and the receiver. (b) The design
assumes that the cycle-time of a handshake is smaller than the period of the
clock.

ber of stages per data item (token) matches the dynamic wavelength (Wd). If
the phase difference is such that the transmitter clock is ahead of the receiver
clock, then the FIFO fills and operates in the bubble-limited region. Likewise,
if the phase difference is such that the receiver clock is ahead of the trans-
mitter clock, the FIFO drains and operates in the data-limited region. Both
scenarios cause a slowdown of the FIFO. This is illustrated in figure 8.16(b).
The maximum skew that the circuit can tolerate is when the cycle-time of a
handshake becomes as large as the period of the clock (with some appropriate
safety margin).

The rings we analyzed in section 4.3 had an integer number of stages and
an integer number tokens. A FIFO embedded in a mesochronous environment
also has a fixed number of stages. But the number of tokens is not limited to
integer values, because the phase difference between the transmitter and the
receiver can be arbitrary.

8.6. Examples of timing organizations 167

Finally, a comment on reset and initialization: After reset, the transmitter
first inputs a number of empty or invalid data items in order to bring the FIFO
to a state where it is half full. From this point, both the transmitter and the
receiver are active. In order to implement this, the transmitter and the receiver
may use counters that are reset by the reset signal. This means that the “phase
difference” mentioned above is the phase difference between the counters in
the transmitter and the receiver. This difference is created by clock skew as
well as reset skew, and we note that the counters could potentially be off by
more than one count.

8.6.3 Better than worst-case clocked circuits

To provide more insight into time-safe and value-safe designs, we briefly look
at techniques that have been proposed to overclock circuits by exploiting the
fact that the actual case latency of a (combinatorial) circuit is typically much
lower than the worst-case latency. An early and well-known example of work
in this direction is Razor [40] that we discuss here. Later improvements and
extensions are “Razor II” [31], “Bubble Razor” [42], and SafeRazor [17].

The key idea in Razor, as well as in other so-called better than worst-case
schemes, is to clock a given circuit faster than what a worst-case critical-path
analysis would allow and to combine such over-clocking with a mechanism
that is capable of detecting when a timing error occurs, and capable of per-
forming some rollback-and-fix operation that can be implemented in hardware
or software or a combination of the two. If this corrective measure – which
may consume one or more extra clock cycles as well as some corresponding
additional energy – is not performed too frequently, then there is a net gain.
This gain can be used to achieve a faster design or to scale the supply voltage
and save power. The scaling can be performed adaptively until the number
of errors increases to a point where it starts to become costly in terms of en-
ergy and time to detect and fix errors. In this way, the circuit can reach a
minimum-energy operating point.

In the original Razor I paper, this idea is implemented in a 64-bit processor,
and figure 8.17 that is adapted from [17] shows the principle. The critical path
in the circuit is in the CL1-logic and tCL1 denotes its actual case delay. In
most cases, tCL1 is well below the period of the clock,tClk, and the data that is
clocked into R1 is correct. But occasionally, depending on the exact operating
conditions, tCL1 ≥ tClk. In this case, R1 is storing a wrong value, or flip-flops
in R1 may enter a metastable state. The correct value is always available in
RA that is clocked by a delayed copy of the clock.

Ignoring the setup and hold-times for the registers, the following timing
requirements are assumed for correct operation:

tClk + ∆ > tCL1,pd (8.11)

∆ < tCL1,cd (8.12)

168 Chapter 8. Metastability, arbitration, and synchronization.

RA

R0 R2CL2

Sync.

∆

R1

QA

D1 Q1
CL1

Q0D0 D2 Q2

Err

Clk

E

Figure 8.17: The basic principle of the Razor design.

where tCL1,pd is the (worst-case) propagation delay of CL1 and where tCL1,cd
is the contamination delay of CL1.

An error situation is detected (by the XOR gate) when R1 and RA contain
different values. As R1 may go metastable, its output may change at any time,
meaning that also the signal E can change at any time. For this reason, E
must be synchronized using a chain of two or more flip-flops. The synchronized
error signal, Err, is used to perform a rollback and restart of the pipeline. In
this process, the correct result in RA is used instead of the incorrect result in
R1.

This may all sound fine, but there is a subtle issue. If the first flip-flop in
the synchronizer becomes metastable, it eventually and randomly resolves to
1 or 0. This means that it is possible to have Err = 0 (indicating no error)
even if R1 was metastable. In this case, R1 outputs corrupt/random values
that propagate down the pipeline, causing the processor to compute erroneous
results. In principle, this is no different from other metastability-related issues,
provided of cause, that the MTBF is acceptable. But it must be stressed that
the essence of the mechanism is to drive the circuit towards a point where
metastability happens rather frequently, and most likely, this results in an
unacceptably high failure rate.

The details of how to perform the roll-back-and-restart of the pipeline, as
well as low level circuit details of special flip-flops used, are beyond the scope
of this text. For more information about this, the reader is referred to the
original sources cited above.

Our perspective here is the fundamentals, and in this perspective, the
design, as presented above, is a time-safe design; it uses a free running-clock,
and it involves making a decision: to give the current computation in CL1 one
more clock cycle or not. Therefore it cannot avoid metastability and be 100 %
correct.

An alternative is to opt for a value-safe organization as presented in sec-
tions 8.4.4 and 8.4.5. In this way, the circuit can avoid making a decision: It
merely waits for an event that signals that it is now safe to proceed and gen-
erate the next clock-tick. This can be implemented using a stretchable clock

8.7. Concluding remarks 169

generator. The signal being waited for can be a completion signal form the
combinatorial logic itself, in which case there is no metastability (the organi-
zation is an escapement system), or it can be a completion signal produced
by a circuit that somehow involves metastability, but in combination with a
metastability filter, such that metastability has resolved before the completion
signal is asserted.

Considering the circuit in figure 8.17, a first fix is to augment register R1
with a metastability detector that can stretch the clock using a design similar
to the one in figure 8.12 on page 159. In this way, at the end of a clock period,
R1 either contains wrong data that it safely sampled too early, or, if flip-flops
in R1 go metastable, it contains whatever random value the metastability in
the flip-flops have resolved to. The point is that R1 always contains a digitally
well-defined value and that this can safely be compared to the value in RA,
producing an error signal that does not suffer from metastability.

8.7 Concluding remarks

Clocking, metastability, synchronization, and timing organizations is a vast
topic with a very large body of literature. This chapter has covered the basics.
Good starting points for exploring more is [78, 52, 29, 30]. A final advice is:
Be careful when dealing with these matters. It is easy to make mistakes, and
it is very hard to debug and identify design errors because of the intermittent
nature of the resulting system failures.

170 Chapter 8. Metastability, arbitration, and synchronization.

Chapter 9

Implementation of 2-phase
bundled-data circuits

In this chapter, we take a closer and more comprehensive look at 2-phase
bundled-data circuits. We start by reviewing a number of alternative im-
plementations of a handshake register. Following this, we address the static
data-flow structures view of circuits using 2-phase handshaking. As will be-
come clear, there are more depths to this than one would immediately think: A
change of viewpoint is required allowing us to decouple the phases of the hand-
shake signals on the input and output channels of select handshake registers in
the circuits. In the last part of the chapter, we present a new implementation-
template called phase-decoupled click-elements that implements such phase-
decoupling, and we present implementations of all the data-flow handshake
components introduced in chapter 3, figure 3.3. As these phase-decoupled
components are implemented using conventional gates and edge-triggered flip-
flops only, they are suitable for prototyping of asynchronous circuits using
conventional FPGAs.

9.1 Templates for implementing 2-phase handshake
latches

In this section, we review a range of circuit design templates for 2-phase
bundled-data pipelines: The classic Muller pipeline, Micropipelines [147], Mouse-
trap [137, 138], Click elements [126] and the pipeline stage used in Intel’s Loihi
neuromorphic chip [83].

This chapter contains material from [86]. c© IEEE 2019. Reprinted with permission from:
A. Mardari, Z.Jelc̆icová and J. Sparsø, Design and FPGA-implementation of Asynchronous
Circuits Using Two-phase Handshaking. In. Proc. IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages 9-18, 2019.

171

172 Chapter 9. Implementation of 2-phase bundled-data circuits

C C

C C

C C

(a)

EN

Ai

Ri

Ao

Ro

Ai

Ri

Ao

Ro

Ro

Ao

Do

Ai

Ri

Ao

Ro

Ro

Ao

Do

DoDi

DoDi

DoDi

0

1

D Q

D Q

(b)

(c)

(d)

Ro

Ao

Do

Latch state Holding HoldingTransparent

Figure 9.1: (a) A 4-phase bundled-data pipeline stage using level-sensitive
latches, and (b) using edge-triggered D-type flip flops. (c) A straightforward
2-phase bundled-data pipeline could simply use dual-edge-triggered D-type flip
flops.

9.1.1 Recap of the Muller pipeline

Figure 9.1(a) shows the 4-phase bundled-data pipeline template we introduced
in section 2.4.1. Instead of using level-sensitive latches in the datapath, it is
possible to use D-flip-flops that are clocked at the rising edge of the Ro signal,
as illustrated in figure 9.1(b). From here, it is straightforward to envision how
a 2-phase bundled data pipeline stage can be implemented using dual-edge
triggered flip-flops, as shown in figure 9.1(c). An issue with this design is the
high area-cost resulting from the use of dual-edge-triggered D-flip-flops.

9.1. Templates for implementing 2-phase handshake latches 173

L0

C C

C C

L

EN

Di Do

Ai

Ri

Ao

Ro

(a)

Ai

Ri

Ao

Ro

Ro

Ao

Do

TransHold Hold HoldTrans TransTrans

EN

Latch state

DoDi

C P

EN

EN

0

1L1

L1

(b)

DoDi

Capture Pass

Ro

Ao

Trans Holding Holding

MUX out L1 L1L2 L2

Do

L1 state

Hold HoldingL2 state

Transparent

Transparent Transparent

Figure 9.2: The latch-based Micropipeline 2-phase bundled data pipeline tem-
plates presented in [147].

9.1.2 Micropipelines

In his Turing award paper “Micropipelines” [147], Ivan Sutherland presents
a couple of more efficient 2-phase bundled data designs that use latches in
the datapath. As latches need a pulse to control the enable input, we need a
circuit that can produce a pulse for every transition on the Ro signal. This can
be achieved using an XOR-gate, as shown in figure 9.2(a). The leading edge
of the enable pulse (turning the latch into hold mode) is produced when Ro
toggles (indicating the availability of new data), and the trailing edge of the
pulse is produced when Ao toggles (indicating that the downstream pipeline
stage has received and stored the data). At this point, the latch becomes
transparent again. Aiming to emphasize the similarities between the different
bundled-data templates, the design in figure 9.2(a) omits some details of the
corresponding design in [147, Fig. 14]; details that give the circuit more robust
timing properties at the cost of added latency in the control circuit. The circuit
uses simple enable latches in the datapath resulting in a relatively small circuit.

An alternative and faster design uses what we could call a “dual-level-
sensitive latch,” i.e., a pair of latches operated in a similar way as the two
flip-flops in the dual-edge-triggered flip-flop in figure 9.1(c). This circuit is

174 Chapter 9. Implementation of 2-phase bundled-data circuits

EN

EN

1

n

EN

EN

1

n

R1

A1 A2 A3

R2 R3

D1 D2 D3

Figure 9.3: A pipeline composed of two Mousetrap-based handshake latches.
The Mousetrap latch controller consisting of an XOR-gate and an enable-
latch implements the same behavior as the Micropipeline latch controller in
figure 9.2(a).

shown in figure 9.2(b). Again the schematic omits some elegant details of the
corresponding design in [147, Fig. 12] in order to emphasize the similarities
between the different bundled-data templates. In this design, the data-path
consists of two latches and a multiplexer, and in comparison with the design
in figure 9.2(a), it has a large area-overhead.

Finally, we mention that the latches in the datapath of the circuit fig-
ure 9.2(a) could be replaced by flip-flops similar to the step we took going
from figure 9.1(a) to figure 9.1(b).

Sutherlands Micropipelines paper [147] also provides implementations of a
number of additional components, for example, the toggle that we will use in
section 9.4.7, and it includes a design example – a pipelined multiplier.

9.1.3 Mousetrap

Mousetrap [137, 138] is a very elegant implementation of a 2-phase latch con-
troller capable of controlling a data-path with a normally-transparent enable-
latch. This means that the functionality is similar to the Micropipeline design
shown in figure 9.2(a). Figure 9.3 shows the implementation of a pipeline with
two Mousetrap-based handshake latches. As seen, the control circuit consists
of only an ordinary XOR-gate and an ordinary 1-bit enable latch.

The name “Mousetrap” hints to the operation of the circuit: If a transpar-
ent enable-latch is seen as an open, i.e., armed mousetrap, and if incoming data
and request is seen as a mouse, then the trap flaps when the mouse protrudes
its head through it. And the trap opens again, when the mouse is trapped in
the next downstream handshake-latch in the pipeline.

9.1. Templates for implementing 2-phase handshake latches 175

DoDi
n

Do

D Q

Phase

Click

Di
n

D Q

D Q

Ao
Ai

Ri

D Q

Ro

Click

Phase

(a) (b)

Ro
Ao

Ri
Ai

Figure 9.4: A pipeline stage (i.e., handshake latch) based on the Click-element
template.

The circuit is very fast and it avoids the use of C-elements – a component
that may not be available in some cell libraries. However, Mousetrap is only an
implementation of a 2-phase handshake latch. C-elements are still needed to
implement all the handshake components that are transparent to handshaking:
join, fork merge etc. The design of these components is not addressed in
[137, 138].

9.1.4 Click elements

The click template introduced in [126] is based on an idea originally described
in [150]. It excels by using only regular gates and edge-triggered D-flip-flops
– avoiding both C-elements and latches. There are no combinational circuit
loops; all signal paths start and end in edge-triggered flip flops. According
to the authors, this makes it more compliant with conventional CAD-tools
for synthesis and timing analysis, and the overhead of introducing scan-chains
for post-fabrication test is significantly smaller than for Micropipelines and
Mousetrap.

The implementation of a click pipeline stage is shown in figure 9.4(a). It
can be understood as follows: Assuming that the pipeline stage sits in an
initially empty pipeline where all handshake signals are low, it captures a first
data element when Ri makes a transition to 1 (i.e., when Ao = 0 ∧ Ri = 1).
The second data item is captured after both Ao and Ri have transitioned (i.e.,
when Ao = 1 ∧ Ri = 0) and the third when again Ao = 0 ∧ Ri = 1. Using
the output of a toggle flip-flop, the two and-gates detects the two alternating

176 Chapter 9. Implementation of 2-phase bundled-data circuits

conditions, each time producing a rising edge of a pulse on the click-signal.
This clocks/toggles the phase flip-flop, and through the feedback signal to the
and-gates this produces the falling edge of the pulse on the click signal. In this
way, a click-pulse is produced every time a new data item has to be captured.
The duration of the click-pulse is determined by the propagation delays in the
AND and OR gates and the flip-flop producing the phase signal.

Figure 9.4(b) shows an alternative implementation providing identical func-
tionality. The circuit can be understood by focusing on the channels. When a
channel is conveying a token from a sender to a receiver, this is indicated by
Req 6= Ack . And when the receiver acknowledges and the channel is no longer
conveying a token, this is indicated by Req = Ack . The circuit in figure 9.4(b)
produces a click-pulse when a new token is present on the input channel, and
a token is no longer present on the output channel.

Implementation of click-based versions of additional handshake compo-
nents (join, fork, merge, MUX, etc.) is also covered in [126]. We will get
back to these in section 9.4.

9.1.5 Loihi

Intel’s neuromorphic chip named Loihi uses a 2-phase bundled-data template
shown in figure 9.5 [83, 33]. It shares circuit fragments with the alterna-
tive Click template in figure 9.4(b), and with the Mousetrap template from
figure 9.3 The logic producing the clock pulse is similar to the control logic
in the alternative Click template, and the use of a transparent latch to prop-
agate Req from the input to the output is similar to Mousetrap. It uses
latches in the datapath, but where Micropipelines and Mousetrap implement
normally-transparent handshake latches, Loihi implements a normally-opaque
handshake latch. This trades some speed for a lower power consumption by
avoiding propagation of glitching signals. As we observed in section 10.3, the
power saving can be substantial.

Briefly, the operation of the circuit is as follows: When a data token is to
be received and stored in the pipeline stage, CLK goes high, and the latch in
the data path becomes transparent. After some delay (set by the PW delay
element), DCLK becomes high as well, and this makes the latch in the control
path transparent. This allows Ri to propagate and drive Ro. At the same
time, the XOR-XNOR-AND circuit drives CLK and DCLK low again.

Finally, we note that the schematic in figure 9.5 shows where delay elements
(PW, SETUP and HOLD) can be added, to increase the width of the latching
pulse and to increase setup and hold times towards a downstream neighbor
pipeline stage.

9.2. 2-phase static data-flow structures 177

D QDi
n

Do EN=0: Hold
EN=1: Transparent

D Q

EN

RoRi

Ai Ao

EN

CLK

PW

DCLK

HOLD

SETUP

Figure 9.5: The normally-opaque two-phase bundled-data pipeline stage used
in Intel’s Loihi chip.

9.2 2-phase static data-flow structures

In this section, we develop a token-bubble view of 2-phase static data-flow
structures. As will be clear from the opening discussion we have to overcome
some fundamental issues, abandon the wave propagation analogy, and take a
new viewpoint that focuses on the state of the individual handshake channels.

9.2.1 A change of viewpoint

The handshake-latch implementation-templates presented in section 9.1 are
quite different in the way they control the datapath that may use different
forms of enable latches or edge-triggered D-flip-flops. Despite these differences,
the handshaking they implement on their input and output ports is identical
to a stage in a Muller pipeline (i.e., a C-element and an inverter).

It is well known that a ring composed of Muller pipeline stages needs at
least 3 stages (C-elements) to oscillate [55, 142]. The three C-elements repeat-
edly cycles through the following sequence of states (010; 011; 001; 101; 100; 110)∗.
This oscillation can be seen as a standing wave that propagates by copying
both the crest and the tough forward with the restriction that the circuit can-
not enter states 111 and 000. Figure 9.6(a) shows such a 3-stage ring, and
Figure 9.6(b) shows the corresponding standing wave that rotates in the ring.
The ring is in state (010), and the next state is (011). The corresponding
token-bubble view is different for a 2-phase design and a 4-phase design.

In a 4-phase design, see Figure 9.6(c), the ring contains a valid token, an
empty token, and a bubble. The forward propagation of a valid token cor-
responds to the C-element in the Muller pipeline control circuit transitioning

178 Chapter 9. Implementation of 2-phase bundled-data circuits

Token

L1 L2

Token Bubble
Empty Valid Empty

L0

C C C
10 0

Token

L1 L2

Token Bubble

L0

E V E
(c)

Ack

Req Req

Ack

(a)

(b)

(d)

Figure 9.6: (a) A three-stage Muller-pipeline ring. (b) A snapshot of the
standing wave rotating in the ring. (c) When used in a circuit using 4-phase
handshaking, the ring contains a valid token, an empty token, and a bubble
(valid or empty). (d) When used in a circuit using 2-phase handshaking, the
ring contains two tokens and one bubble.

to ’1’, and the forward propagation of an empty token corresponds to the
C-element transitioning to ’0’. Seen this way, a 3-stage ring may contain one
permanently rotating wave. Such a three-stage ring containing one valid token
can be used to implement iterative computations, where the result from the
current step depends on the result from the previous step. In a 2-phase design,
see Figure 9.6(d), the ring contains two tokens and one bubble. The forward
propagation of a token is associated with a transition (rising or falling) of the
C-element in the Muller pipeline control circuit. Consequently, a three-stage
ring using C-element based control circuits – or any of the other of the 2-phase
templates discussed in this section – will contain two tokens and one bubble.

For rings in general, the message is that they can only contain an even
number of tokens, an observation originally made in [132]. This is a severe
restriction. Especially the observation that rings with a single token are not
possible, as this precludes implementation of iterative/recursive computations

9.2. 2-phase static data-flow structures 179

as for example the Fibonacci circuit from section 3.5.3 on page 38. The root
of the problem is that in all the 2-phase pipeline templates discussed in the
previous section, the request signal towards the downstream neighbor and the
acknowledge signal towards the upstream neighbor is the same signal (the
output of the C-element).

One way of implementing rings with a single token is to alternately prop-
agate a rising transition and a falling transition through the ring. This could
be done by inverting the request and acknowledge signals when the input and
output ports of a pipeline are connected to form a ring. As static data-flow
structures typically involve many coupled rings and short pipeline segments,
possibly shared by several nested rings, there are severe constraints on where
such inverters can be inserted and on how the circuits should be initialized.

An alternative and simpler approach [86] is to focus on the state of the
individual handshake channels in the circuit and to decouple the generation
of the output request and input acknowledge signals produced by a pipeline
stage. In the next section, we explore and develop this viewpoint.

9.2.2 Phase-decoupled handshaking

We now abandon the “wave propagation viewpoint” in favour of a “channel
viewpoint” that will allow us to design and implement rings with any number
of tokens.

Conceptually, in two-phase design, there is no difference between rising
and falling signal transitions. However, when it comes to implementation, the
designer has to decide on the initial signal levels. We note that in data-flow
circuits, all handshake channels are push channels, and in the following, we
adopt two policies:

P1: For all channels in a circuit, a transition on the request wire (signal-
ing that the sender conveys token) is followed by a transition on the
acknowledge wire with the same polarity (signaling that the token has
been received).

P2: All channels conveying tokens are initialized with Req = 1 and Ack =
0. All channels not conveying tokens are initialized with Req = 0 and
Ack = 0.

Following these policies, we see that the input channel to a pipeline stage
conveys a new token (from an upstream neighbor) when In req 6= In Ack
and that a token on an output channel has been received by the downstream
neighbor when Out Req = Out Ack . The use of XOR and XNOR gates in
the click control circuit in Fig. 9.4(b) implements this in a very explicit way.
However, the function of the circuits generating the click signals in Figs. 9.4(a)
and 9.4(b) are identical.

As the 2-phase static data-flow structure abstraction involves only tokens
and bubbles, rings with just two stages should possible, as should rings with

180 Chapter 9. Implementation of 2-phase bundled-data circuits

(a)

(b)

(c)

(d)

token

1 1
000 1 0 0 0 1

bubble bubble token

1

token

0 00 1
bubble

L0 L1

1

token

0 1

L0

0 0
bubble

L1

0 0
bubble

L2

token

0 1

L0

0

L1

0 0
bubble

L2

1
token

12

L0 L1 L2 L3

barrier

barrier barrier

barrier

barrier

barrier

Figure 9.7: (a) a two-stage ring with one token and one bubble, (b) a three-
stage ring with one token and two bubbles, (c) a three-stage ring with two
tokens and one bubble and (d) a two-phase version of the Fibonacci circuit.

an odd number of tokens. To illustrate this, and to illustrate the use of policies
P1 and P2, figure 9.7 shows a number of possible 2-phase data flow structures:
(a) a two-stage ring with one token and one bubble, (b) a three-stage ring with
one token and two bubbles, (c) a three -stage ring with two tokens and one
bubble, and (d) a two-phase version of the Fibonacci circuit. The channels
are annotated with the initial values of the handshake signals – request at the
sender’s end and acknowledge at the receiver’s end.

Finally, a note on initialization: A circuit must be reset to a state where
state-holding elements produce handshake signals with the initial values (as
shown in for example figure 9.7) and where latches in the data path that
initially hold tokens are set to the desired initial values. In order to safely bring
the circuits out of reset and into normal operation, we introduce (where needed
in order to keep the circuit “frozen” in its initial state), a barrier on channels
that initially propagate tokens – the dashed lines in figure 9.7. These barriers
are controlled by a global go-signal, and they block the request signals on the
corresponding channels. In this way, reset can be de-asserted, possibly with
some skew, before the go-signal is asserted, and the circuit starts operating.
According to policy P2, a channel propagating a token has the request signal

9.2. 2-phase static data-flow structures 181

C C&SETUP

HOLD

HOLD

SETUP

Barrier

EN EN

Reset Reset

(1)

Stage 2

1

Bubble

Reset

Token

En2 (0)En1 (1)

C1 (0) C2 (0)

(0)

R2 (0)

I1 (0)

I2 (0)

R1 (0)

Go (0)

[1]

[0]

[0]

[0]

Stage 1

Figure 9.8: Micropipeline implementation of a phase-decoupled 2-stage ring.

set to high. This means that the barrier must output a request signal that is
low. An AND-gate is used to implement this forcing to zero.

9.2.3 Phase-decoupled handshake latches

The structures shown in figure 9.7 can be built from two types of pipeline
stages: those containing tokens and those containing bubbles. The latter can
be implemented using the templates shown in figures 9.2, 9.3, 9.4, and 9.5,
initialized such that all handshake signals and state-holding elements driving
these handshake signals are initialized low. For stages holding tokens, we use
the very same implementation and initialization, with inverters added to the
request and acknowledge signals in the output channel, and with an and gate
to implement a barrier that blocks the propagation of the token until the
signal go is asserted. Figure 9.8 shows such a phase-decoupled Micropipeline
implementation of the two-stage ring from figure 9.7(a). The latch in the data-
path of the first stage is holding data (a token) and must be reset to contain
the desired value. The latch in the datapath of the second stage is transparent.

It is interesting to note that the control circuit is delay insensitive and
capable of iterating with only two stages. The reader may want to verify delay
insensitivity, by showing that a corresponding circuit where all ends of forking
wires are modeled by components (delay elements and inverters) is speed inde-
pendent. This can be done using the tool WorkCraft (see http://workcraft.org/).
A model of the circuit involves six signals: Ignoring inversions output signal
C1 from the C-element in stage 1 is forked as signals I2 and R2, and output

182 Chapter 9. Implementation of 2-phase bundled-data circuits

signal C2 from the C-element in stage 2 is forked as signals I1 and R1.
As all the implementation styles we have described, handshakes in the exact

same way they could all be used in place of the Micropipeline stages 1 and 2
in figure 9.8. There are, however, fundamental differences when it comes to
controlling the latches or flip-flops in the datapath.

The Mousetrap and Micropipeline templates use transparent latches in the
datapath, and there is a potential risk that the data-latches in Stage 1 and
Stage 2 are both transparent at the same time. In the circuit in figure 9.8
when go is asserted, the C-element in stage 2 will switch to “1”. This causes
two simultaneous events: the data latch in Stage 2 becomes opaque (holding
data), and the data latch in Stage 1 becomes transparent. In order to tolerate
some timing skew, it would be desirable if the latch receiving a token, becomes
opaque sometime before the latch that provides the token becomes transparent.
This can be controlled by increasing the delay of the delay elements marked
“hold” in figure 9.8.

For Loihi and Click, the situation is more relaxed. Loihi uses a normally-
opaque latch in the data-path, and the width of the pulse controlling the latch
is short and determined by a delay element in the circuit itself. Click uses
edge-triggered flip-flops in the data path, and these are clocked by a pulse
whose width is determined by gate-delays within the circuit itself.

For Click, there is an alternative implementation offering phase-decoupled
handshaking and initialization in a way that is more intuitive and simpler to
use than inserting inverters in the circuit. This phase-decoupled click circuit
will be introduced in the next section.

9.3 Design examples: FIB and GCD

In this section, we illustrate the use of the components and the design method-
ology by showing and explaining the design and implementation of two small
circuits that contain multiple coupled rings and pipeline segments. Both cir-
cuits have been implemented and tested on the Nexys4DDR FPGA-board,
and the code is available in a Git-repository [61].

9.3.1 Fibonacci sequence generator (FIB)

The Fibonacci circuit has no inputs; it simply computes and outputs the se-
quence of Fibonacci numbers (0, 1, 1, 2, 3, 5, . . .). Our implementation using
phase-decoupled two-phase handshake components is shown in Fig. 9.9. The
figure also shows the initial state of the circuit and the use of fused compo-
nents. A matched delay is only required in the function block (CL0) since the
LUTs generating the click signals in the other components provide sufficient
delay margins.

The circuit is initialized with a token in each of the two Register+Fork
components. The design consists of two nested rings: an inner ring containing

9.3. Design examples: FIB and GCD 183

1

RF0

0

0

RF1 0

+

0
0

1
1

0

0
0

R0

J0

1

CL0 Barrier

Figure 9.9: Schematic of the Fibonacci circuit. The component in dashed
lines shows a more straight-forward implementation of the circuit.

RF0→ J0→CL0→R0 and an outer ring containing the same components and
handshake register RF1. The inner ring has two handshake registers and one
token. The outer ring has three handshake registers and two tokens. By
following policy P2, we can ensure the correct initialization of both rings.
Notice that the schematic shows no annotations on the input channels of join
J0, our passive join simply forwards the acknowledge signal from the output
channel to the two input channels (without any buffering). This acknowledge
signal is produced by handshake register R0.

When the go signal is asserted, and the barrier opens, the circuit starts:
J0 joins the tokens from RF0 and RF1, and the resulting (single) token spreads
across the J0, CL0 (the adder) and into R0. At the same time, the environment
consumes (a forked copy of) the token in RF1. This spread-token operation is
mentioned/assumed in [142], and studied in detail in [141]. We have chosen this
design instead of the more straight-forward implementation (with an additional
click stage shown using dashed lines in Fig. 9.10) to illustrate better the spread
token semantics (illustrated in the Git repository [61]).

9.3.2 Greatest common divisor (GCD)

The greatest common divisor (GCD) circuit shown in Fig. 9.10 was designed
after [142, Sec. 3.7] with small modifications. As we use two-phase handshak-
ing, we need fewer handshake registers. In addition, we use a Merge instead
of a MUX at the end of the if-then-else construct. The circuit is initialized
according to policies P1 and P2 with a token (with value ’1’) in handshake
register R0 and with bubbles in the remaining handshake registers. The circuit
has no barrier since, after reset, it waits for a token on the input channel.

Notice that R0 has different phases on the input and output channels. This
is because the ring MX0→RF0→ F0→R0 has a single token. The other rings in
this circuit are: MX0→RF0→DX0→RF1→DX1→ME0 and MX0→RF0→ F0→
DX0→RF1→DX1→ME0. In all of the rings, the tokens eventually get spread

184 Chapter 9. Implementation of 2-phase bundled-data circuits

A != B

0

RESULT

A > B

A-B

B-A

0

1

1

0

1

0

0

0

0

0 0

0

0

0

0
0

0

0

0
0

0

0

RF0MX0
CL0 DX0

DX1

CL1

ME0

0

0
0

0

R0

RF1

F0

A,B
0 0

0

1

CL2

CL3 0

0

Figure 9.10: Schematic of the GCD circuit.

across several components, as seen in the step-wise illustration provided in the
Git repository [61].

9.4 Phase-decoupled click components

In this section, we present phase-decoupled Click implementations of all the
handshake components from figure 3.3 on page 32. The material is based
on [86]. As all the components are implemented using “ordinary” gates and
edge-triggered D-flip-flops, it is relatively straightforward to provide FPGA-
implementations and allowing easy prototyping of asynchronous circuits.

9.4.1 The handshake latch

Instead of adding inverters to stages initially holding tokens, a second phase
flip-flop is added, see figure 9.11. In this way, the request on the input channel
and the acknowledgement on the output channel are decoupled and driven
directly by phase-flip-flops initialized according to the values annotated to the
data-flow schematics, see figure 9.7. The shaded rectangles indicate combina-
tional logic that is implemented in a single LUT in an FPGA. Three LUTs are
needed: one for computing the click-signal and two to invert the two phase-
signals.

9.4. Phase-decoupled click components 185

DoDi
n

D Q

D QD Q

DoDi
n

D Q

Ro
Ao

Ri
Ai

Click

Pi Po

D Q

Click

Phase

Ro
Ao

Ri
Ai

(a) (b)

Figure 9.11: (a) The Click template from figure 9.4. (b) The phase-decoupled
Click template using separate phase flip-flops to generate In Ack and Out Req .
The two phase flip-flops, Pi and Po are initialized to produce the handshake
signals with the desired initial values, e.g., the values annotated to the channels
in data-flow schematics, as in figure 9.7.

The click pulse has a very short duration. If desired, the pulse-width can
be increased by delaying the self-resetting of the control circuit. This can be
done by adding a delay to the click signal (delaying the clocking of phase and
data flip-flops) or by adding a delay after one of the phase-flip-flops (delaying
In ack or Out req).

9.4.2 Function blocks and delay elements

A function block in a bundled data circuit is an ordinary combinatorial circuit
extended with a request and an acknowledge signal. Request must be delayed
for longer than the propagation delay in the combinatorial circuit. In 2-phase
design, there is no return-to-zero signaling, all transitions of request are events
signaling the availability of new data. For this reason, delay elements in func-
tion blocks must be symmetric delay elements.

9.4.3 Join and Fork

Simple and straightforward implementations of the join and fork components
are shown in Fig. 9.12. They are textbook implementations [142, Sect. 5.2]
using a click-circuit to implement the functionality of C-element.

Following design policies P1 and P2, the simple join in Fig. 9.12 can always
be used. The phase flip-flop is initialized according to the state of the input
and output channels. Because the component is transparent to handshaking,
these are guaranteed to be in phase. Again, the shaded rectangles indicate
combinational logic that is implemented in a single LUT in an FPGA.

186 Chapter 9. Implementation of 2-phase bundled-data circuits

P

InA_Req

OutC_Ack
InA_Ack

InB_Ack

OutC_Req
InB_Req

P

InA_Ack

InA_Req
OutB_Req
OutC_Req
OutB_Ack
OutC_Ack

(a) (b)

Figure 9.12: (a) Fork. (b) Join.

9.4.4 Merge

The implementation of the Merge is shown in Fig. 9.13. It assumes mutually
exclusive inputs and therefore uses separate phase-flip-flops (denoted Pa and
Pb) in the input ports. As the input and output phase flip-flops are clocked
by separate signals, the circuit also needs a separate phase flip-flop (denoted
Pc) in the output port.

The circuit functions as follows: A transition on either InA Req or InB Req

asserts either Sel A or Sel B, and the multiplexor propagates the proper input
data to the output (Out Data). This also creates a rising edge on the signal
click out, which causes a transition on Out Req. Finally, this creates a (silent)
falling transition on signal click in. When the right-hand environment later
acknowledges by transitioning signal Out Ack, this causes a rising edge on signal
click in. This clocks both Pa and Pb and causes a transition on InA Ack if the
operation of the merge started by a transition InA Req or a transition on InB Ack

if the operation of the merge started by a transition of InB Req.

This way of using a phase-flip-flop to produce an acknowledge based on
the corresponding request is a small variation that we prefer instead of the
clock-gating used in the buffered Merge in [126] and the plain Merge described
in [81]. The problem with a gated clock is that it is produced by an AND-gate
requiring the gating signal to be stable in a time window enclosing the period
where the clock signal is high. Our solution avoids this timing requirement.

9.4. Phase-decoupled click components 187

sel_b

Pc

Pa

Pb

InA_Ack
InA_Req

InB_Req

InB_Ack

InA_Data

InB_Data
OutC_Datan

n

n

sel_a

OutC_Req
OutC_Ack

click_in

click_out

Figure 9.13: Merge

9.4.5 MUX and DEMUX

The MUX and DEMUX components are used to implement conditional flow
control, and their implementation is shown in Figs. 9.14 and 9.15. The MUX
has two input channels (InA, InB), a selection (input) channel for choosing
between InA and InB, and an output channel (OutC). Figure 9.14 shows the im-
plementation of the MUX. The phase flip-flops Pa, Pb and Ps are all clocked on
every transition of the incoming acknowledge by the same signal derived from
the function OutC Req = OutC Ack. The phase flip-flop Pc drives the request
signal of the output channel (signal OutC req), and it is toggled whenever there
is a token on the selector channel and the selected input. Similar to the Merge,
the MUX has phase-decoupled channels due to the nature of its function.

Figure 9.15 shows the implementation of the DEMUX (inspired by [81]).
It has two input channels (InA and InSel) and two output channels (OutB and
OutC). The component joins the two inputs and produces an output on the
selected channel. Similar to the MUX, the DEMUX has multiple internal
phase flip-flops. The phase flip-flops Pb and Pc are clocked when both request
signals on the input channels transition. Phase flip-flop Pa (participating on
the input channel handshakes) is clocked whenever an acknowledge is received
(as indicated by the following expression: OutB Ack = OutB Req) ∧ (OutC Ack

= OutC Req). Again, we prefer this style of clocking to the gated clocking used
in the components described in [126, 81].

188 Chapter 9. Implementation of 2-phase bundled-data circuits

Pc

Ps

Pa

OutC_Data
InB_Data
InA_Data

0 nn

n 1

InSel_Ack
InSel_Req

InA_Req

InB_Req

InA_Ack

InB_Ack

OutC_Req
OutC_Ack

InSel_Data

Pb

click_in

click_out

Figure 9.14: MUX

9.4.6 Peephole optimizations

It is possible to reduce the hardware cost of a circuit by performing peephole
optimizations where certain combinations of handshake components are sub-
stituted by a single fused circuit. All of these optimizations involve merging
handshake registers and one or more of the passive components. The original
click-paper [126] showed how easy it is to extend the click-based handshake
register with join-functionality on the input and fork functionality on the out-
put. The same is the case for the phase-decoupled handshake register. Below
we describe a range of such fused components.

The schematic symbols for a handshake register fused with a Join or with
a Fork are shown in Fig. 9.16, and Fig. 9.17 shows the implementation of
a fused Join+Register+Fork circuit with two input channels and two output
channels. For simplicity, the figure shows a design with separate phase flip-

9.4. Phase-decoupled click components 189

OutC_Req
OutC_Ack

InSel_Data

Pb

Pc

Pa

InSel_Ack
InSel_Req

InA_Req
InA_Ack

OutB_Req
OutB_Ack

OutC_Data

OutB_Data
InA_Data n

n

n

click_out
click_in

Figure 9.15: DEMUX

Register+ForkJoin+Register Join+Register+Fork

Figure 9.16: Schematic symbols for a handshake register fused with a Join
and/or a Fork.

flops for each input and output channel. As all phase flip-flops are clocked
by the same signal, at most two-phase flip-flops are needed – phase flip-flops
initialized to the same value can share a single flip-flop. It is easy to see how
input and output channels can be dropped from or added to the circuit by
dropping or adding XOR or XNOR gates.

In a similar way, it is possible to fuse a handshake register with a Merge
or a MUX or a DEMUX, but as discussed in [86] these fused components
are only marginally smaller and faster than direct compositions of the basic
components, and we do not describe them here. Another idea is to fuse com-
ponents that implement a complete pipeline stage, i.e., to implement a fused
Join+CombinatorialLogic+Register+Fork circuit. This could be done by fus-
ing the Join and the Fork into the handshake register. In the general case,
where nothing is known about the surrounding circuitry, this would require
a matched delay element for each input channel, rather than a single delay
element matching the combinatorial circuit. As matched delay elements are

190 Chapter 9. Implementation of 2-phase bundled-data circuits

PdPcPb

D

InA_Req
InA_Ack

nn

Pa

InB_Req
InB_Ack

OutC_Req
OutC_Ack

OutD_Req
OutD_Ack

InA_Data OutC_Data

OutD_DataInB_Data

Figure 9.17: Implementation of a phase-decoupled fused Join+Register+Fork
component with two input channels (A and B) and two output channels (C
and D).

quite expensive to implement, we do not describe them here.

9.4.7 Mutual exclusion and arbitration

In section 5.10, we presented the implementation of 4-phase versions of a
mutual exclusion element and a two-way arbiter. Below we provide 2-phase
click-style implementations of these.

For the 4-phase Mutex we note that the request inputs convey two events:
When a request signal is asserted, this signals that the client requests the
shared resource administered by the Mutex, and when the same request signal
is de-asserted, it signals that the client has released the resource. In a 2-phase
design, lacking the return-to-zero signaling, a separate “done” signal is needed
to signal the latter. In Kinniment’s book [78, p. 215], such a Mutex is called
an RGD (request-grant-done) Mutex. The book also shows the design of a
two-way arbiter using the RGD-mutex. The same RGD-mutex designs were
studied earlier in [123, sec. 3.3.8]. Figure 9.18 shows the two implementations
of the RGD-mutex presented in [123]. They are both built around the 4-phase
mutex from figure 5.28. Figure 9.18(b) shows a simple design that assumes a
client will not produce a new request until the 4-phase mutex has de-asserted
the grant signal related to a previous request by the same client. A more robust
implementation is shown in figure 9.18(c). This design gates the request from
a client using a signal that explicitly detects when the 4-phase mutex has de-
asserted the grant signal related to a previous request by the same client. The

9.5. Prototyping using FPGAs 191

M
U

T
E

X

EN

r1

r2

g1

g2

EN
G1

C

C
M

U
T

E
X

r1

r2

g1

g2

G1

M
U

T
E

X
R

G
D

d1

r1 g1

g2

d2

r2

R1

D1

D1

R2

G2

R1

D1

G2D1

R2

g1 released

g2 released

Toggle

EN=1: Transparent
EN=0: Holding

(c)

(b)(a)

Figure 9.18: (a) Component symbol for a 2-phase RGD mutex. (b) A simple
implementation assuming that a client does not issue another request until the
mutex has released grant related to the previous request. (c) A safe design
that explicitly enforces this ordering.

toggle is a component that relays events on the input to one of the outputs in
an alternating fashion, starting with the output marked with a dot [147].

By combining a click-style implementation of the safe RGD-mutex and a
click-based merge from figure 9.13, see figure 9.19, we obtain a 2-phase click-
style implementation of a two-way arbiter, similar to the 4-phase version in
figure 5.29.

9.5 Prototyping using FPGAs

If the material in this book is used to teach asynchronous design, it is desirable
that students can build and operate circuits in practice. To support this, we
provide an on-line repository [61] containing: (a) Schematics and synthesizable
VHDL source code for all the handshake components. More details on this may
be found in [86]. (b) Schematics and source code for the Fibonacci and GCD
examples from section 9.3, including VHDL test-benches for simulation. (c) A
sequence of snapshots of the schematics illustrating the token-flow operation
of the circuits.

Both circuits have been simulated and synthesized using Xilinx Vivado and

192 Chapter 9. Implementation of 2-phase bundled-data circuits

M
U

T
E

X
R

G
D

r1

d1

d2

g2

g1

r2

a1

r1

a1

r1

RO

AO

R1

A1

R2

A2

M
e

rg
e

M
U

T
E

X
r1

r2

g1

g2

R1

A1

R2

A
R

B
IT

E
R

RO

AO

A2

D Q D Q

D QD Q

D Q

D Q D Q

D Q

D Q

ro

ao

(b)

g1 released

g2 released

(c)

A1

R1

R2

A2

RO

(a)

AO

Figure 9.19: (a) A 2-phase click-style two-way arbiter can be implemented by
combining a safe RGB-mutex and a click-style merge. (b) Schematic of the
full arbiter circuit.

implemented on a Digilent Nexys4DDR FPGA-board and on a Basys 3 board
(both boards have a Xilinx Artix 7 chip). The circuits have been operated
manually. Input channels are implemented using a debounced pushbutton for
the request signal, a set of switches for the data, and an LED for the acknowl-
edge signal. Output channels are implemented using LEDs for the request
signal and the data signals, and a debounced pushbutton for the acknowledge
signal. The corresponding XDC-files (constraint files specifying the pinout)
are included in the design sources in the GitHub repository. In the component
source files, the ”DONT TOUCH” attribute is set for combinational signals
and registers, to force the place and route tool to keep the signals. Therefore,
a minimal project setup is necessary for using the designs.

A post-synthesis timing simulation of the Fibonacci circuit is shown in
Figure 9.20. The first five signals show the environment signals. Below these,
some selected internal signals are also plotted and grouped by component. A
file showing a similar simulation of the GCD circuit is included in the GitHub
repository.

9.5. Prototyping using FPGAs 193

Figure 9.20: Fibonacci example - Post-synthesis timing simulation

194 Chapter 9. Implementation of 2-phase bundled-data circuits

Chapter 10

Advanced 4-phase
bundled-data
protocols and circuits

Earlier chapters have covered the basics of 4-phase bundled-data circuits.
In this chapter, we broaden the perspective and introduces a variety of chan-
nel types and handshake protocols with different data-validity schemes. The
corresponding latch control circuits are very useful in optimizing the circuits
for area, power and speed, and they are nice examples of the types of control
circuits that can be specified and synthesized using the STG-based techniques
from chapter 6.

Today, the newer 2-phase bundled-data circuit templates described in chap-
ter 9 (e.g., Mousetrap, Click and Loihi) have gained popularity, and are more
widely used.

10.1 Channels and protocols

10.1.1 Channel types

So far we have considered only push channels where the sender is the active
party that initiates the communication of data, and where the receiver is the
passive party. The opposite situation, where the receiver is the active party
that initiates the communication of data, is also possible, and such a channel
is called a pull channel. A channel that carries no data is called a nonput
channel and is used for synchronization purposes. Finally, it is also possible
to communicate data from a receiver to a sender along with the acknowledge

195

196
Chapter 10. Advanced 4-phase bundled-data

protocols and circuits

signal. Such a channel is called a biput channel. In a 4-phase bundled-data
implementation, data from the receiver is bundled with the acknowledge, and
in a 4-phase dual-rail protocol, the passive party will acknowledge the reception
of a codeword by returning a codeword rather than just an acknowledge signal.
Figure 10.1 illustrates these four channel types (nonput, push, pull, and biput)
assuming a bundled-data protocol. Each channel type may, of course, use any
of the handshake protocols (2-phase or 4-phase) and data encodings (bundled-
data, dual-rail, m−of−n, etc.) introduced previously.

10.1.2 Data-validity schemes

For the bundled-data protocols, it is also relevant to define the time interval
in which data is valid, and figure 10.2 illustrates the different possibilities.

For a push channel, the request signal carries the message “here is new
data for you,” and the acknowledge signal carries the information “thank you,
I have absorbed the data, and you may release the data wires.” Similarly, for
a pull channel, the request signal carries the message “please send new data,”
and the acknowledge signal carries the message “here is the data that you
requested.” It is the signal transitions on the request and acknowledge wires
that are interpreted in this way. A 4-phase handshake involves two transitions
on each wire and, depending on whether it is the rising or the falling transitions
on the request and acknowledge signals that are interpreted in this way, several
data-validity schemes emerge: early, broad, late and extended early.

Since 2-phase handshaking does not involve any redundant signal transi-
tions, there is only one data-validity scheme for each channel type (push or
pull), as illustrated in figure 10.2.

It is common to all of the data-validity schemes, that the data is valid some
time before the event that indicates the start of the interval, and that data
remains stable until some time after the event that indicates the end of the in-
terval. Furthermore, all of the data-validity schemes express the requirements
of the party that receives the data. The fact that a receiver signals “thank you,
I have absorbed the data, and you may go ahead and release the data wires,”
does not mean that this happens – the sender may prolong the data-validity
interval. The receiver may even rely on this.

A typical example of this is the extended-early data-validity schemes in
figure 10.2. On a push channel, the data-validity interval begins sometime
before Req ↑ and ends sometime after Req ↓.

10.1.3 Discussion

The above classification of channel types and handshake protocols stems mostly
from Peeters’ Ph.D. thesis [127]. The choice of channel type, handshake pro-
tocol, and data-validity scheme affects the implementation of the handshake
components in terms of area, speed, and power. Just as a design may use a

10.1. Channels and protocols 197

n

Data

Ack

Req

n

Ack

Req

Req

Data

Data

Ack

Nonput channel

Data

Ack

Req

Biput channel (bundled data)

Pull channel (bundled data)

Push channel (bundled data)

Figure 10.1: The four fundamental channel types: nonput, push, biput, and
pull.

Data (early)

Data (early)

4−phase protocol:

(push channel)

2−phase protocols:

4−phase protocol:

(pull channel)

Ack

Req

Data (pull channel)

Data (push channel)

Ack

Req

Data (broad)

Data (late)

Data (extended early)

Ack

Req

Data (broad)

Data (late)

Data (extended early)

Figure 10.2: Data-validity schemes for 2-phase and 4-phase bundled data.

198
Chapter 10. Advanced 4-phase bundled-data

protocols and circuits

mix of different bundled-data and dual-rail protocols, it may also use a mix of
channel types and data-validity schemes.

For example, a 4-phase bundled-data push channel using a broad or an
extended-early data-validity scheme is a very convenient input to a function
block that is implemented using precharged CMOS circuitry. The request
signal may directly control the precharge and evaluate transistors because the
broad and the extended-early data-validity schemes guarantee that the input
data is stable during the evaluate phase.

Another interesting option in a 4-phase bundled-data design is to use func-
tion blocks that assume a broad data validity scheme on the input channel and
that produce a late data validity scheme on the output channel. Under these
assumptions, it is possible to use a symmetric delay element that matches only
half of the latency of the combinatorial circuit. The idea is that the sum of
the delay of Req ↑ and Req ↓ matches the latency of the combinatorial circuit,
and that Req ↓ indicates valid output data. In [127, p.46], this is referred to
as true single phase because the return-to-zero part of the handshaking is no
longer redundant. This approach also has implications for the implementation
of the components that connect to the function block.

It is beyond the scope of this text to enter into a discussion of where and
when to use the different options. The interested reader is referred to [127, 84]
for more details.

10.2 Static type checking

When designing circuits, it is useful to think of the combination of channel
type and data-validity scheme as being similar to a data type in a program-
ming language, and to do static type checking of the circuit being designed
by asking questions like: “what types are allowed on the input ports of this
handshake component?” and “what types are produced on the output ports
of this handshake component?”. The latter may depend on the type that was
provided on the input port. A similar form of type checking for synchronous
circuits using two-phase non-overlapping clocks has been proposed in [116] and
used in the Genesil silicon compiler [69].

Figure 10.3 shows a hierarchical ordering of the four possible types (data
validity schemes) for a 4-phase bundled-data push channel: “broad” is the
strongest type, and it can be used as input to circuits that require any of the
weaker types. Similarly, “extended early” may be used where only “early” is
required. Circuits that are transparent to handshaking (function blocks, join,
fork, merge, mux, demux) produce outputs whose type is at most as strong
as their (weakest) input type. In general, the input and output types are the
same, but there are examples where this is not the case. The only circuit that
can produce outputs whose type is stronger than the input type is a latch. Let
us look at some examples:

10.3. More advanced latch control circuits 199

"broad"

"extended early"

"late""early"

Figure 10.3: Hierarchical ordering of the four data-validity schemes for the
4-phase bundled-data protocol.

• A join that concatenates two inputs of type “extended early” produces
outputs that are only “early.’

• From the STG fragments in figure 6.21 on page 118, it may be seen that
the simple 4-phase bundled-data latch controller from the previous chap-
ters (figure 2.9 on page 18) assumes “early” inputs and that it produces
“extended-early” outputs.

• The 4-phase bundled-data MUX design in section 6.8.3 assumes “ex-
tended early” on its control input (the STG in figure 6.25 on page 121
specifies stable input from CtlReq+ to CtlReq−).

The reader is encouraged to continue this exercise and perhaps draw the as-
sociated timing diagrams from which the types of the outputs may be deduced.
The type checking explained here is a very useful technique for debugging cir-
cuits that exhibit erroneous behavior.

10.3 More advanced latch control circuits

In previous chapters, we have only considered 4-phase bundled-data handshake
latches using a latch controller consisting of a C-element and an inverter (fig-
ure 2.9 on page 18). In [44], this circuit is called a simple latch controller, and
in [84], it is called an un-decoupled latch controller.

When a pipeline or FIFO that uses the simple latch controller fills, every
second handshake latch will be holding a valid token, and the other half will
be holding empty tokens, as illustrated in figure 10.4(a) – the static spread of
the pipeline is S = 2.

This token picture is a bit misleading. The empty tokens correspond to
the return-to-zero part of the handshaking, and in reality, the latches are not
“holding empty tokens” – they are transparent, and this represents a waste of
hardware resources.

Ideally, one would want to store a valid token in every level-sensitive latch
as illustrated in figure 10.5 and just “add” the empty tokens to the data stream
on the interfaces as part of the handshaking. In [44], Furber and Day explain

200
Chapter 10. Advanced 4-phase bundled-data

protocols and circuits

(a)

Ack

Req

Data

Ack

Req

EN

L Data

(b)

EN

L

EN

L

EN

L

EN

L

EN

L

E D3 E E D1D2

C C CCCC

Figure 10.4: (a) A FIFO based on handshake latches, and (b) its implemen-
tation using simple latch controllers and level-sensitive latches. The FIFO fills
with valid data in every other latch. A latch is transparent when EN = 0 and
it is opaque (holding data) when EN = 1.

control
Ack
Req

Data

Ack
Req

DataD3 D2 D1

EN EN EN

Latch Latch Latch
control control

Figure 10.5: A FIFO where every level-sensitive latch holds valid data when
the FIFO is full. The semi-decoupled and fully-decoupled latch controllers
from [44] allow this behavior.

the design of two such improved 4-phase bundled-data latch control circuits:
a semi-decoupled and a fully-decoupled latch controller. In addition to these
specific circuits, the paper also provides a nice illustration of the use of STGs
for designing control circuits following the approach explained in chapter 6.
The three latch controllers have the following characteristics:

• The simple or un-decoupled latch controller has the problem that new in-
put data can only be latched when the previous handshake on the output
channel has completed, i.e., after Aout↓. Furthermore, the handshakes
on the input and output channels interact tightly: Rout↑ � Ain↑ and
Rout↓ � Ain↓.

• The semi-decoupled latch controller relaxes these requirements some-
what: new inputs may be latched after Rout↓, and the controller may
produce Ain↑ independently of the handshaking on the output channel –
the interaction between the input and output channels has been relaxed
to: Aout↑ � Ain↑.

10.3. More advanced latch control circuits 201

Latch controller Static spread, S Period, P
“Simple” 2 2Lr + 2Lf.V
“Semi-decoupled” 1 2Lr + 2Lf.V
“Fully-decoupled” 1 2Lr + Lf.V + Lf.E

Table 10.1: Summary of the characteristics of the latch controllers in [44].

• The fully-decoupled latch controller further relaxes these requirements:
new inputs may be latched after Aout↑ (i.e., as soon as the downstream
latch has indicated that it has latched the current data), and the hand-
shaking on the input channel may complete without any interaction with
the output channel.

Another potential drawback of the simple latch controller is that it is unable
to take advantage of function blocks with asymmetric delays, as explained in
section 7.7 on page 136. The fully-decoupled latch controller presented in [44]
does not have this problem. Due to the decoupling of the input and output
channels, the critical cycle in a timed Petri net model only visits nodes related
to two neighboring pipeline stages, and the period, P , becomes minimum (c.f.
section 7.7). Table 10.1 summarizes the characteristics of the simple, semi-
decoupled and fully-decoupled latch controllers.

All of the latch controllers mentioned above are “normally transparent,”
and this may lead to excessive power consumption because inputs that make
multiple transitions before settling will propagate through several consecutive
pipeline stages. By using “normally opaque” latch controllers, every latch will
act as a barrier. If a handshake latch that is holding a bubble is exposed to a
token on its input, the latch controller switches the latch into the transparent
mode, and when the input data have propagated safely into the latch, it will
switch the latch back to the opaque mode in which it will hold the data. In the
design of the asynchronous MIPS processor reported in [20], we experienced
approximately a 50 % power reduction when replacing normally transparent
latch controllers by normally opaque latch controllers.

Figure 10.6 shows the STG specification and the circuit implementation
of the normally opaque latch controller used in [20]. As seen from the STG,
there is quite a strong interaction between the input and output channels,
but the critical cycle in a timed Petri net model only visits nodes related
to two neighbouring pipeline stages, and the period is minimum. It may be
necessary to add some delay into the Lt+ toRout+ path in order to ensure that
input signals have propagated through the latch before Rout+. Furthermore,
the duration of the Lt = 0 pulse that causes the latch to be transparent is
determined by gate delays in the latch controller itself, and the pulse must be
long enough to ensure safe latching of the data. The latch controller assumes
a broad data-validity scheme on its input channel, and it provides a broad
data-validity scheme on its output channel.

202
Chapter 10. Advanced 4-phase bundled-data

protocols and circuits

C

CC

C

++
++

B

EN

Rin+ Rout+

Ain+

Rin−

Ain− Aout−

Rout−

Aout+

Lt−

B+

B−

Lt+

Lt = 1: Latch is opaque (holding data)

Lt = 0: Latch is transparent

Lt

Rout

AoutRin

Ain

L
a
tc

h

Lt

Rin

Ain

Rout

Aout

Din Dout

Figure 10.6: The STG specification and the circuit implementation of the
normally opaque fully-decoupled latch controller from [20].

10.4 Summary

This chapter introduced a selection of channel types, data-validity schemes
and a selection of latch controllers. The presentation was rather brief; the aim
was just to present the basics and to introduce some of the many options and
possibilities for optimizing the circuits. The interested reader is referred to
the literature for more details.

Finally a warning: the static data-flow view of asynchronous circuits pre-
sented in chapter 3 (i.e., that valid and empty tokens are copied forward con-
trolled by the handshaking between latch controllers) and the performance
analysis presented in chapter 4 assume that all handshake latches use the
simple normally transparent latch controller. When using semi-decoupled or
fully-decoupled latch controllers, it is necessary to modify the token flow view,
and to rework the performance analysis. To a first order, one might substitute
each semi-decoupled or fully-decoupled latch controller with a pair of simple
latch controllers. Furthermore, a ring need only include two handshake latches
if semi-decoupled or fully-decoupled latch controllers are used.

Chapter 11

High-level languages and
tools

This chapter addresses languages and CAD tools for the high-level mod-
eling and synthesis of asynchronous circuits. The aim is briefly to introduce
some basic concepts and a few representative and influential design methods.
The interested reader will find more details elsewhere in this book (in Part II
and chapter 13) as well as in the original papers that are cited in the text. In
the last section, we address the use of VHDL for the design of asynchronous
circuits.

11.1 Introduction

Almost all work on the high-level modeling and synthesis of asynchronous cir-
cuits is based on the use of a language that belongs to the CSP family of
languages, rather than one of the two industry-standard hardware description
languages, VHDL and Verilog. Asynchronous circuits are highly concurrent,
and communication between modules is based on handshake channels. Conse-
quently a hardware description language for asynchronous circuit design should
provide efficient primitives supporting these two characteristics. The CSP lan-
guage proposed by Hoare [59, 60] meets these requirements. CSP stands for
“Communicating Sequential Processes,” and its key characteristics are:

• Concurrent processes.

• Sequential and concurrent composition of statements within a process.

• Synchronous message passing over point-to-point channels (supported
by the primitives send, receive, and – possibly – probe).

203

204 Chapter 11. High-level languages and tools

CSP is a member of a large family of languages for programming of con-
current systems in general: OCCAM [70], LOTOS [120, 12], and CCS [99],
as well as languages defined specifically for designing asynchronous circuits:
Tangram [115, 153], CHP [90], and Balsa [5, 6]. Further details are presented
elsewhere in this book on Tangram (in Part III, chapter 13) and Balsa (in Part
II).

In this chapter, we first take a closer look at the CSP language constructs
supporting communication and concurrency. This will include a few sample
programs to give a flavor of this type of language. Following this, we briefly
explain two somewhat different design methods that both take a CSP-like
program as the starting point for the design:

• At Philips Research Laboratories, van Berkel, Peeters, Kessels, et al.
developed a proprietary language, Tangram, and an associated silicon
compiler [115, 155, 153, 127]. Using a process called syntax-directed
compilation, the synthesis tool maps a Tangram program into a struc-
ture of handshake components. Using these tools, several significant
asynchronous chips were designed within Philips [157, 158, 159, 76, 77].
The last of these was a smart-card circuit that is described in [142,
Chap. 13].

• At Caltech, Prof. Martin developed the language CHP (Communicating
Hardware Processes), and a set of tools that supports a partly manual,
partly automated design flow that targets highly optimized transistor-
level implementations of QDI 4-phase dual-rail circuits [89, 92]. Recently,
Prof. Manohar at Yale University has made similar tools available as
open source.

CHP has a syntax that is similar to CSP (using various special symbols)
whereas Tangram has a syntax that is more like a traditional programming
language (using keywords), but in essence, they are both very similar to CSP.

In the last section of this chapter, we will introduce a VHDL-package that
provides CSP-like message passing and explain an associated VHDL-based
design flow that supports a manual step-wise refinement design process.

11.2 Concurrency and message passing in CSP

The “sequential processes” part of the CSP acronym denotes that each process
is described by a program whose statements are executed in sequence one by
one. A semicolon is used to separate statements (as in many other program-
ming languages). The semicolon can be seen as an operator that combines
statements into programs. In this respect, a process in CSP is very similar
to a process in VHDL. However, CSP also allows the parallel composition of
statements within a process. The symbol “‖” denotes parallel composition.

11.2. Concurrency and message passing in CSP 205

....

P2:

C

....
C!x;

....
x:= 17;
var x ...

P1:
var y,z ...
....

C?y;

z:= y −17;

Figure 11.1: Two processes P1 and P2 connected by a channel C. Process
P1 sends the value of its variable x to the channel C, and process P2 receives
the value and assigns it to its variable y.

This feature is not found in VHDL, whereas the fork-join construct in Verilog
does allow statement-level concurrency within a process.

The “communicating” part of the CSP acronym refers to synchronous mes-
sage passing using point-to-point channels as illustrated in figure 11.1, where
two processes P1 and P2 are connected by a channel named C. Using a send
statement, C!x, process P1 sends (denoted by the ‘!’ symbol) the value of
its variable x on channel C, and using a receive statement, C?y, process P2
receives (denoted by the ‘?’ symbol) from channel C a value that is assigned
to its variable y. The channel is memoryless, and the transfer of the value of
variable x in P1 into variable y in P2 is an atomic action. This has the effect
of synchronizing processes P1 and P2. Whichever comes first will wait for the
other party, and the send and receive statements complete at the same time.
The term rendezvous is sometimes used for this type of synchronization.

When a process executes a send (or receive) statement, it commits to the
communication and suspends until the process at the other end of the channel
performs its receive (or send) statement. This may not always be desirable, and
Martin has extended CSP with a probe construct [88], which allows the process
at the passive end of a channel to probe whether or not a communication is
pending on the channel, without committing to any communication. The
probe is a function which takes a channel name as its argument and returns a
Boolean. The syntax for probing channel C is C.

As an aside, we mention that some languages for programming of concur-
rent systems assume channels with (possibly unbounded) buffering capability.
The implication of this is that the channel acts as a FIFO, and the communi-
cating processes do not synchronize when they communicate. Consequently,
this form of communication is called asynchronous message passing.

Going back to our synchronous message passing, it is obvious that the
physical implementation of a memoryless channel is simply a set of wires to-
gether with a protocol for synchronizing the communicating processes. It is
also obvious that any of the protocols that we have considered in the previ-

206 Chapter 11. High-level languages and tools

in x y out

ShiftReg

T = type [0..255]

& ShiftReg : main proc(in? chan T & out! chan T).

begin

& var x,y: var T := 0

|

forever do

out!y ; y:=x ; in?x

od

end

Figure 11.2: A Tangram program for a 2-place shift register.

ous chapters may be used. Synchronous message passing is thus a very useful
language construct that supports the high-level modeling of asynchronous cir-
cuits by abstracting away the exact details of the data encoding and handshake
protocol used on the channel.

Unfortunately, both VHDL and Verilog lack such primitives. It is possible
to write low-level code that implements the handshaking, but it is highly
undesirable to mix such low-level details into code whose purpose is to capture
the high-level behavior of the circuit.

In the following section, we will provide some small program examples to
give a flavor of this type of language. The examples will be written in Tangram,
as they also serve the purpose of illustrating syntax-directed compilation in a
subsequent section. The source code, handshake circuit figures, and fragments
of the text have been kindly provided by Ad Peeters from Philips.

Manchester University developed a similar language and synthesis tool that
is available in the public domain [6]. Other examples of related work are
presented in [13] and [16].

11.3 Tangram: program examples

This section provides a few simple Tangram program examples: a 2-place shift
register, a 2-place ripple FIFO, and a greatest common divisor function.

11.3.1 A 2-place shift register

Figure 11.2 shows the code for a 2-place shift register named ShiftReg. It is
a process with an input channel In and an output channel Out, both carrying

11.3. Tangram: program examples 207

x yin out

Fifo

c

T = type [0..255]

& Fifo : main proc(in? chan T & out! chan T).

begin

& x,y: var T

& c : chan T

|

forever do in?x ; c!x od

|| forever do c?y ; out!y od

end

Figure 11.3: A Tangram program for a 2-place (ripple) FIFO.

variables of type [0..255]. There are two local variables x and y that are
initialized to 0. The process performs an unbounded repetition of a sequence
of three statements: out!y; y:=x; in?x.

11.3.2 A 2-place (ripple) FIFO

Figure 11.3 shows the Tangram program for a 2-place first-in first-out buffer
named Fifo. It can be understood as two 1-place buffers that are operating in
parallel and that are connected by a channel c. At first sight, it appears very
similar to the 2-place shift register presented above, but a closer examination
will show that it is more flexible and exhibits greater concurrency.

11.3.3 GCD using while and if statements

Figure 11.4 shows the code for a module that computes the greatest common
divisor, the example from section 3.8. The “do x<>y then ...od” is a while
statement and apart from the syntactical differences, the code in figure 11.4 is
identical to the code in figure 3.15 on page 45.

The module has an input channel from which it receives the two operands
and an output channel on which it sends the result.

11.3.4 GCD using guarded commands

Figure 11.5 shows an alternative version of GCD. This time the module has
separate input channels for the two operands, and its body is based on the
repetition of a guarded command. The guarded repetition can be seen as a
generalization of the while statement. The statement repeats until all guards

208 Chapter 11. High-level languages and tools

int = type [0..255]

& gcd_if : main proc (in?chan <<int,int>> & out!chan int).

begin x,y:var int ff

| forever do

in?<<x,y>>

; do x<>y then

if x<y then y:=y-x

else x:=x-y

fi

od

; out!x

od

end

Figure 11.4: A Tangram for GCD using while and if statements.

int = type [0..255]

& gcd_gc : main proc (in1,in2?chan int & out!chan int).

begin x,y:var int ff

| forever do

in1?x || in2?y

; do x<y then y:=y-x

or y<x then x:=x-y

od

; out!x

od

end

Figure 11.5: A Tangram program for GCD using guarded repetition.

are false. When at least one of the guards is true, exactly one command
corresponding to such a true guard is selected (either deterministically or non-
deterministically) and executed.

11.4 Tangram: syntax-directed compilation

Let us now address the synthesis process. The design flow uses an interme-
diate format based on handshake circuits. The front-end design activity is
called VLSI programming and using syntax-directed compilation, a Tangram
program is mapped into a structure of handshake components. There is a
one-to-one correspondence between the Tangram program and the handshake
circuit, as will be clear from the following examples. The compilation process
is thus fully transparent to the designer, who works entirely at the Tangram
program level.

11.4. Tangram: syntax-directed compilation 209

Chapter 8: High-level languages and tools 129

It is beyond the scope of this text to explain the details of the compilation
process. We will restrict ourselves to providing a flavour of “syntax-directed
compilation” by showing handshake circuits corresponding to the example Tan-
gram programs from the previous section.

8.4.1 The 2-place shift register
As a first example of syntax-directed compilation figure 8.6 shows the hand-

shake circuit corresponding to the Tangram program in figure 8.2.

-in →- →-x-

; 0
1

2

?

→-y- - out

Figure 8.6. The compiled handshake circuit for the 2-place shift register.

Handshake components are represented by circular symbols, and the chan-
nels that connect the components are represented by arcs. The small dots on
the component symbols represent ports. An open dot denotes a passive port
and a solid dot denotes an active port. The arrowhead represents the direction
of the data transfer. A nonput channel does not involve the transfer of data and
consequently it has no direction and no arrowhead. As can be seen in figure 8.6
a handshake circuit uses a mix of push and pull channels.

The structure of the program is a forever-do statement whose body consists
of three statements that are executed sequentially (because they are separated
by semicolons). Each of the three statements is a kind of assignment statement:
the value of variable y is “assigned” to output channel out, the value of variable
x is assigned to variable y, and the value received on input chanel in is assigned
to variable x. The structure of the handshake circuit is exactly the same:

At the top is a repeater that implements the forever-do statement. A
repeater waits for a request on its passive input port and then it performs
an unbounded repetition of handshakes on its active output channel. The
handshake on the input channel never completes.

Below is a 3-way sequencer that implements the semicolons in the pro-
gram text. The sequencer waits for a request on its passive input channel,
then it performs in sequence a full handshake on each of its active out-

Figure 11.6: The compiled handshake circuit for the 2-place shift register.

The back-end of the design flow involves a library of handshake circuits that
the compiler targets as well as some tools for post-synthesis peephole optimiza-
tion of the handshake circuits (i.e., replacing common structures of handshake
components by more efficient equivalent ones). A number of handshake circuit
libraries exist, allowing implementations using different handshake protocols
(4-phase dual-rail, 4-phase bundled-data, etc.), and different implementation
technologies (CMOS standard cells, FPGAs, etc.). The handshake compo-
nents can be specified and designed: (i) manually, or (ii) using STGs and
Petrify as explained in chapter 6, or (iii) using the lower steps in Martin’s
transformation-based method that is presented in the next section.

It is beyond the scope of this text to explain the details of the compilation
process. We will restrict ourselves to providing a flavor of “syntax-directed
compilation” by showing handshake circuits corresponding to the example
Tangram programs from the previous section.

11.4.1 The 2-place shift register

As a first example of syntax-directed compilation, figure 11.6 shows the hand-
shake circuit corresponding to the Tangram program in figure 11.2.

Handshake components are represented by circular symbols, and the chan-
nels that connect the components are represented by arcs. The small dots on
the component symbols represent ports. An open dot denotes a passive port,
and a solid dot denotes an active port. The arrowhead represents the direction
of the data transfer. A nonput channel does not involve the transfer of data,
and consequently it has no direction and no arrowhead. As can be seen in
figure 11.6, a handshake circuit uses a mix of push and pull channels.

The structure of the program is a forever-do statement whose body consists
of three statements that are executed sequentially (because they are separated
by semicolons). Each of the three statements is a kind of assignment statement:
the value of variable y is “assigned” to output channel out, the value of variable

210 Chapter 11. High-level languages and tools

x is assigned to variable y, and the value received on input chanel in is assigned
to variable x. The structure of the handshake circuit is exactly the same:

• At the top is a repeater that implements the forever-do statement. A
repeater waits for a request on its passive input port, and then it performs
an unbounded repetition of handshakes on its active output channel. The
handshake on the input channel never completes.

• Below is a 3-way sequencer that implements the semicolons in the pro-
gram text. The sequencer waits for a request on its passive input channel,
then it performs in sequence a full handshake on each of its active out-
put channels (in the order indicated by the numbers in the symbol), and
finally, it completes the handshaking on the passive input channel. In
this way, the sequencer activates, in turn, the handshake circuit con-
structs that correspond to the individual statements in the body of the
forever-do statement.

• The bottom row of handshake components includes two variables, x and
y, and three transferers, denoted by ‘→’. Note that variables have passive
read and write ports. The transferers implement the three statements
(out!y; y:=x; in?x) that form the body of the forever-do statement,
each a form of assignment. A transferer waits for a request on its passive
nonput channel and then initiates a handshake on its pull input channel.
The handshake on the pull input channel is relayed to the push output
channel. In this way, the transferer pulls data from its input channel and
pushes it onto its output channel. Finally, it completes the handshaking
on the passive nonput channel.

11.4.2 The 2-place FIFO

Figure 11.7 shows the handshake circuit corresponding to the Tangram pro-
gram in figure 11.3. The component labeled ‘psv’ in the handshake circuit
of figure 11.7 is a so-called passivator. It relates to the internal channel c of
the Fifo and implements the synchronization and communication between the
active sender (c!x) and the active receiver (c?y).

An optimization of the handshake circuit for Fifo is shown in figure 11.8.
The synchronization in the datapath using a passivator has been replaced by
a synchronization in the control using a ’join’ component. One may observe
that the datapath of this handshake circuit for the FIFO design is the same
as that of the shift register, shown in figure 11.2. The only difference is in the
control part of the circuits.

11.4.3 GCD using guarded repetition

As a more complex example of syntax-directed compilation, figure 11.9 shows
the handshake circuit compiled from the Tangram program in figure 11.5.

11.4. Tangram: syntax-directed compilation 211

130 Part I: Asynchronous circuit design – A tutorial

put channels (in the order indicated by the numbers in the symbol) and
finally it completes the handshaking on the passive input channel. In
this way the sequencer activates in turn the handshake circuit constructs
that correspond to the individual statements in the body of the forever-do
statement.

The bottom row of handshake components includes two variables, x and
y, and three transferers, denoted by ‘→’. Note that variables have passive
read and write ports. The transferers implement the three statements
(out!y; y:=x; in?x) that form the body of the forever-do statement,
each a form of assignment. A transferer waits for a request on its passive
nonput channel and then initiates a handshake on its pull input channel.
The handshake on the pull input channel is relayed to the push output
channel. In this way the transferer pulls data from its input channel and
pushes it onto its output channel. Finally, it completes the handshaking
on the passive nonput channel.

8.4.2 The 2-place FIFO
Figure 8.7 shows the handshake circuit corresponding to the Tangram pro-

gram in figure 8.3. The component labeled ‘psv’ in the handshake circuit of
figure 8.7 is a so-called passivator. It relates to the internal channel c of the
Fifo and implements the synchronization and communication between the ac-
tive sender (c!x) and the active receiver (c?y).

-in

?

;0 1

→- →-x- psv-

‖ ?

;0 1

→- →-y- - out

Figure 8.7. Compiled handshake circuit for the FIFO program.

An optimization of the handshake circuit for Fifo is shown in figure 8.8.
The synchronization in the datapath using a passivator has been replaced by a
synchronization in the control using a ‘join’ component. One may observe that
the datapath of this handshake circuit for the FIFO design is the same as that of
the shift register, shown in figure 8.2. The only difference is in the control part
of the circuits.

Figure 11.7: Compiled handshake circuit for the FIFO program.

Chapter 8: High-level languages and tools 131

-in

?

;0 1

→- →-x-

•

‖ ?

;0 1

→-y- - out

Figure 8.8. Optimized handshake circuit for the FIFO program.

8.4.3 GCD using guarded repetition
As a more complex example of syntax-directed compilation figure 8.9 shows

the handshake circuit compiled from the Tangram program in figure 8.5. Com-
pared with the previous handshake circuits, the handshake circuit for the GCD
program introduces two new classes of components that are treated in more
detail below.

Firstly, the circuit contains a ‘bar’ and a ‘do’ component, both of which are
data-dependent control components. Secondly, the handshake circuit contains
components that do not directly correspond to language constructs, but rather
implement sharing: the multiplexer (denoted by ‘mux’), the demultiplexer (de-
noted by ‘dmx’), and the fork component (denoted by ‘•’).

Warning: the Tangram fork is identical to the fork in figure 3.3 but the
Tangram multiplexer and demultiplexer components are different. The Tangram
multiplexer is identical to the merge in figure 3.3 and the Tangram demultiplexer
is a kind of “inverse merge.” Its output ports are passive and it requires the
handshakes on the two outputs to be mutually exclusive.

The ‘bar’ and the ‘do’ components: The do and bar component together
implement the guarded command construct with two guards, in which the do
component implements the iteration part (the do od part, including the evalu-
ation of the disjunction of the two guards), and the bar component implements
the choice part (the then or then part of the command).

The do component, when activated through its passive port, first collects
the disjunction of the value of all guards through a handshake on its active
data port. When the value thus collected is true, it activates its active nonput
port (to activate the selected command), and after completion starts a new
evaluation cycle. When the value collected is false, the do component completes
its operation by completing the handshake on the passive port.

Figure 11.8: Optimized handshake circuit for the FIFO program.

Compared with the previous handshake circuits, the handshake circuit for the
GCD program introduces two new classes of components that are treated in
more detail below.

Firstly, the circuit contains a ‘bar’ and a ‘do’ component, both of which are
data-dependent control components. Secondly, the handshake circuit contains
components that do not directly correspond to language constructs, but rather
implement sharing: the multiplexer (denoted by ‘mux’), the demultiplexer
(denoted by ‘dmx’), and the fork component (denoted by ‘•’).

Warning: the Tangram fork is identical to the fork in figure 3.3 but the
Tangram multiplexer and demultiplexer components are different. The Tan-
gram multiplexer is identical to the merge in figure 3.3, and the Tangram
demultiplexer is a kind of “inverse merge.” Its output ports are passive, and
it requires the handshakes on the two outputs to be mutually exclusive.

212 Chapter 11. High-level languages and tools
132 Part I: Asynchronous circuit design – A tutorial

→-in2 mux
?

- y-

↓
?

− ¾
ª

dmx

6

•

6

<
R
-

→-in1 mux

6

- x-

↑
6

− ¾

I

dmx

?

•
?

<

µ

-

bar -
µ

R
do‖

→ - out-

;0 1
2

?

Figure 8.9. Compiled handshake circuit for the GCD program using guarded repetition.

The bar component can be activated either through its passive data port, or
through its passive control port. (The do component, for example, sequences
these two activations.) When activated through the data port, it collects the
value of two guards through a handshake on the active data ports, and then
sends the disjunction of these values along the passive data port, thus completing
that handshake. When activated through the control port, the bar component
activates an active control port of which the associated data port returned a
‘true’ value in the most recent data cycle. (For simplicity, this selection is
typically implemented in a deterministic fashion, although this is not required
at the level of the program.) One may observe that bar components can be

Figure 11.9: Compiled handshake circuit for the GCD program using guarded
repetition.

The ‘bar’ and the ‘do’ components:

The do and bar component together implement the guarded command con-
struct with two guards, in which the do component implements the iteration
part (the do od part, including the evaluation of the disjunction of the two
guards), and the bar component implements the choice part (the then or

then part of the command).

The do component, when activated through its passive port, first collects
the disjunction of the value of all guards through a handshake on its active
data port. When the value thus collected is true, it activates its active non-

11.4. Tangram: syntax-directed compilation 213

put port (to activate the selected command), and after completion starts a
new evaluation cycle. When the value collected is false, the do component
completes its operation by completing the handshake on the passive port.

The bar component can be activated either through its passive data port or
through its passive control port. (The do component, for example, sequences
these two activations.) When activated through the data port, it collects the
value of two guards through a handshake on the active data ports, and then
sends the disjunction of these values along with the passive data port, thus
completing that handshake. When activated through the control port, the
bar component activates an active control port of which the associated data
port returned a ‘true’ value in the most recent data cycle. (For simplicity,
this selection is typically implemented in a deterministic fashion, although
this is not required at the level of the program.) One may observe that bar
components can be combined in a tree or list to implement a guarded command
list of arbitrary length. Furthermore, not every data cycle has to be followed
by a control cycle.

The ‘mux’, ‘demux’, and ‘fork’ components

The program for GCD in figure 11.4 has two occurrences of variable x in which
a value is written into x, namely input action in1?x and assignment x:=x-y.
In the handshake circuit of figure 11.9, these two write actions for Tangram
variable x are merged by the multiplexer component so as to arrive at the
write port of handshake variable x.

Variable x occurs at five different locations in the program as an expres-
sion, once in the output expression out!x, twice in the guard expressions x<y
and y<x, and twice in the assignment expressions x-y and y-x. These five
inspections of variable x could be implemented as five distinct read ports on
the handshake variable x, which is shown in the handshake circuit in [153,
Fig. 2.7, p.34]. In figure 11.9, a different compilation is shown, in which hand-
shake variable x has three read ports:

• A read port dedicated to the occurrence in the output action.

• A read port dedicated to the guard expressions. Their evaluation is
mutually inclusive, and hence can be combined using a synchronizing
fork component.

• A read port dedicated to the assignment expressions. Their evaluation
is mutually exclusive, and hence can be combined using a demultiplexer.

The GCD example is discussed in further detail in chapter 13.

214 Chapter 11. High-level languages and tools

11.5 Martin’s translation process

The work of Martin and his group at Caltech has made fundamental contri-
butions to asynchronous design, and it has influenced the work of many other
researchers. The methods have been used at Caltech to design several sig-
nificant chips, most recently and most notably an asynchronous MIPS R3000
processor [87]. As the following presentation of the design flow hints, the de-
sign process is elaborate and sophisticated and is probably only an option to
a person who has spent time with the Caltech group.

The mostly manual design process involves the following steps (semantics-
preserving transformations):

(1) Process decomposition where each process is refined into a collection
of interacting simpler processes. This step is repeated until all processes are
simple enough to be dealt with in the next step in the process.

(2) Handshake expansion where each communication channel is replaced by
explicit wires and where each communication action (e.g., send or receive) is
replaced by the signal transitions required by the protocol that is being used.
For example, a receive statement such as:

C?y

is replaced by a sequence of simpler statements – for example:

[Creq]; y := data; Cack ↑; [¬Creq]; Cack ↓

which is read as: “wait for request to go high,” “read the data,” “drive ac-
knowledge high,” “wait for request to go low,” and “drive acknowledge low.”

At this level, it may be necessary to add state variables and/or to reshuffle
signal transitions in order to obtain a specification that satisfies a condition
similar to the CSC condition in chapter 6.

(3) Production rule expansion where each handshaking expansion is re-
placed by a set of production rules (or guarded commands), for example:

a ∧ b 7→ c ↑ and ¬b ∧ d 7→ c ↓

A production rule consists of a condition and an action, and the action is
performed whenever the condition is true. As an asides we mention that the
above two production rules express the same as the set and reset functions
for the signal c on page 106. The production rules specify the behavior of
the internal signals and output signals of the process. The production rules
are themselves simple concurrent processes, and the guards must ensure that
the signal transitions occur in program order (i.e., that the semantics of the
original CHP program is maintained). This may require strengthening the
guards. Furthermore, in order to obtain simpler circuit implementations, the
guards may be modified and made symmetric.

11.6. Using VHDL for asynchronous design 215

(4) Operator reduction where production rules are grouped into clusters
and where each cluster is mapped onto a basic hardware component similar to
a generalized C-element. The above two production rules would be mapped
into the generalized C-element shown in figure 6.17 on page 110.

11.6 Using VHDL for asynchronous design

11.6.1 Introduction

In this section, we introduce a couple of VHDL packages that provide the
designer with primitives for synchronous message passing between processes –
similar to the constructs found in the CSP-family of languages (send, receive
and probe).

The material was developed in an M.Sc. project and used in the design of a
32-bit floating-point ALU using the IEEE floating-point number representation
[125], and it has subsequently been used in a course on asynchronous circuit
design. Others, including [107, 130, 163, 32, 134, 135], have developed related
packages and approaches.

The channel packages introduced in the following support only one type
of channel, using a 32-bit 4-phase bundled-data push protocol. However, as
VHDL allows the overloading of procedures and functions, it is straightforward
to define channels with arbitrary data types. All it takes is a little cut-and-
paste editing. Providing support for protocols other than the 4-phase bundled-
data push protocol will require more significant extensions to the packages.

11.6.2 VHDL versus CSP-type languages

The previous sections introduced several CSP-like hardware description lan-
guages for asynchronous design. The advantages of these languages are their
support of concurrency and synchronous message passing, as well as a lim-
ited and well-defined set of language constructs that makes syntax-directed
compilation a relatively simple task.

Having said this, there is nothing that prevents a designer from using one
of the industry-standard languages VHDL, Verilog, or System Verilog, for the
design of asynchronous circuits. In fact some of the fundamental concepts
in these languages – concurrent processes and signal events – are “nice fits”
with the modeling and design of asynchronous circuits. To illustrate this, fig-
ure 11.10 shows how the Tangram program from figure 11.2 could be expressed
in plain VHDL. In addition to demonstrating the feasibility, the figure also
highlights the limitations of VHDL when it comes to modeling asynchronous
circuits: most of the code expresses low-level handshaking details, and this
greatly clutters the description of the function of the circuit.

VHDL obviously lacks built-in primitives for synchronous message passing
on channels similar to those found in CSP-like languages. Another feature of

216 Chapter 11. High-level languages and tools

library IEEE;

use IEEE.std_logic_1164.all;

type T is std_logic_vector(7 downto 0)

entity ShiftReg is

port (in_req : in std_logic;

in_ack : out std_logic;

in_data : in T;

out_req : out std_logic;

out_ack : in std_logic;

out-data : out T);

end ShiftReg;

architecture behav of ShiftReg is

begin

process

variable x, y: T;

begin

loop

out_req <= ’1’ ; -- out!y

out_data <= y ;

wait until out_ack = ’1’;

out_req <= ’0’;

wait until out_ack = ’0’;

y := x; -- y := x

wait until in_req = ’1’; -- in?x

x := in_data;

in.ack <= ’1’;

wait until ch_req = ’0’;

ch_ack <= ’0’;

end loop;

end process;

end behav;

Figure 11.10: VHDL description of the 2-place shift register FIFO stage from
figure 11.2.

the CSP family of languages that VHDL lacks is statement-level concurrency
within a process. On the other hand, there are also some advantages of using
an industry-standard hardware description language such as VHDL:

• It is well supported by existing CAD tool frameworks that provide simu-
lators, pre-designed modules, mixed-mode simulation, and tools for syn-
thesis, layout, and back annotation of timing information.

• The same simulator and test bench can be used throughout the entire
design process from the first high-level specification to the final imple-
mentation in some target technology (for example, a standard cell lay-
out).

11.6. Using VHDL for asynchronous design 217

• It is possible to perform mixed-mode simulations where some entities
are modeled using behavioral specifications, and others are implemented
using the components of the target technology.

• Many real-world systems include both synchronous and asynchronous
subsystems, and such hybrid systems can be modeled without any prob-
lems in VHDL.

11.6.3 Channel communication and design flow

The design flow presented in what follows is motivated by the advantages
mentioned above. The goal is to augment VHDL with CSP-like channel com-
munication primitives, i.e. the procedures send(<channel>, <variable>)

and receive(<channel>,<variable>) and the function probe(<channel>).
Another goal is to enable mixed-mode simulations where one end of a chan-
nel connects to an entity whose architecture body is a circuit implementation,
and the other end connects to an entity whose architecture body is a behav-
ioral description using the above communication primitives, figure 11.11(b). In
this way, a manual top-down stepwise refinement design process is supported,
where the same test bench is used throughout the entire design process from
high-level specification to low-level circuit implementation, figure 11.11(a-c).

In VHDL, all communication between processes takes place via signals.
For this reason channels have to be declared as signals, preferably one signal
per channel. Since (for a push channel) the sender drives the request and
data part of a channel, and the receiver drives the acknowledge part, there are
two drivers to one signal. This is allowed in VHDL if the signal is a resolved
signal. Thus, it is possible to define a channel type as a record with a request,
an acknowledge, and a data field, and then define a resolution function for the
channel type which will determine the resulting value of the channel. This type
of channel, with separate request and acknowledge fields, will be called a real
channel and is described in section 11.6.5. In simulations, there will be three
traces for each channel, showing the waveforms of request and acknowledge
along with the data that is communicated.

A channel can also be defined with only two fields: one that describes the
state of the handshaking (called the “handshake phase” or simply the “phase”)
and one containing the data. The type of the phase-field is an enumerated type,
whose values can be the handshake phases a channel can assume, as well as
the values with which the sender and receiver can drive the field. This type of
channel will be called an abstract channel. In simulations, there will be two
traces for each channel, and it is easy to read the phases the channel assumes
and the data values that are transferred.

The procedures and definitions are organized into two VHDL-packages:
one called “abstpack.vhd” that can be used for simulating high-level models
and one called “realpack.vhd” that can be used at all levels of design. Full

218 Chapter 11. High-level languages and tools

(c)
Data

Control

Latches

Ack

Req

Comb. logic

Entity 2:

High−level model:

Entity 2:

Receive(<channel>,<var>)
channel

Data

Control

Latches

Ack

Req

Comb. logic

channel

Mixed−mode model: Entity 2:

Entity 1:

channel

Comb. logic
Latches

Ack

Req

Data

Control

Low−level model:

Entity 1:

Send(<channel>,<var>)

Entity 1:

Send(<channel>,<var>)

(a)

(b)

Figure 11.11: The VHDL packages for channel communication support high-
level, mixed-mode, and gate-level/standard cell simulations.

listings can be found in section 11.8 at the end of this chapter. The design
flow enabled by these packages is as follows:

• The circuit and its environment or test bench are first modeled and
simulated using abstract channels. All it takes is the following statement
in the top-level design unit: “usepackage work.abstpack.all.”

• The circuit is then partitioned into simpler entities. The entities still
communicate using channels, and the simulation still uses the abstract
channel package. This step may be repeated.

• At some point, the designer changes to using the real channel package by
changing to: “usepackage work.realpack.all” in the top-level design
unit. Apart from this simple change, the VHDL source code is identical.

• It is now possible to partition entities into control circuitry (that can be
designed as explained in chapter 6) and data circuitry (that consists of
ordinary latches and combinational circuitry). Mixed-mode simulations,
as illustrated in figure 11.11(b), are possible. Simulation models of the

11.6. Using VHDL for asynchronous design 219

type handshake_phase is

(

u, -- uninitialized

idle, -- no communication

swait, -- sender waiting

rwait, -- receiver waiting

rcv, -- receiving data

rec1, -- recovery phase 1

rec2, -- recovery phase 2

req, -- request signal

ack, -- acknowledge signal

error -- protocol error

);

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is

record

phase : handshake_phase;

data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

Figure 11.12: Definition of an abstract channel.

control circuits may be their actual implementation in the target technol-
ogy or simply an entity containing a set of concurrent signal assignments
– for example, the Boolean equations produced by Petrify.

• Eventually, when all entities have been partitioned into control and data,
and when all leaf entities have been implemented using components of
the target technology, the design is complete. Using standard technology
mapping tools, an implementation may be produced, and the circuit can
be simulated with back annotated timing information.

Note that the same simulation test bench can be used throughout the entire
design process from the high-level specification to the low-level implementation
using components from the target technology.

11.6.4 The abstract channel package

An abstract channel is defined in figure 11.12 with a data type called fp

(a 32-bit standard logic vector representing an IEEE floating-point number).
The actual channel type is called channel fp. It is necessary to define a

220 Chapter 11. High-level languages and tools

channel for each data type used in the design. The data type can be an
arbitrary type, including record types, but it is advisable to use data types
that are built from std logic because this is typically the type used by target
component libraries (such as standard cell libraries) that are eventually used
for the implementation.

The meaning of the values of the type handshake phase is described in
detail below:

u: Uninitialized channel. This is the default value of the drivers. As long
as either the sender or receiver drives the channel with this value, the
channel stays uninitialized.

idle: No communication. Both the sender and receiver drive the channel with
the idle value.

swait: The sender is waiting to perform a communication. The sender is
driving the channel with the req value, and the receiver drives with the
idle value.

rwait: The receiver is waiting to perform a communication. The sender is
driving the channel with the idle value and the receiver drives with the
rwait value. This value is used both as a driving value and as a resulting
value for a channel, just like the idle and u values.

rcv: Data is transfered. The sender is driving the channel with the req value,
and the receiver drives it with the rwait value. After a predefined
amount of time (tpd at the top of the package, see later in this section),
the receiver changes its driving value to ack, and the channel changes its
phase to rec1. In a simulation, it is only possible to see the transferred
value during the rcv phase and the swait phase. At all other times,
the data field assumes a predefined default data value.

rec1: Recovery phase. This phase is not seen in a simulation since the channel
changes to the rec2 phase with no time delay.

rec2: Recovery phase. This phase is not seen in a simulation since the channel
changes to the idle phase with no time delay.

req: The sender drives the channel with this value when it wants to perform
a communication. A channel can never assume this value.

ack: The receiver drives the channel with this value when it wants to perform
a communication. A channel can never assume this value.

error: Protocol error. A channel assumes this value when the resolution func-
tion detects an error. It is an error if there is more than one driver with
a rwait, req, or ack value. This could be the result if more than two
drivers are connected to a channel, or if a send command is accidentally
used instead of a receive command or vice versa.

11.6. Using VHDL for asynchronous design 221

IDLE

IDLE

RWAIT
IDLE
RWAIT

SWAIT
REQ
IDLE

RCV
REQ

REC1
REQ
ACK

REC2
IDLE
ACK-

U
U

IDLE
RWAIT

Figure 11.13: The protocol for the abstract channel. The values in large letters
are the resulting resolved values of the channel, and the values in smaller letters
below them are the driving values of the sender and receiver, respectively.

Figure 11.13 shows a graphical illustration of the protocol of the abstract
channel. The values in large letters are the resulting values of the channel, and
the values in smaller letters below them are the driving values of the sender
and receiver, respectively. Both the sender and receiver are allowed to initiate
a communication. This makes it possible in a simulation to see if either the
sender or receiver is waiting to communicate. It is the procedures send and
receive that follow this protocol.

Because channels with different data types are defined as separate types,
the procedures send, receive, and probe have to be defined for each of these
channel types. Fortunately, VHDL allows overloading of procedure names,
so it is possible to make these definitions. The only differences between the
definitions of the channels are the data types, the names of the channel types,
and the default values of the data fields in the channels. So it is very easy
to copy the definitions of one channel to make a new channel type. It is
not necessary to redefine the type handshake phase. All these definitions
are conveniently collected in a VHDL package. This package can then be
referenced wherever needed. An example of such a package with only one
channel type can be seen in section 11.8.1. The procedures initialize in and
initialize out are used to initialize the input and output ends of a channel.
If a sender or receiver does not initialize a channel, no communications can
take place on that channel.

A simple example of a subcircuit is the FIFO stage fp latch shown in
figure 11.14. Notice that the channels in the entity have the mode inout, and
the FIFO stage waits for the reset signal resetn after the initialization. In
this way, it waits for other subcircuits that may actually use this reset signal
for initialization.

The FIFO stage uses a generic parameter delay. This delay is inserted
for experimental reasons in order to show the different phases of the channels.
Three FIFO stages are connected in a pipeline (figure 11.15) and fed with data
values. The middle section has a delay that is twice as long as the other two
stages. This will result in a blocked channel just before the slow FIFO stage
and a starved channel just after the slow FIFO stage.

222 Chapter 11. High-level languages and tools

library IEEE;

use IEEE.std_logic_1164.all;

use work.abstract_channels.all;

entity fp_latch is

generic(delay : time);

port (d : inout channel_fp; -- input data channel

port (q : inout channel_fp; -- output data channel

resetn : in std_logic);

end fp_latch;

architecture behav of fp_latch is

begin

process

variable data : fp;

begin

initialize_in(d);

initialize_out(q);

wait until resetn = ’1’;

loop

receive(d, data);

wait for delay;

send(q, data);

end loop;

end process;

end behav;

Figure 11.14: Description of a FIFO stage.

FIFO_stage_3

d q

resetn

fp_latch

ch_in ch_out
d q

resetn

fp_latch

d q

resetn

fp_latch

FIFO_stage_1 FIFO_stage_2

Figure 11.15: A FIFO built using the latch defined in figure 11.14.

The result of this experiment can be seen in figure 11.16. The simulator
used is the Synopsys VSS. It is seen that ch in is predominantly in the swait

phase, which characterizes a blocked channel, and ch out is predominantly in
the rwait phase, which characterizes a starved channel.

11.6. Using VHDL for asynchronous design 223

Figure 11.16: Simulation of the FIFO using the abstract channel package.

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is

record

req : std_logic;

ack : std_logic;

data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of

uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

Figure 11.17: Definition of a real channel.

11.6.5 The real channel package

At some point in the design process, it is time to separate communicating
entities into control and data entities. This is supported by the real channel
types, in which the request and acknowledge signals are separate std logic

signals – the type used by the target component models. The data type is the
same as the abstract channel type, but the handshaking is modeled differently.
A real channel type is defined in figure 11.17.

All definitions relating to the real channels are collected in a package (sim-
ilar to the abstract channel package) and use the same names for the channel
types, procedures, and functions. For this reason, it is very simple to switch
to simulating using real channels. All it takes is to change the name of the
package in the use statements in the top-level design entity. Alternatively, one
can use the same name for both packages, in which case it is the last analyzed
package that is used in simulations.

An example of a real channel package with only one channel type can be
seen in section 11.8.2. This package defines a 32-bit standard logic 4-phase

224 Chapter 11. High-level languages and tools

Figure 11.18: Simulation of the FIFO using the real channel package.

bundled-data push channel. The constant tpd in this package is the delay
from a transition on the request or acknowledge signal to the response to this
transition. “Synopsys compiler directives” are inserted in several places in the
package. This is because Synopsys needs to know the channel types and the
resolution functions belonging to them when it generates an EDIF netlist to
the floor planner, but not the procedures in the package.

Figure 11.18 shows the result of repeating the simulation experiment from
the previous section, this time using the real channel package. Notice the
sequence of four-phase handshakes.

Note that the data value on a channel is, at all times, whatever value
the sender is driving onto the channel. An alternative would be to make the
resolution function put out the default data value outside the data-validity
period, but this may cause the setup and hold times of the latches to be
violated. The procedure send provides a broad data-validity scheme, which
means that it can communicate with receivers that require early, broad, or
late data-validity schemes on the channel. The procedure receive requires an
early data-validity scheme, which means that it can communicate with senders
that provide early or broad data-validity schemes.

The resolution functions for the real channels (and the abstract channels)
can detect protocol errors. Examples of errors are more than one sender or
receiver on a channel and using a send command or a receive command at
the wrong end of a channel. In such cases, the channel assumes the X value on
the request or acknowledge signals.

11.6.6 Partitioning into control and data

This section describes how to separate an entity into control and data entities.
This is possible when the real channel package is used, but as explained below,
this partitioning has to follow certain guidelines.

To illustrate how the partitioning is carried out, the FIFO stage in fig-
ure 11.14 in the preceding section will be separated into a latch control circuit

11.6. Using VHDL for asynchronous design 225

library IEEE;

use IEEE.std_logic_1164.all;

use work.real_channels.all;

entity fp_latch is

port (d : inout channel_fp; -- input data channel

q : inout channel_fp; -- output data channel

resetn : in std_logic);

end fp_latch;

architecture struct of fp_latch is

component latch_ctrl

port (rin, aout, resetn : in std_logic;

ain, rout, lt : out std_logic);

end component;

component std_logic_latch

generic (width : positive);

port (lt : in std_logic;

d : in std_logic_vector(width-1 downto 0);

q : out std_logic_vector(width-1 downto 0));

end component;

signal lt : std_logic;

signal ud, uq : uchannel_fp;

begin

latch_ctrl1 : latch_ctrl

port map (d.req,q.ack,resetn,ud.ack,uq.req,lt);

std_logic_latch1 : std_logic_latch

generic map (width => 32)

port map (lt,d.data,uq.data);

d <= connect(ud);

q <= connect(uq);

end struct;

Figure 11.19: Separation of the FIFO stage into an ordinary data latch and
a latch control circuit.

called latch ctrl and a latch called std logic latch. The VHDL code is
shown in figure 11.19, and figure 11.20 is a graphical illustration of the parti-
tioning that includes the unresolved signals ud and uq as explained below.

In VHDL, a driver that drives a compound resolved signal has to drive all
fields in the signal. Therefore, a control circuit cannot drive only the acknowl-
edge field in a channel. To overcome this problem, a signal of the corresponding
unresolved channel type has to be declared inside the partitioned entity. This

226 Chapter 11. High-level languages and tools

FIFO_stage

Lt

d

std_logic_latch

q

d

resetn

Lt

Lt
aoutain

rin rout

resetn

ud
q

uq

latch_ctl

ch_in ch_out

q

resetn

d

fp_latchfp_latch fp_latch

FIFO_stage FIFO_stage

Figure 11.20: Separation of control and data.

is the function of the signals ud and uq of type uchannel fp in figure 11.17.
The control circuit then drives only the acknowledge field in this signal; this
is allowed since the signal is unresolved. The rest of the fields remain unini-
tialized. The unresolved signal then drives the channel; this is allowed since it
drives all of the fields in the channel. The resolution function for the channel
should ignore the uninitialized values that the channel is driven with. Com-
ponents that use the send and receive procedures also drive those fields in
the channel that they do not control with uninitialized values. For example,
an output to a channel drives the acknowledge field in the channel with the U

value. The fields in a channel that are used as inputs are connected directly
from the channel to the circuits that have to read those fields.

Notice in the description that the signals ud and uq do not drive d and q di-
rectly but through a function called connect. This function simply returns its
parameter. It may seem unnecessary, but it has proved to be necessary when
some of the subcircuits are described with a standard cell implementation. In
a simulation, a special “gate-level simulation engine” is used to simulate the
standard cells [148]. During initialization, it will set some of the signals to
the value X instead of to the value U as it should. It has not been possible to
get the channel resolution function to ignore these X values, because the gate-
level simulation engine sets some of the values in the channel. By introducing
the connect function, which is a behavioral description, the normal simulator
takes over and evaluates the channel using the corresponding resolution func-
tion. It should be emphasized, that it is a bug in the gate-level simulation
engine that necessitates the addition of the connect function.

11.7. Summary 227

11.7 Summary

This chapter addressed languages and CAD tools for high-level modeling and
synthesis of asynchronous circuits. The text focused on a few representative
and influential design methods that are based on languages that are similar to
CSP. The reasons for preferring these languages are that they support channel
based communication between processes (synchronous message passing) as well
as concurrency at both process and statement level – two features that are
important for modeling asynchronous circuits. The text also illustrated a
synthesis method known as syntax directed translation. Subsequent chapters
in this book will elaborate much more on these issues.

Finally, the chapter illustrated how channel-based communication can be
implemented in VHDL, and we provided two packages containing all the nec-
essary procedures and functions, including: send, receive, and probe. These
packages supports a manual top-down stepwise-refinement design flow where
the same test bench can be used to simulate the design throughout the entire
design process from high-level specification to low-level circuit implementation.

11.8 The VHDL channel packages

11.8.1 The abstract channel package

-- Abstract channel package: (4-phase bundled-data push channel, 32-bit data)

library IEEE;

use IEEE.std_logic_1164.all;

package abstract_channels is

constant tpd : time := 2 ns;

-- Type definition for abstract handshake protocol

type handshake_phase is

(

u, -- uninitialized

idle, -- no communication

swait, -- sender waiting

rwait, -- receiver waiting

rcv, -- receiving data

rec1, -- recovery phase 1

rec2, -- recovery phase 2

req, -- request signal

ack, -- acknowledge signal

error -- protocol error

);

-- Floating point channel definitions

subtype fp is std_logic_vector(31 downto 0);

228 Chapter 11. High-level languages and tools

type uchannel_fp is

record

phase : handshake_phase;

data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of

uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

procedure initialize_in(signal ch : out channel_fp);

procedure initialize_out(signal ch : out channel_fp);

procedure send(signal ch : inout channel_fp; d : in fp);

procedure receive(signal ch : inout channel_fp; d : out fp);

function probe(signal ch : in channel_fp) return boolean;

end abstract_channels;

package body abstract_channels is

-- Resolution table for abstract handshake protocol

type table_type is array(handshake_phase, handshake_phase) of

handshake_phase;

constant resolution_table : table_type := (

--

-- 2. parameter: | |

-- u idle swait rwait rcv rec1 rec2 req ack error |1. par:|

--

(u, u, u, u, u, u, u, u, u, u), --| u |

(u, idle, swait,rwait,rcv, rec1, rec2, swait,rec2, error), --| idle |

(u, swait,error,rcv, error,error,rec1, error,rec1, error), --| swait |

(u, rwait,rcv, error,error,error,error,rcv, error,error), --| rwait |

(u, rcv, error,error,error,error,error,error,error,error), --| rcv |

(u, rec1, error,error,error,error,error,error,error,error), --| rec1 |

(u, rec2, rec1, error,error,error,error,rec1, error,error), --| rec2 |

(u, error,error,error,error,error,error,error,error,error), --| req |

(u, error,error,error,error,error,error,error,error,error), --| ack |

(u, error,error,error,error,error,error,error,error,error));--| error |

-- Fp channel

constant default_data_fp : fp := "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";

function resolved(s : uchannel_fp_vector) return uchannel_fp is

variable result : uchannel_fp := (idle, default_data_fp);

11.8. The VHDL channel packages 229

begin

for i in s’range loop

result.phase := resolution_table(result.phase, s(i).phase);

if (s(i).phase = req) or (s(i).phase = swait) or

(s(i).phase = rcv) then

result.data := s(i).data;

end if;

end loop;

if not((result.phase = swait) or (result.phase = rcv)) then

result.data := default_data_fp;

end if;

return result;

end resolved;

procedure initialize_in(signal ch : out channel_fp) is

begin

ch.phase <= idle after tpd;

end initialize_in;

procedure initialize_out(signal ch : out channel_fp) is

begin

ch.phase <= idle after tpd;

end initialize_out;

procedure send(signal ch : inout channel_fp; d : in fp) is

begin

if not((ch.phase = idle) or (ch.phase = rwait)) then

wait until (ch.phase = idle) or (ch.phase = rwait);

end if;

ch <= (req, d);

wait until ch.phase = rec1;

ch.phase <= idle;

end send;

procedure receive(signal ch : inout channel_fp; d : out fp) is

begin

if not((ch.phase = idle) or (ch.phase = swait)) then

wait until (ch.phase = idle) or (ch.phase = swait);

end if;

ch.phase <= rwait;

wait until ch.phase = rcv;

wait for tpd;

d := ch.data;

ch.phase <= ack;

wait until ch.phase = rec2;

ch.phase <= idle;

end receive;

function probe(signal ch : in channel_fp) return boolean is

begin

return (ch.phase = swait);

end probe;

end abstract_channels;

230 Chapter 11. High-level languages and tools

11.8.2 The real channel package

-- Low-level channel package (4-phase bundled-data push channel, 32-bit data)

library IEEE;

use IEEE.std_logic_1164.all;

package real_channels is

-- synopsys synthesis_off

constant tpd : time := 2 ns;

-- synopsys synthesis_on

-- Floating point channel definitions

subtype fp is std_logic_vector(31 downto 0);

type uchannel_fp is

record

req : std_logic;

ack : std_logic;

data : fp;

end record;

type uchannel_fp_vector is array(natural range <>) of

uchannel_fp;

function resolved(s : uchannel_fp_vector) return uchannel_fp;

subtype channel_fp is resolved uchannel_fp;

-- synopsys synthesis_off

procedure initialize_in(signal ch : out channel_fp);

procedure initialize_out(signal ch : out channel_fp);

procedure send(signal ch : inout channel_fp; d : in fp);

procedure receive(signal ch : inout channel_fp; d : out fp);

function probe(signal ch : in uchannel_fp) return boolean;

-- synopsys synthesis_on

function connect(signal ch : in uchannel_fp) return channel_fp;

end real_channels;

package body real_channels is

-- Resolution table for 4-phase handshake protocol

-- synopsys synthesis_off

type stdlogic_table is array(std_logic, std_logic) of std_logic;

11.8. The VHDL channel packages 231

constant resolution_table : stdlogic_table := (

-- --

-- | 2. parameter: | |

-- | U X 0 1 Z W L H - |1. par:|

-- --

(’U’, ’X’, ’0’, ’1’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | U |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | X |

(’0’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | 0 |

(’1’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | 1 |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | Z |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | W |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | L |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’), -- | H |

(’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’)); -- | - |

-- synopsys synthesis_on

-- Fp channel

-- synopsys synthesis_off

constant default_data_fp : fp := "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";

-- synopsys synthesis_on

function resolved(s : uchannel_fp_vector) return uchannel_fp is

-- pragma resolution_method three_state

-- synopsys synthesis_off

variable result : uchannel_fp := (’U’,’U’,default_data_fp);

-- synopsys synthesis_on

begin

-- synopsys synthesis_off

for i in s’range loop

result.req := resolution_table(result.req,s(i).req);

result.ack := resolution_table(result.ack,s(i).ack);

if (s(i).req = ’1’) or (s(i).req = ’0’) then

result.data := s(i).data;

end if;

end loop;

if not((result.req = ’1’) or (result.req = ’0’)) then

result.data := default_data_fp;

end if;

return result;

-- synopsys synthesis_on

end resolved;

-- synopsys synthesis_off

procedure initialize_in(signal ch : out channel_fp) is

begin

ch.ack <= ’0’ after tpd;

end initialize_in;

procedure initialize_out(signal ch : out channel_fp) is

begin

ch.req <= ’0’ after tpd;

end initialize_out;

232 Chapter 11. High-level languages and tools

procedure send(signal ch : inout channel_fp; d : in fp) is

begin

if ch.ack /= ’0’ then

wait until ch.ack = ’0’;

end if;

ch.req <= ’1’ after tpd;

ch.data <= d after tpd;

wait until ch.ack = ’1’;

ch.req <= ’0’ after tpd;

end send;

procedure receive(signal ch : inout channel_fp; d : out fp) is

begin

if ch.req /= ’1’ then

wait until ch.req = ’1’;

end if;

wait for tpd;

d := ch.data;

ch.ack <= ’1’;

wait until ch.req = ’0’;

ch.ack <= ’0’ after tpd;

end receive;

function probe(signal ch : in uchannel_fp) return boolean is

begin

return (ch.req = ’1’);

end probe;

-- synopsys synthesis_on

function connect(signal ch : in uchannel_fp) return channel_fp is

begin

return ch;

end connect;

end real_channels;

Bibliography

[1] Ameer M.S. Abdelhadi and Mark R. Greenstreet. Interleaved architec-
tures for high-throughput synthesizable synchronization fifos. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), volume 2017-, pages 41–48. IEEE Computer Society, 2017.

[2] T. Agerwala. Putting petri nets to work. IEEE Computer, 12(12):85–94,
December 1979.

[3] Peeter Alfke. Metastable Recovery in Virtex-II Pro FPGAs, 2005. Xilinx
application note XAPP094 (v3.0) February 10, 2005.

[4] T.S. Balraj and M.J. Foster. Miss Manners: A specialized silicon com-
piler for synchronizers. In Charles E. Leierson, editor, Advanced Research
in VLSI, pages 3–20. MIT Press, April 1986.

[5] A. Bardsley and D. Edwards. Compiling the language Balsa to delay-
insensitive hardware. In C. D. Kloos and E. Cerny, editors, Hardware De-
scription Languages and their Applications (CHDL), pages 89–91, April
1997.

[6] A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit syn-
thesis system. In Forum on Design Languages, September 2000.

[7] Salomon Beer, Ran Ginosar, Jerome Cox, Tom Chaney, and David M.
Zar. Metastability challenges for 65 nm and beyond; simulation and mea-
surements. In Proc. Design, Automation and Test in Europe (DATE),
March 2013.

[8] Salomon Beer, Ran Ginosar, Michael Priel, Rostislav Dobkin, and Avi-
noam Kolodny. The devolution of synchronizers. In Proc. IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC),
pages 94–103, 2010.

[9] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Covering conditions
and algorithms for the synthesis of speed-independent circuits. IEEE
Transactions on Computer-Aided Design, March 1998.

233

234 Bibliography

[10] Peter A. Beerel, Chris J. Myers, and Teresa H.-Y. Meng. Automatic syn-
thesis of gate-level speed-independent circuits. Technical Report CSL-
TR-94-648, Stanford University, November 1994.

[11] C. H. (Kees) van Berkel, Mark B. Josephs, and Steven M. Nowick. Scan-
ning the technology: Applications of asynchronous circuits. Proceedings
of the IEEE, 87(2):223–233, February 1999.

[12] Ed Brinksma and Tommaso Bolognesi. Introduction to the ISO specifi-
cation language LOTOS. Computer Networks and ISDN Systems, 14(1),
1987.

[13] Erik Brunvand and Robert F. Sproull. Translating concurrent pro-
grams into delay-insensitive circuits. In Proc. IEEE/ACM Int’l. Conf.
Computer-aided Design (ICCAD), pages 262–265, November 1989.

[14] J. A. Brzozowsky and C.-J. H. Seager. Asynchronous Circuits. Springer
Verlag, Monographs in Computer Science, 1994. ISBN: 0-387-94420-6.

[15] S. M. Burns. General condition for the decomposition of state hold-
ing elements. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. IEEE Computer Society Press,
March 1996.

[16] Steven M. Burns and Alain J. Martin. Syntax-directed translation of
concurrent programs into self-timed circuits. In J. Allen and F. Leighton,
editors, Proceedings of the Fifth MIT Conference on Advanced Research
in VLSI, pages 35–50. MIT Press, 1988.

[17] Marco Cannizzaro, Salomon Beer, Jordi Cortadella, Ran Ginosar, and
Luciano Lavagno. SafeRazor: Metastability-robust adaptive clocking in
resilient circuits. IEEE Transactions on Circuits and Systems I: Regular
Papers, 62(9):7177141, 2238–2247, 2015.

[18] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer
and arbiter circuits. IEEE Transactions on Computers, C-22(4):421–422,
April 1973.

[19] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Sys-
tems. PhD thesis, Stanford University, October 1984. Report No. STAN-
CS-84-1026.

[20] K. T. Christensen, P. Jensen, P. Korger, and J. Sparsø. The Design
of an Asynchronous TinyRISC TR4101 Microprocessor Core. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 108–119. IEEE Computer Society Press, 1998.

Bibliography 235

[21] T.-A. Chu and L. A. Glasser. Synthesis of self-timed control circuits form
graphs: An example. In Proc. International Conf. Computer Design
(ICCD), pages 565–571. IEEE Computer Society Press, 1986.

[22] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-
Theoretic Specifications. PhD thesis, MIT Laboratory for Computer
Science, June 1987.

[23] Tam-Anh Chu and Rabinda K Roy (editors). Special issue on asyn-
chronous circuits and systems. IEEE Design & Test, 11(2), 1994.

[24] Bill Coates, Al Davis, and Ken Stevens. The Post Office experience:
Designing a large asynchronous chip. Integration, the VLSI journal,
15(3):341–366, October 1993.

[25] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed
graphs. J. Comput. System Sci., 5(1):511–523, October 1971.

[26] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic Synthesis of Asynchronous Controllers and Inter-
faces. Springer-Verlag, 2002.

[27] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Petrify: a tool for manipulating con-
current specifications and synthesis of asynchronous controllers. In XI
Conference on Design of Integrated Circuits and Systems, pages 205–210,
Barcelona, November 1996.

[28] Uri Cummings, Andrew Lines, and Alain Martin. An asynchronous
pipelined lattice structure filter. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 126–
133, November 1994.

[29] W. J. Dally and J. W. Poulton. Digital Systems Engineering. Cambridge
University Press, 1998.

[30] William J. Dally, R. Curtis Harting, and Tor M. Aamodt. Digital design
using VHDL: A Systems Approach. Cambridge University Press, 2016.

[31] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai, D. M. Bull,
and D. T. Blaauw. RazorII: In situ error detection and correction for
PVT and SER tolerance. IEEE Journal of Solid-State Circuits, 44(1):32–
48, 2009.

[32] David Lloyd, Dept. of Computer Science, Manchester University. VHDL
models of asychronous handshaking. (Personal communication, August
1998).

236 Bibliography

[33] M. Davies, N. Srinivasa, T. Lin, et al. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[34] A. L. Davis. A data-driven machine architecture suitable for VLSI im-
plementation. In Proceedings of the First Caltech Conference on VLSI,
pages 479–494, Pasadena, CA, January 1979.

[35] Al Davis and Steven M. Nowick. Asynchronous circuit design: Moti-
vation, background, and methods. In Graham Birtwistle and Al Davis,
editors, Asynchronous Digital Circuit Design, Workshops in Computing,
pages 1–49. Springer-Verlag, 1995.

[36] Al Davis and Steven M. Nowick. An introduction to asynchronous cir-
cuit design. Technical Report UUCS-97-013, Department of Computer
Science, University of Utah, September 1997.

[37] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit
design. In A. Kent and J. G. Williams, editors, The Encyclopedia of
Computer Science and Technology, volume 38. Marcel Dekker, New York,
February 1998.

[38] Jack B. Dennis. Data Flow Computation. In Control Flow and Data Flow
— Concepts of Distributed Programming, International Summer School,
pages 343–398, Marktoberdorf, West Germany, July 31 – August 12,
1984. Springer, Berlin.

[39] Jo Ebergen and Robert Berks. Response time properties of linear asyn-
chronous pipelines. Proceedings of the IEEE, 87(2):308–318, February
1999.

[40] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, and Trevor Mudge. Razor: A low-power pipeline based on
circuit-level timing speculation. In Proc. IEEE/ACM International Sym-
posium on Microarchitecture, pages 7–18, 2003.

[41] Karl M. Fant and Scott A. Brandt. NULL conventional logic: A com-
plete and consistent logic for asynchronous digital circuit synthesis. In
International Conference on Application-specific Systems, Architectures,
and Processors, pages 261–273, 1996.

[42] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney,
David Money Harris, David Blaauw, and Dennis Sylvester. Bubble Ra-
zor: Eliminating timing margins in an ARM cortex-M3 processor in 45
nm CMOS using architecturally independent error detection and correc-
tion. IEEE Journal of Solid-State Circuits, 48(1):66–81, 2013.

Bibliography 237

[43] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and
L. Plana. Minimalist: An environment for the synthesis, verification
and testability of burst-mode asynchronous machines. Technical Report
TR CUCS-020-99, Columbia University, NY, July 1999.

[44] S. B. Furber and P. Day. Four-phase micropipeline latch control circuits.
IEEE Transactions on VLSI Systems, 4(2):247–253, June 1996.

[45] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V.
Woods. The design and evaluation of an asynchronous microprocessor.
In Proc. Int’l. Conf. Computer Design (ICCD), pages 217–220, October
1994.

[46] S. B. Furber, D. A. Edwards, and J. D. Garside. AMULET3: a 100
MIPS asynchronous embedded processor. In Proc. International Conf.
Computer Design (ICCD), September 2000.

[47] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P.Day, and N. C.
Paver. AMULET2e: An Asynchronous Embedded Controller. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 290–299. IEEE Computer Society Press, 1997.

[48] Stephen B. Furber, James D. Garside, Peter Riocreux, Steven Temple,
Paul Day, Jianwei Liu, and Nigel C. Paver. AMULET2e: An asyn-
chronous embedded controller. Proceedings of the IEEE, 87(2):243–256,
February 1999.

[49] G. Birtwistle and A. Davis, editor. Proceedings of the Banff VIII Work-
shop: Asynchronous Digital Circuit Design, Banff, Alberta, Canada, Au-
gust 28–September 3, 1993. Springer Verlag, Workshops in Computing
Science, 1995. Contributions from: Steve Furber, “Computing with-
out Clocks: Micropipelining the ARM Processor,” Al Davis, “Practical
Asynchronous Circuit Design: Methods and Tools,” C.H. van Berkel,
“VLSI Programming of Asynchronous Circuits for Low Power,” Jo Eber-
gen, “Parallel Program and Asynchronous Circuit Design,” A. Davis and
S. Nowick, “Introductory Survey”.

[50] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. A. Edwards, S. B.
Furber, J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper, O. Petlin,
S. Temple, and J. V. Woods. AMULET3i — an asynchronous system-
on-chip. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 162–175. IEEE Computer
Society Press, April 2000.

[51] Bruce Gilchrist, J. H. Pomerene, and S. Y. Wong. Fast carry logic
for digital computers. IRE Transactions on Electronic Computers, EC-
4(4):133–136, December 1955.

238 Bibliography

[52] R. Ginosar. Metastability and synchronizers: A tutorial. IEEE Design
& Test of Computers, 28(5):23–35, 2011.

[53] Ran Ginosar. Fourteen ways to fool your synchronizer. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 89–96, May 2003.

[54] Mark R. Greenstreet. STARI: A Technique for High-Bandwidth Com-
munication. PhD thesis, Princeton University, Department of Computer
Science, 1993. TR-394-92.

[55] Mark R. Greenstreet, Jørgen Staunstrup, and Ted E. Williams. Self-
timed iteration. In Carlo H. Séquin, editor, Proceedings of VLSI ’87,
pages 269–282. IFIP, August 1987.

[56] M.R. Greenstreet. Implementing a STARI chip. In Proc. Int’l. Conf.
Computer Design (ICCD), pages 38–43, 1995.

[57] Scott Hauck. Asynchronous design methodologies: An overview. Pro-
ceedings of the IEEE, 83(1):69–93, January 1995.

[58] L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma. Cascode
Voltage Switch Logic: A Differential CMOS Logic Family. Proc. Inter-
national Solid State Circuits Conference, pages 16–17, February 1984.

[59] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, August 1978.

[60] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, En-
glewood Cliffs, 1985.

[61] https://github.com/zuzkajelcicova/Async-Click-Library.

[62] Wenmian Hua and Rajit Manohar. Exact timing analysis for asyn-
chronous systems. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 37(1):203–216, 2018.

[63] D. A. Huffman. The synthesis of sequential switching circuits. J. Franklin
Inst., pages 161–190, 275–303, March/April 1954.

[64] D. A. Huffman. The synthesis of sequential switching circuits. In E. F.
Moore, editor, Sequential Machines: Selected Papers. Addison-Wesley,
1964.

[65] H. Hulgaard, S.M. Burns, T. Amon, and G. Borriello. An algorithm for
exact bounds on the time separation of events in concurrent systems.
Computers, IEEE Transactions on, 44(11):1306–1317, 1995.

Bibliography 239

[66] Henrik Hulgaard, Steven M. Burns, Tod Amon, and Gaetano Borriello.
Practical applications of an efficient time separation of events algo-
rithm. In Proc. IEEE/ACM Int’l. Conf. Computer-aided Design (IC-
CAD), pages 146–151, 1993.

[67] Henrik Hulgaard, Steven. M. Burns, Tod Amon, and Gaetano Borriello.
An algorithm for exact bounds on the time separation of events in con-
current systems. Technical Report TR #94-02-02, University of Wash-
ington, Department of Computer Science and Engineering, 1994. (to
appear in IEEE Transaction on Computers).

[68] Kai Hwang. Computer Arithmetic: Principles, Architecture, and Design.
John Wiley & Sons, 1979.

[69] S. C. Johnson and S. Mazor. Silicon compiler lets system makers design
their own vlsi chips. Electronic Design, 32(20):167–181, 1984.

[70] Geraint Jones. Programming in occam. Prentice-Hall international, 87.

[71] Mark B. Josephs, Steven M. Nowick, and C. H. (Kees) van Berkel. Mod-
eling and design of asynchronous circuits. Proceedings of the IEEE,
87(2):234–242, February 1999.

[72] E. Kasapaki, M. Schoeberl, Rasmus Bo Sørensen, C. T. Müller,
K. Goossens, and J. Sparsø. Argo: A Real-Time Network-on-Chip Ar-
chitecture with an Efficient GALS Implementation. IEEE Transactions
on VLSI Systems, 24(2):479–492, 2016.

[73] E. Kasapaki and J. Sparsø. Argo: A Time-Elastic Time-Division-
Multiplexed NOC using Asynchronous Routers. In Proc. IEEE Inter-
national Symposium on Asynchronous Circuits and Systems (ASYNC),
pages 45–52. IEEE Computer Society Press, 2014.

[74] Evangelia Kasapaki. An EDA tool for the timing analysis, optimiza-
tion and timing validation of asynchronous circuits. Master’s thesis,
Computer Science Department, University of Crete, Greece, Heraklion,
Crete, Greece, April 2008.

[75] Evangelia Kasapaki and Jens Sparsø. The Argo NOC: Combining TDM
and GALS. In European conference on circuit theory and design (EC-
CTD), pages 1–4, 2015.

[76] Joep Kessels, Torsten Kramer, Gerrit den Besten, Ad Peeters, and Volker
Timm. Applying asynchronous circuits in contactless smart cards. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 36–44. IEEE Computer Society Press, April
2000.

240 Bibliography

[77] Joep Kessels, Torsten Kramer, Ad Peeters, and Volker Timm.
DESCALE: a design experiment for a smart card application consum-
ing low energy. In Rene van Leuken, Reinder Nouta, and Alexander
de Graaf, editors, European Low Power Initiative for Electronic System
Design, pages 247–262. Delft Institute of Microelectronics and Submi-
cron Technology, July 2000.

[78] David J. Kinniment. Synchronization and Arbitration in Digital Systems.
Wiley, 2008.

[79] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[80] Alex Kondratyev, Jordi Cortadella, Michael Kishinevsky, Luciano
Lavagno, and Alexander Yakovlev. Logic decomposition of speed-
independent circuits. Proceedings of the IEEE, 87(2):347–362, February
1999.

[81] I Kotleas, D.R. Humphreys, R.B. Sørensen, E. Kasapaki, F. Brandner,
and J. Sparsø. A Loosely Synchronizing Asynchronous Router for TDM-
Scheduled NOCs. In Proc. IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), pages 151–158, 2014.

[82] Andrew Lines, May 2019. Private communication.

[83] Andrew Lines, Prasad Joshi, Ruokun Liu, Steve McCoy, Jonathan Tse,
Yi Hsin Weng, and Mike Davies. Loihi asynchronous neuromorphic re-
search chip. In Proc. IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 32–33, 2018.

[84] J. Liu. Arithmetic and control components for an asynchronous micro-
processor. PhD thesis, Department of Computer Science, University of
Manchester, 1997.

[85] S. Lubkin. Asynchrous signals in digital computers. Mathematical Tables
and Other Aids to Computation, 6(40):238–241, 1952.

[86] Adrian Mardari, Zuzana Jelc̆icová, and Jens Sparsø. Design and FPGA-
implementation of Asynchronous Circuits Using Two-phase Handshak-
ing. In Proc. IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 1–10. IEEE Computer Society Press, 2019.

[87] A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. South-
worth, U. V. Cummings, and T-K. Lee. The Design of an Asynchronous
MIPS R3000. In Proceedings of the 17th Conference on Advanced Re-
search in VLSI, pages 164–181, 1997.

[88] Alain J. Martin. The probe: An addition to communication primi-
tives. Information Processing Letters, 20(3):125–130, 1985. Erratum:
IPL 21(2):107, 1985.

Bibliography 241

[89] Alain J. Martin. Compiling communicating processes into delay-
insensitive VLSI circuits. Distributed Computing, 1(4):226–234, 1986.

[90] Alain J. Martin. Formal program transformations for VLSI circuit syn-
thesis. In Edsger W. Dijkstra, editor, Formal Development of Programs
and Proofs, UT Year of Programming Series, pages 59–80. Addison-
Wesley, 1989.

[91] Alain J. Martin. The limitations to delay-insensitivity in asynchronous
circuits. In William J. Dally, editor, Advanced Research in VLSI: Pro-
ceedings of the Sixth MIT Conference, pages 263–278. MIT Press, 1990.

[92] Alain J. Martin. Programming in VLSI: From communicating processes
to delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in
Concurrency and Communication. Addison Wesley, 1990. UT Year of
Programming Institute on Concurrent Programming.

[93] Alain J. Martin. Asynchronous datapaths and the design of an asyn-
chronous adder. Formal Methods in System Design, 1(1):119–137, July
1992.

[94] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and
Pieter J. Hazewindus. The First Asynchronous Microprocessor: The
Test Results. Computer Architecture News, 17(4):95–98, 1989.

[95] Peggy McGee and Steve Nowick. DES (Discrete Event System) Ana-
lyzer: A performance analysis and timing verification tool for concurrent
digital systems, 2003. http://www1.cs.columbia.edu/~nowick/asynctools
Accessed: February 2018.

[96] Peggy B. McGee and Steven M. Nowick. An efficient algorithm for
time separation of events in concurrent systems. In Proc. IEEE/ACM
International Conference on Computer-aided Design (ICCAD), pages
180–187. IEEE, 2007.

[97] Carver A. ”Mead and Lynn A.” Conway. Introduction to VLSI Systems.
Addison-Wesley, 1980.

[98] D. Messerschmitt. Synchronization in digital system design. IEEE Jour-
nal on Selected Areas in Communications, 8(8):1404–1419, 1990.

[99] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[100] Charles E. Molnar. Excerpts from two seminars on metastability pre-
sented at Hewlett-Packard in february 1992. On line. Available at:
https://www.cse.wustl.edu/history/molnar c/.

242 Bibliography

[101] Charles E. Molnar, Ian W. Jones, Bill Coates, and Jon Lexau. A FIFO
ring oscillator performance experiment. In Proc. International Sym-
posium on Advanced Research in Asynchronous Circuits and Systems,
pages 279–289. IEEE Computer Society Press, April 1997.

[102] Charles E. Molnar, Ian W. Jones, William S. Coates, Jon K. Lexau,
Scott M. Fairbanks, and Ivan E. Sutherland. Two FIFO ring performance
experiments. Proceedings of the IEEE, 87(2):297–307, February 1999.

[103] David E. Muller. Asynchronous logics and application to information
processing. In H. Aiken and W. F. Main, editors, Proc. Symp. on Appli-
cation of Switching Theory in Space Technology, pages 289–297. Stanford
University Press, 1963.

[104] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching,
Cambridge, April 1957, Part I, pages 204–243. Harvard University Press,
1959. The annals of the computation laboratory of Harvard University,
Volume XXIX.

[105] Robert Mullins and Simon Moore. Demystifying data-driven and pausi-
ble clocking schemes. In Proc. IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pages 175–185, March 2007.

[106] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE, 77(4):541–580, April 1989.

[107] Chris J. Myers. Asynchronous Circuit Design. John Wiley & Sons, July
2001. ISBN: 0-471-41543-X.

[108] Christian D. Nielsen. Evaluation of function blocks for asynchronous de-
sign. In Proc. European Design Automation Conference (EURO-DAC),
pages 454–459. IEEE Computer Society Press, September 1994.

[109] Christian Dalsgaard Nielsen, Jørgen Staunstrup, and Simon R. Jones.
Potential performance advantages of delay-insensitivity. In M. Sami and
J. Calzadilla-Daguerre, editors, Proceedings of IFIP workshop on Silicon
Architectures for Neural Nets, StPaul-de-Vence, France, November 1990,
pages ??–?? North-Holland, Amsterdam, 1991.

[110] L. S. Nielsen, C. Niessen, J. Sparsø, and C. H. van Berkel. Low-power
operation using self-timed circuits and adaptive scaling of the supply
voltage. IEEE Transactions on VLSI Systems, 2(4):391–397, 1994.

[111] Lars S. Nielsen and Jens Sparsø. A Low-power Asynchronous Data-
path for a FIR Filter Bank. In Proc. IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC), pages 197–207. IEEE
Computer Society Press, 1996.

Bibliography 243

[112] Lars S. Nielsen and Jens Sparsø. An 85 µW Asynchronous Filter-Bank
for a Digital Hearing Aid. In Proc. IEEE International Solid State cir-
cuits Conference, pages 108–109, 1998.

[113] Lars S. Nielsen and Jens Sparsø. Designing asynchronous circuits for low
power: An IFIR filter bank for a digital hearing aid. Proceedings of the
IEEE, 87(2):268–281, February 1999.

[114] Lars Skovby Nielsen. Low-power Asynchronous VLSI Design. PhD the-
sis, Department of Information Technology, Technical University of Den-
mark, 1997. IT-TR:1997-12.

[115] C. Niessen, C.H. van Berkel, M. Rem, and R.W.J.J. Saeijs. VLSI pro-
gramming and silicon compilation. In Proc. International Conf. Com-
puter Design (ICCD), pages 150–166. IEEE Computer Society Press,
1988.

[116] David C. Noice. A Two-Phase Clocking Dicipline for Digital Integrated
Circuits. PhD thesis, Department of Electrical Engineering, Stanford
University, February 1983.

[117] S. M. Nowick. Design of a low-latency asynchronous adder using specu-
lative completion. IEE Proceedings, Computers and Digital Techniques,
143(5):301–307, September 1996.

[118] Steven M. Nowick, Kenneth Y. Yun, and Peter A. Beerel. Speculative
completion for the design of high-performance asynchronous dynamic
adders. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 210–223. IEEE Computer
Society Press, April 1997.

[119] N.Weste and K. Esraghian. Principles of CMOS VLSI Design – A sys-
tems Perspective, 2nd edition. Addison-Wesley, 1993.

[120] International Standards Organization. LOTOS — a formal description
technique based on the temporal ordering of observational behaviour.
ISO IS 8807, 1989.

[121] I. Miro Panades and A. Greiner. Bi-synchronous FIFO for synchronous
circuit communication well suited for network-on-chip in gals archi-
tectures. In Proc. IEEE/ACM Intl. Symposium on Networks-on-Chip
(NOCS), pages 83–92, 2007.

[122] N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and
J. Liu. A low-power, low-noise configurable self-timed DSP. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 32–42, 1998.

244 Bibliography

[123] Nigel C. Paver. The Design and Implementation of an Asynchronous Mi-
cropricessor. PhD thesis, Department of Computer Science, Unniversity
of Manchester, 1994.

[124] Miroslav Pechoucek. Anomalous response times of input synchronizers.
IEEE Transactions on Computers, C-25(2):133–139, Feb 1976.

[125] Michael Pedersen. Design of asynchronous circuits using standard cad
tools. Technical Report IT-E 774, Technical University of Denmark,
Dept. of Information Technology, 1998. (In Danish).

[126] Ad Peeters, Frank te Beest, Mark de Wit, and Willem Mallon. Click
elements: An implementation style for data-driven compilation. In Proc.
Intl. Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC), pages 3–14, 2010.

[127] Ad M. G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eind-
hoven University of Technology, June 1996.

[128] J. L. Peterson. Petri nets. Computing Surveys, 9(3):223–252, September
1977.

[129] C. V. Ramamoorthy and Garry S. Ho. Performance evaluation of asyn-
chronous concurrent systems using petri nets. IEEE Transactions on
Software Engineering, 6(5):440–449, 1980.

[130] M. Renaudin, P. Vivet, and F. Robin. A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation. In
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 135–144, April 1999.

[131] M. Roncken. Defect-oriented testability for asynchronous ICs. Proceed-
ings of the IEEE, 87(2):363–375, February 1999.

[132] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and
I. Sutherland. Naturalized communication and testing. In Proc.
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 77–84. IEEE Computer Society Press, 2015.

[133] S. M. Nowick and M. B Josephs and C. H. (Kees) van Berkel (editors).
Special Issue on Asynchronous Circuits and Systems. Proceedings of the
IEEE, 87(2), February 1999.

[134] Arash Saifhashemi and Peter A. Beerel. High level modeling of channel-
based asynchronous circuits using verilog. Concurrent Systems Engi-
neering Series, 63:275–288, 2005.

Bibliography 245

[135] Arash Saifhashemi and Peter A. Beerel. System VerilogCSP: Modeling
digital asynchronous circuits using systemverilog interfaces. Concurrent
Systems Engineering Series, 68:287–302, 2011.

[136] Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Con-
way, editors, Introduction to VLSI Systems, chapter 7. Addison-Wesley,
1980.

[137] M. Singh and SM Nowick. MOUSETRAP: Ultra-high-speed transition-
signaling asynchronous pipelines. In Intl. Conference on Computer De-
sign (ICCD), pages 9–17. IEEE Computer Society Press, 2001.

[138] M. Singh and SM Nowick. MOUSETRAP: High-speed transition-
signaling asynchronous pipelines. IEEE Transactions on VLSI Systems,
15(6):684–698, 2007.

[139] N.P. Singh. A design methodology for self-timed systems. Master’s
thesis, Laboratory for Computer Science, MIT, 1981. MIT/LCS/TR-
258.

[140] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Asynchronous data
path models. In Proc. Intl. Conference on Application of Concurrency
To System Design (ACSD), pages 197–210. IEEE, 2007.

[141] Danil Sokolov, Ivan Poliakov, and Alex Yakovlev. Analysis of static data
flow structures. Fundamenta Informaticae, 88(4):581–610, 2008.

[142] J. Sparsø and S. Furber, editors. Principles of asynchronous circuit
design – A systems perspective. Kluwer Academic Publishers, 2001.

[143] J. Sparsø, J. Staunstrup, and M. Dantzer-Sørensen. Design of delay
insensitive circuits using multi-ring structures. In G. Musgrave, edi-
tor, Proc. of EURO-DAC ’92, European Design Automation Confer-
ence, Hamburg, Germany, September 7-10, 1992, pages 15–20. IEEE
Computer Society Press, 1992.

[144] Jens Sparsø, Christian D. Nielsen, Lars S. Nielsen, and Jørgen
Staunstrup. Design of self-timed multipliers: A comparison. In S. Furber
and M. Edwards, editors, Asynchronous Design Methodologies, volume
A-28 of IFIP Transactions, pages 165–180. Elsevier Science Publishers,
1993.

[145] Jens Sparsø and Jørgen Staunstrup. Delay-insensitive multi-ring struc-
tures. INTEGRATION, the VLSI Journal, 15(3):313–340, October 1993.

[146] Leon Stok. Architectural Synthesis and Optimization of Digital Systems.
PhD thesis, Eindhoven University of Technology, 1991.

246 Bibliography

[147] Ivan E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720–738, June 1989.

[148] Synopsys, Inc. Synopsys VSS Family Core Programs Manual, 1997.

[149] Paul Teehan, Mark Greenstreet, and Guy Lemieux. A survey and tax-
onomy of gals design styles. IEEE Design and Test of Computers,
24(5):418–28, 418–428, 2007.

[150] Roger L. Traylor. Self-timed data pipeline apparatus using asynchronous
stages having toggle flip-flops, January 1995. U.S. Patent 5,386,585.

[151] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-
Interscience, John Wiley & Sons, Inc., New York, 1969.

[152] C. H. van Berkel. Beware the isochronic fork. INTEGRATION, the
VLSI journal, 13(3):103–128, 1992.

[153] C. H. van Berkel. Handshake Circuits: an Asynchronous Architecture
for VLSI Programming, volume 5 of International Series on Parallel
Computation. Cambridge University Press, 1993.

[154] C. H. van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Ron-
cken, and Frits Schalij. Asynchronous Circuits for Low Power: a DCC
Error Corrector. IEEE Design & Test, 11(2):22–32, 1994.

[155] C. H van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The
VLSI-programming language Tangram and its translation into hand-
shake circuits. In Proc. European Conference on Design Automation
(EDAC), pages 384–389, 1991.

[156] C.H. van Berkel, F. Huberts, and A. Peeters. Stretching quasi delay
insensitivity by means of extended isochronic forks. In Asynchronous
design methodologies, pages 99–106. IEEE Computer Society Press, May
1995.

[157] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Ron-
cken, and Frits Schalij. A fully asynchronous low-power error corrector
for the DCC player. In ISSCC 1994 Digest of Technical Papers, vol-
ume 37, pages 88–89. IEEE, 1994. ISSN 0193-6530.

[158] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Ron-
cken, Frits Schalij, and Rik van de Viel. A single-rail re-implementation
of a dcc error detector using a generic standard-cell library. In 2nd
Working Conference on Asynchronous Design Methodologies, London,
May 30-31, 1995, pages 72–79, 1995.

Bibliography 247

[159] Hans van Gageldonk, Daniel Baumann, Kees van Berkel, Daniel Gloor,
Ad Peeters, and Gerhard Stegmann. An asynchronous low-power 80C51
microcontroller. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 96–107, 1998.

[160] Peter Vanbekbergen. Synthesis of Asynchronous Control Circuits from
Graph-Theoretic Specifications. PhD thesis, Catholic University of Leu-
ven, September 1993.

[161] V. I. Varshavsky, M. A. Kishinevsky, V. B. Marakhovsky, V. A. Peschan-
sky, L. Y. Rosenblum, A. R. Taubin, and B. S. Tzirlin. Self-timed
Control of Concurrent Processes. Kluwer Academic Publisher, 1990.
V.I.Varshavsky Ed., (Russian edition: 1986).

[162] T. Verhoeff. Delay-insensitive codes - an overview. Distributed Comput-
ing, 3(1):1–8, 1988.

[163] P. Viviet and M. Renaudin. CHP2VHDL, a CHP to VHDL transla-
tor - Towards asynchronous-design simulation. In L. Lavagno and M.B.
Josephs, editors, Handouts from the ACiD-WG Workshop on Specifica-
tion models and languages and technology effects of asynchronous design.
Dipartemento di Elettronica, Polytecnico de Torino, Italy, January 1998.

[164] J. Wang. Timed petri nets: Theory and Application, volume DEDS 9.
Kluwer Academic Publishers, 1998.

[165] P. Wielage, J.E. Marinissen, M. Altheimer, and C. Wouters. Design and
DfT of a high-speed area-efficient embedded asynchronous FIFO. In
Proc. Design, Automation and Test in Europe (DATE), pages 853–858,
2007.

[166] T. E. Williams and M. A. Horowitz. A zero-overhead self-timed 160 ns.
54 bit CMOS divider. IEEE Journal of Solid State Circuits, 26(11):1651–
1661, 1991.

[167] Ted Williams, Niteen Patkar, and Gene Shen. SPARC64: A 64-b 64-
active-instruction out-of-order-execution MCM processor. IEEE Journal
of Solid-State Circuits, 30(11):1215–1226, November 1995.

[168] Ted E. Williams. Self-Timed Rings and their Application to Division.
PhD thesis, Department of Electrical Engineering and Computer Sci-
ence, Stanford University, 1991. CSL-TR-91-482.

[169] Ted E. Williams. Analyzing and improving latency and throughput in
self-timed rings and pipelines. In Tau-92: 1992 Workshop on Timing Is-
sues in the Specification and Synthesis of Digital Systems. ACM/SIGDA,
March 1992.

248 Bibliography

[170] Ted E. Williams. Performance of iterative computation in self-timed
rings. Journal of VLSI Signal Processing, 7(1-2):17–31, 1994.

[171] Chantal Ykman-Couvreur, Bill Lin, and Hugo de Man. Assassin: A
synthesis system for asynchronous control circuits. Technical report,
IMEC, September 1994. User and Tutorial manual.

[172] Kenneth Y. Yun and David L. Dill. Automatic synthesis of extended
burst-mode circuits: Part II (automatic synthesis). IEEE Transactions
on Computer-Aided Design, 18(2):118–132, February 1999.

[173] Jun Zhou, David Kinniment, Gordon Russell, and Alex Yakovlev. A
robust synchronizer. In IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures (ISVLSI’06), pages 2
pp.–, March 2006.

Index

acknowledgment (or indication), 15
actual case latency, 78
addition (ripple-carry), 77
and-or-invert (AOI) gates, 112
arbiter, 34, 190
arbitration, 89, 141, 190
asymmetric delay, 56, 139
asynchronous advantages, 1
atomic complex gate, 104, 113

Balsa, 204
barrier, 180, 183
better than worst-case, 167
bit-serial, 162
bubble, 30
bubble limited, 57
bundled-data, 9
burst mode, 96

input burst, 96
output burst, 96

C-element, 14, 64, 102
asymmetric, 64, 110
generalized, 110, 113, 115
implementation, 15
specification, 15, 102

Caltech, 214
capture-pass latch, 19
CCS (calculus of communicating sys-

tems), 204
channel, 5, 30

probe, 203
receive, 203
send, 203

channel type
biput, 196

nonput, 195
pull, 10, 195
push, 10, 195

CHP (communicating hardware pro-
cesses), 204

circuit templates:
for statement, 43
if statement, 42
while statement, 44

classification
delay-insensitive (DI), 25
quasi delay-insensitive (QDI), 25
self-timed, 26
speed-independent (SI), 25

click element, 175
alternative implementation, 176

clock
stretchable, 158

closed circuit, 23
codeword (dual-rail), 11

empty, 12
intermediate, 12
valid, 12

compatible states, 95
complete state coding (CSC), 98
completion

detection, 21, 22
indication, 75

strong, 75
weak, 75

completion detector, 73
completion indication, 78
complex gates, 114
Concurrent processes, 203
concurrent statements, 203

249

250 Index

consistent state assignment, 98
control limited, 58
control logic for transition signaling,

20
control-data-flow graphs, 42
CSP (communicating sequential

processes), 203
cycle time

of a handshake, 129
of a ring, 57

data encoding
bundled-data, 9
dual-rail, 11
m-of-n, 14
one-hot (or 1-of-n), 13
single-rail, 10

data limited, 57
data validity scheme (4-phase bundled-

data)
broad, 196
early, 196
extended early, 196
late, 196

data-flow abstraction, 6
DCVSL, 83
deadlock, 30
delay assumptions, 23
delay insensitive minterm synthesis

(DIMS), 80
delay matching, 11
delay model

fixed delay, 93
inertial delay, 93
inertial delay,delay time, 93
inertial delay,reject time, 93
min-max delay, 93
transport delay, 93
unbounded delay, 93

delay selection, 79
delay-insensitive (DI), 11, 17, 25

codes, 12
demultiplexer (DEMUX), 34, 187
differential logic, 83

DIMS, 80, 81
dual-rail carry signals, 78
dual-rail encoding, 11
dummy environment, 97
dynamic wavelength, 57

empty word, 11, 12, 29, 30
environment, 94
escapement system, 159
event, 10
event graph (EG), 127
excitation region, 107
excited gate/variable, 23

Fibonacci circuit, 38, 182, 191
FIFO, 17
finite state machine (using a ring), 37
firing (of a gate), 24
for statement, 43
fork, 34, 185
forward latency, 55
FPGA prototyping, 191

Fibonacci circuit, 191
GCD circuit, 191

function block, 33, 73, 74
bundled-data, 18, 78
bundled-data (“speculative com-

pletion”), 79
dual-rail, 22
dual-rail (DIMS), 80
dual-rail (Martin’s adder), 84
dual-rail (null convention logic),

82
dual-rail (transistor level CMOS),

83
hybrid, 86
strongly indicating, 75
weakly indicating, 75

fundamental mode, 92, 94

generalized C-element, 113, 115
generate (carry), 77
globally-asynchronous locally-synchronous

(GALS) systems, 155

Index 251

greatest common divisor (GCD), 44,
191, 211

guarded command, 207
guarded repetition, 207

handshake channel, 195
biput, 196
nonput, 195, 209
pull, 10, 195, 209
push, 10, 195, 209

handshake circuit, 208
2-place ripple FIFO, 211
2-place shift register, 209
greatest common divisor (GCD),

212
handshake component

arbiter, 34, 89
bar, 211
conditional send, 67
demultiplexer, 34, 65, 211
DEMUX with latched outputs, 68
do, 211
fork, 34, 63, 211, 213
join, 34, 63, 210
latch, 29, 32, 61, 184

2-phase bundled-data, 19, 184
4-phase bundled-data, 18, 117
4-phase dual-rail, 21

merge, 34, 63
multiplexer, 34, 65, 119, 211
mutex, 34
passivator, 210
repeater, 210
sequencer, 210
transferer, 210
variable, 210

handshake expansion, 214
handshake latch, 29, 184
handshake protocol, 5, 9

2-phase bundled-data, 9
2-phase dual-rail, 13
4-phase bundled-data, 9
4-phase bundled-data, 197
4-phase dual-rail, 11

non-return-to-zero (NRZ), 10
return-to-zero (RTZ), 10

handshaking, 5
hazard

dynamic-01, 93
dynamic-10, 93, 105
static-0, 93
static-1, 93, 104

Huffmann, David A., 94
hysteresis, 22, 77

if statement, 42
IFIR filter bank, 45
indication (or acknowledgement)

dependency graphs, 85
distribution of valid/empty indi-

cation, 84
of completion, 78
strong, 75
weak, 75

indication (or acknowledgment), 15
initial marking, 127
initial state, 111
initialization, 30, 111, 182

barrier, 180
input free choice, 98
input-output mode, 92, 94
intermediate codeword, 12
isochronic fork, 26
iterative computation (using a ring),

37

join, 34, 185

kill (carry), 77

latch (see also: handshake comp.), 18
latch controller, 117

click elements, 175
fully-decoupled, 200
Loihi, 176
mousetrap, 174
normally opaque, 201
normally transparent, 201
phase-decoupled click, 179

252 Index

semi-decoupled, 200
simple/un-decoupled, 199

latency, 55
actual case, 78

link (see channel), 5, 30
liveness, 98
logic decomposition, 104
logic thresholds, 27
Loihi, 176
LOTOS, 204

m-of-n threshold gates with hystere-
sis, 82

marked graph (MG), 127
matched delay, 11, 78
memory, 69

read/write, 70, 71
read/write/read-before-write, 70
read/write/write-before-read, 71

merge, 34, 186
mesochronous, 161

communication link, 164
mesochronous link

self-timed at receivers input
(STARI), 165

using a dual-clock FIFO, 164
using an asynchronous FIFO, 165

metastability, 89, 141, 142
filter, 151
halfway, 144
mean time between failure

(MTBF), 146
measuring τ and ∆, 149
oscillating, 144
probability of, 144
synchronization, 151
time-safe systems, 153
value-safe systems, 153
values for τ and ∆, 148

metastability filter, 150
metastanility detector, 158
micropipelines, 19, 173
microprocessors

asynchronous MIPS, 46

asynchronous MIPS R3000, 214
minterm, 22, 80
monotonic cover constraint, 107, 109,

114
mousetrap, 174
Muller C-element, 15
Muller model of a closed circuit, 23
Muller pipeline/distributor, 16
Muller, David, 94
multi-clock systems, 155
multiplexer (MUX), 34, 119
multiplexor (MUX), 187
mutual exclusion, 64, 88, 150, 190

handshake component (MUTEX),
34, 88

RGD mutex, 190

NCL adder, 83
non-return-to-zero (NRZ), 10
NULL, 11
Null Convention Logic (NCL), 82

OCCAM, 204
occupancy (or static spread), 57
one-hot encoding, 13
operator reduction, 215

peephole optimization, 67, 68, 188
fused components, 188

performance
analysis and optimization, 49

performance parameters:
cycle time of a ring, 57
dynamic wavelength, 57
forward latency, 55
latency, 55
period, 56
reverse latency, 56
throughput, 57

period, 56
periodic, 162
persistency, 98
Petri net, 96, 125

1-bounded, 98
choice, 127

Index 253

confusion, 127
controlled choice, 99
firing, 96
fork, 98
initial marking, 127
input free choice, 98
join, 98
liveness, 98
marked graph, 127
merge, 98
places, 96
state machine, 127, 128
timed, 125
timed-place (TPPN), 125
timed-transition (TTPN), 125
token, 96
transition, 96

Petrify, 113
phase-decoupled click component

arbiter, 190
delay element, 185
DEMUX, 187
fork, 185
function block, 185
fused components, 188
handshake latch, 184
join, 185
merge, 186
mutual exclusion, 190
MUX, 187

phase-decoupled click components, 184
phase-decoupled handshake latches, 181
phase-decoupled handshaking, 179
pipeline, 3, 30

2-phase bundled data, 171
2-phase bundled-data, 19
4-phase bundled-data, 18
4-phase dual-rail, 20

place, 96
plesiochronous, 162
precharged CMOS circuitry, 198
primitive flow table, 95
probe, 203, 205
process decomposition, 214

production rule expansion, 214
propagate (carry), 77
pull channel, 10, 195
push channel, 10, 195

quasi delay-insensitive (QDI), 25
quiescent region, 107

Razor, 167
re-shuffling signal transitions, 112, 122
read pointer, 157
read-after-write data hazard, 46
receive, 203, 205
reduced flow table, 95
register

locking, 46
rendezvous, 205
reset function, 107
return-to-zero (RTZ), 9, 10
reverse latency, 56
RGD mutex, 190
ring, 30

finite state machine, 37
iterative computation, 37

ripple FIFO, 17

self-timed, 26
self-timed at receivers input (STARI),

165
semantics-preserving transformations

, 214
send, 203, 205
set function, 107
Set-Reset implementation, 106
shared ressource, 88
shift register

with parallel load, 52
signal transition, 10
signal transition graph (STG), 96
silicon compiler, 204
single input change, 94
single-rail, 10
spacer, 11
speculative completion, 79
speed-independent (SI), 23–25, 93

254 Index

spread token semantics, 39
stable gate/variable, 23
standard C-element, 116

implementation, 106
state graph, 95
state machine (SM), 127, 128
static data flow

2-phase bundled-data, 177
two stage ring, 177

static data-flow structure, 5, 29
for, if , and while constructs, 42
greatest common divisor (GCD),

44
IFIR filter bank, 45
MIPS microprocessor, 46
Read/write memory, 70
read/write/read-before-write mem-

ory, 70
read/write/write-before-read, 71
simple example, 35
vector multiplier, 46

static spread (or occupancy), 57, 199
static type checking, 198
stretchable clock, 158
stuck-at fault model, 27
synchronization, 141, 151

in handshake interface, 155
using dual-clock FIFO, 157
using dual-ported memory, 156

synchronous message passing, 203
syntax-directed compilation, 208

Tangram, 204
Tangram examples:

2-place ripple FIFO, 207
2-place shift register, 206
GCD using guarded repetition, 208
GCD using while and if statements,

208
taxonomy of timing organizations, 161

asynchronous, 162
mesochronous, 161
periodic, 162
plesiochronous, 162

synchronous, 161
technology mapping, 114
test, 27

IDDQ testing, 28
halting of circuit, 28
isochronic forks, 28
short and open faults, 28
stuck-at faults, 27
toggle test, 28
untestable stuck-at faults, 28

throughput, 50, 57
time separation

between signal transitions, 129
time-safe systems, 153
timed Petri net, 125
timed-place Petri net (TPPN), 125
timed-transition Petri net (TTPN), 125
token, 5, 30, 96

spread token semantics, 39
TPPN, timed-place Petri net, 125
transition, 96
transparent to handshaking, 5, 23, 34,

74
TTPN, timed-transition Petri net, 125

unique entry constraint, 107, 109

valid codeword, 12
valid data, 11, 29
valid token, 30
value-safe clocking

escapement system, 159
with metastability, 158
without metastability, 159

value-safe systems, 153
vector multiplier, 46
Verilog, 205
VHDL, 204
VLSI programming, 208
VSTGL (Visual STG Lab), 113

wave, 16
crest, 17
trough, 17

while statement, 44

Index 255

WorkCraft, 113, 114
write pointer, 157
write-back, 46

Jens Sparsø is a Professor at the Technical University of Den-
mark (DTU) in the department for Applied Mathematics and
Computer Science, where he has taught courses on digital elec-
tronics, VLSI-design, digital systems, computer architecture and
asynchronous circuits. His research field is hardware platforms
for embedded systems and he has special interests in asyn-
chronous circuits, reconfigurable hardware, application-specific
multi-core processors and networks-on-chip.

This book is an introduction to the design of asynchronous circuits. It is
an updated and significantly extended version of an eight-chapter tutorial
that first appeared as Part I in the book ”Principles of asynchronous circuit
design - A systems perspective,” edited by Sparsø and Furber (2001); a
book that has become a standard reference on the topic.

The extensions include improved coverage of data-flow components, a
new chapter on two-phase bundled-data circuits, a new chapter on metasta-
bility, arbitration, and synchronization, and a new chapter on performance
analysis using timed Petri nets. With these extensions, the text provides
more complete coverage of the field and is now made available as a stand-
alone book. The book is a beginner’s text, and the amount of formal
notation is deliberately kept at a minimum, using instead plain English
and graphical illustrations to explain the underlying intuition and reasoning
behind the concepts and methods covered.

The book targets senior undergraduate and graduate students in Electri-
cal and Computer Engineering and industrial designers with a background
in conventional (clocked) digital design who wish to gain an understand-
ing of asynchronous circuit design. The book aims to enable its readers
to design asynchronous control and data processing circuits of small and
medium complexity, to read the literature, and to decide where/whether to
use asynchronous circuits in new designs.

	CoverE
	TheWorks2020
	Preface
	Acknowledgments
	Introduction
	Why consider asynchronous circuits?
	Aims and background
	Clocking versus handshaking
	Outline of the book

	Fundamentals
	Handshake protocols
	Bundled-data protocols
	The 4-phase dual-rail protocol
	The 2-phase dual-rail protocol
	Other protocols

	Indication and the Muller C-element
	The Muller pipeline
	Circuit implementation styles
	4-phase bundled-data
	2-phase bundled data (Micropipelines)
	4-phase dual-rail

	Theory
	The basics of speed-independence
	Classification of asynchronous circuits
	Isochronic forks
	Relation to circuits

	Test
	Summary

	Static data-flow structures
	Introduction
	Pipelines and rings
	Building blocks
	A simple example
	Simple applications of rings
	Sequential circuits
	Iterative computations
	Fibonacci sequence generator

	When tokens spread
	FOR, IF, and WHILE constructs
	A more complex example: GCD
	Pointers to additional examples
	A low-power filter bank
	An asynchronous microprocessor
	A fine-grain pipelined vector multiplier

	Summary

	Performance
	Introduction
	A qualitative view of performance
	Example 1: A FIFO used as a shift register
	Example 2: A shift register with parallel load

	Quantifying performance
	Latency, throughput, and wavelength
	Cycle time of a ring
	Example 3: Performance of a 3-stage ring
	Final remarks

	Summary

	Handshake circuit implementations (four-phase)
	The latch, the sink, and the source
	Fork, join and merge
	MUX and DEMUX
	Peephole optimizations
	DEMUX with a sink on one output
	A DEMUX with latches on both outputs

	Memory cells
	Introduction
	A simple R-W data-flow memory cell
	A R-W-RW data-flow memory cell
	A R-W-WR data-flow memory cell
	A more efficient R-W memory design

	Function blocks – The basics
	Introduction
	Transparency to handshaking
	Review of ripple-carry addition

	Bundled-data function blocks
	Using matched delays
	Delay selection

	Dual-rail function blocks
	Delay insensitive minterm synthesis (DIMS)
	Null Convention Logic
	Transistor-level CMOS implementations
	Martin's adder

	Hybrid function blocks
	Mutual exclusion and arbitration
	Mutual exclusion
	Arbitration

	Summary

	Speed-independent control circuits
	Introduction
	Asynchronous sequential circuits
	Hazards
	Delay models
	Fundamental mode and input-output mode
	Synthesis of fundamental mode circuits

	Signal transition graphs
	Petri nets and STGs
	Some frequently used STG fragments

	The basic synthesis procedure
	Example 1: a C-element
	Example 2: a circuit with choice
	Example 2: Hazards in the simple gate implementation

	Implementations using state-holding gates
	Introduction
	Excitation regions and quiescent regions
	Example 2: Using state-holding elements
	The monotonic cover constraint
	Circuit topologies using state-holding elements

	Initialization
	Summary of the synthesis process
	Petrify: A tool for synthesizing SI circuits from STGs
	Design examples using Petrify
	Example 2 revisited
	A control circuit for a 4-phase bundled-data latch
	A control circuit for a 4-phase bundled-data MUX

	Summary

	Performance analysis using timed Petri nets
	Timed Petri nets
	Sub-classes of Petri nets
	Timing analysis of timed Petri nets
	Example 3 revisited: Analysis using a TTPN
	Example 3 revisited: Analysis using a simplified TPPN
	Example 4: A four stage ring
	Example 5: A pipeline with asymmetric delay elements
	Worst-case timing analysis

	Metastability, arbitration, and synchronization.
	What is metastability?
	Quantifying metastability
	Dealing with metastability
	Mutual exclusion and arbitration
	Synchronization
	Time-safe and value-safe systems
	Additional comments and a word of warning

	Synchronization in multi-clock systems
	A simple handshake interface
	Using a dual-ported memory
	Using a dual-clock FIFO
	Value-safe clocking with metastability
	Value-safe clocking without metastability

	A taxonomy of timing organizations
	Examples of timing organizations
	Plesiochronous bit-serial communication
	Mesochronous communication links
	Better than worst-case clocked circuits

	Concluding remarks

	Implementation of 2-phase bundled-data circuits
	Templates for implementing 2-phase handshake latches
	Recap of the Muller pipeline
	Micropipelines
	Mousetrap
	Click elements
	Loihi

	2-phase static data-flow structures
	A change of viewpoint
	Phase-decoupled handshaking
	Phase-decoupled handshake latches

	Design examples: FIB and GCD
	Fibonacci sequence generator (FIB)
	Greatest common divisor (GCD)

	Phase-decoupled click components
	The handshake latch
	Function blocks and delay elements
	Join and Fork
	Merge
	MUX and DEMUX
	Peephole optimizations
	Mutual exclusion and arbitration

	Prototyping using FPGAs

	Advanced 4-phase bundled-data protocols and circuits
	Channels and protocols
	Channel types
	Data-validity schemes
	Discussion

	Static type checking
	More advanced latch control circuits
	Summary

	High-level languages and tools
	Introduction
	Concurrency and message passing in CSP
	Tangram: program examples
	A 2-place shift register
	A 2-place (ripple) FIFO
	GCD using while and if statements
	GCD using guarded commands

	Tangram: syntax-directed compilation
	The 2-place shift register
	The 2-place FIFO
	GCD using guarded repetition

	Martin's translation process
	Using VHDL for asynchronous design
	Introduction
	VHDL versus CSP-type languages
	Channel communication and design flow
	The abstract channel package
	The real channel package
	Partitioning into control and data

	Summary
	The VHDL channel packages
	The abstract channel package
	The real channel package

	References
	Index

	BackCoverE
	Blank Page
	Blank Page
	Blank Page

