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Abstract—We present an asynchronous implementation of a
novel division algorithm previously patented in [1]. Our imple-
mentation exploits the average-case behavior of the algorithm
and uses the versatility of GasP circuits to implement the data-
dependent latencies in the algorithm. On average, the delay
per quotient bit for our implementation is 6.3 FO4 gate delays
compared to 9.5 FO4 gate delays for a similar SRT divider
implementation.
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I. INTRODUCTION

Division is one of the most complex arithmetic operations

performed in microprocessors. Although division occurs less

frequently than addition or multiplication, Oberman shows

that an efficient division implementation is necessary for good

system performance [2]. There are several division algorithms

available to implement in hardware. These algorithms can be

broadly classified into digit recurrence algorithms and mul-

tiplicative algorithms. The multiplicative algorithms include

Newton-Raphson’s method and Goldschmidt’s algorithm [3].

The digit recurrence algorithms include SRT division [4], F-

Division algorithm [5], algorithm E in [6], and algorithm H

in [1].

The SRT division algorithm is the most frequently imple-

mented algorithm in general purpose processors. The name

SRT comes from the initials of Sweeny, Robertson and Tocher;

they independently developed this algorithm at approximately

the same time. Harris presents an analysis of various SRT

divider architectures and circuit styles in [7]. In this paper we

present an analysis of a novel asynchronous implementation of

algorithm H in [1]. We show that by exploiting the average-

case behavior of asynchronous circuits, we can achieve an

average delay per quotient bit of 6.3 FO4 delays compared

to 9.5 FO4 delays in a comparable SRT implementation as

shown by Harris [7]. The simulations show that the average

energy consumption per division of 25-bit operands in a 90nm

CMOS technology is 182pJ.

We briefly summarize algorithm H in Section 2. In section 3

we describe the hardware implementation which exploits the

average-case behavior of algorithm H. We discuss the spice

simulation results and compare the results with a similar SRT

implementation in section 4.

II. DIVISION ALGORITHM

In a simple binary long division process, each repetition

step involves either left shifting the partial remainder by one,

or subtracting the divisor from the partial remainder followed

by a left-shift by one. The selection of one of these two

alternatives depends on whether the partial remainder is less

than or at least the divisor. In each step a quotient digit is

accumulated from the digit set {0, 1}, where 0 corresponds

to a shift operation and 1 corresponds to a subtract & shift

operation. Several enhancements can speed up the division

process, for example by replacing carry-propagate additions

with carry-save additions. These improved algorithms must

select one of at least three alternatives for each repetition step.

For example, a standard radix-2 SRT algorithm with carry-save

addition executes one of three alternatives in each iteration.

The three alternatives are addition of divisor followed by shift,

shift, and subtraction of divisor followed by shift. For each

operation, the SRT algorithm selects a corresponding quotient

digit from the digit set {−1, 0, 1}. Typically, the selection of

an alternative and quotient digit relies on the most significant

bits of the partial remainder. For an SRT division, the selection

logic often inspects the three or four most-significant bits

of the partial remainder. Algorithm E in [6] and H in [1]

simplify the selection logic by inspecting only the two most-

significant bits of the partial remainder rather than three or

four. This simplification comes at a cost of selecting from

more alternatives in each repetition step. Algorithm E in [6]

executes one of six alternatives in each repetition step, and

Algorithm H in [1] executes one of seven alternatives in each

repetition step. Like a simple SRT algorithm, Algorithm E

retires one quotient digit in each repetition step. Algorithm H,

however, can retire one or two quotient digits per repetition

step. We show that simplifying the selection logic overcomes

the extra cost of selecting among more alternatives and leads

to a shorter average latency per quotient bit.

Rather than just considering division, we consider comput-

ing the result of multiplication and division at the same time.

That is, Q = C ∗(R/D), where Q is the quotient, C ∗R is the

dividend and D is the divisor; if C = 1, Q is the quotient of

a simple division operation. However if C �= 1, then Q is the

result of a division along with multiplication. In [1] and [6], the

authors present generalizations of various division algorithms
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to perform both division and multiplication at the same time.

The following section summarizes algorithm H from [1].

A. Algorithm H

Because we are considering a hardware implementation, we

make some assumptions about the ranges for C,R, and D
which are binary numbers with fractional bits.

C ∈ [0, 2K ] (1)

R ∈ [−2K+1, 2K+1) (2)

D ∈ [2K , 2K+1) (3)

For IEEE 754 single and double precision formats, K = 0.

The number of repetitions required per division is determined

by the number of fractional bits, L, in a floating point number.

For IEEE single precision format L = 23 and for IEEE double

precision format L = 52.

Algorithm H appears below.

1: rs:=R; rc:=0; qs:=0; qc:=0; c:=C; n:=0

2: while(n ≤ K+L+2) do

3: if ((rs, rc) in 2X) then

4: rs, rc := rs*2, rc*2;

5: c:= c/2; n:=n+1;

6: elseif ((rs, rc) in 2X∗) then

7: rs, rc := rs*2, rc*2;

8: invert(K+1, rs, rc);

9: c:= c/2; n:=n+1;

10: elseif ((rs, rc) in 4X∗) then

11: rs, rc := rs*4, rc*4;

12: invert(K+1, rs, rc);

13: c:= c/4; n:=n+2;

14: elseif ((rs, rc) in ADD1 & 2X∗) then

15: rs, rc := add(rs, rc, D);

16: qs, qc := add(qs, qc, -c);

17: rs, rc := rs*2, rc*2;

18: invert(K+1, rs, rc);

19: c:= c/2; n:=n+1;

20: elseif ((rs, rc) in SUB1 & 2X∗) then

21: rs, rc := add(rs, rc, -D);

22: qs, qc := add(qs, qc, c);

23: rs, rc := rs*2, rc*2;

24: invert(K+1, rs, rc);

25: c:= c/2; n:=n+1;

26: elseif ((rs, rc) in ADD2 & 2X∗) then

27: rs, rc := add(rs, rc, 2D);

28: qs, qc := add(qs, qc, -2c);

29: rs, rc := rs*2, rc*2;

30: invert(K+1, rs, rc);

31: c:= c/2; n:=n+1;

32: elseif ((rs, rc) in SUB2 & 2X∗) then

33: rs, rc := add(rs, rc, -2D);

34: qs, qc := add(qs, qc, 2c);

35: rs, rc := rs*2, rc*2;

36: invert(K+1, rs, rc);

37: c:= c/2; n:=n+1;

38: endif

39: endwhile

We briefly explain the program. For a complete correctness

proof, please see [1], [6]. The program variables qs and qc
represent the partial quotient q in carry-save form, where

q = qs + qc. The program variables rs and rc represent the

partial remainder r in carry-save form, where r = rs+rc. The

function add(x, y, z) represents carry-save addition. It takes

three inputs x, y, and z and produces two results adds(x, y, z)
and addc(x, y, z) such that

adds(x, y, z) + addc(x, y, z) = x+ y + z

The result adds(x, y, z) is the bit-wise parity of x, y, and

z, and the result of addc(x, y, z) is the bit-wise majority

of x, y, and z left shifted by one. The parity bits are also

called partial sum bits. The majority bits, left shifted by one,

are also called partial carry bits. In line 15 of the program

above, the statement rs, rc := add(rs, rc, D), means that

the result of adds(rs, rc, D) is assigned to rs and the result

of addc(rs, rc, D) is assigned to rc.

The function invert(K +1, rs, rc) in lines 8, 12, 18, 24,

30, and 36 inverts the K+1st bit in rs and rc, where K+1 is

the position of the most-significant bit. This operation repre-

sents a translation over (2K+1,−2K+1) or (−2K+1, 2K+1)
in the (rs, rc) plane (see Fig. 1) and keeps the value of

rs + rc unchanged. The repetition of algorithm H maintains

the following invariants

(qs+ qc) ∗D + c ∗ (rs+ rc) = C ∗R (4)

rs ∈ [−2K+1, 2K+1) (5)

rc ∈ [−2K+1, 2K+1) (6)
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Fig. 1. The rs and rc plane: An illustration of various regions with
their corresponding actions for Algorithm H. Both rs and rc are in two’s
complement form and their two most significant bits are indicated along the
axes. The sum of rs and rc is the partial remainder r. Therefore a point in the
center of the figure denotes r = 0. A point on the diagonal across the squares
labeled 4X* has a value of r very close to 0. The value of r increases as a
point moves towards the Northeast in the figure and the value of r decreases
as a point moves towards the Southwest in the figure.
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Algorithm E of [6] is very similar to Algorithm H, but

replaces all 4X* operations by 2X* operations resulting in

bigger 2X* regions in the second and fourth quadrants in

Figure 1.

The seven alternatives, 2X, 2X*, 4X*, ADD1 & 2X*, ADD2

& 2X*, SUB1 & 2X*, and SUB2 & 2X* in the program

correspond to the regions of Figure 1. Choosing the correct

alternative relies only on the two most significant bits of rs
and rc. The * in the alternatives indicates the inversion of the

most-significant bit of rs and rc.

Algorithm H computes two quotient digits when the algo-

rithm does the 4X* operation and one quotient digit for all

other operations. This means that the number of iterations per

division varies depending on how many times the algorithm

executes the 4X* operation, which in turn depends on the input

operands. A traditional radix-2 SRT algorithm and algorithm

E retire one quotient bit per repetition step and take a fixed

number of repetitions to perform a division operation. Figure

2 shows the probability distribution of the number of iterations

per division for a radix-2 SRT algorithm, for algorithm E, and

for algorithm H. For a division of 25-bit numbers, the SRT

algorithm takes 25 iterations to compute the result. Algorithm

E takes 26 iterations to obtain the same accuracy, because the

inaccuracy in the result of Algorithm E is slightly larger than

that of SRT division. Algorithm H takes on average between 22

to 23 iterations to compute the result with the same accuracy.
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Fig. 2. Probability distribution of number of repetitions per division for
Algorithm E, Algorithm H, and SRT algorithm. For random input operands,
Algorithm H on average takes 22.6 iterations per division.

As Figure 2 shows, the number of iterations for Algorithm

E ranges from 13 to 26 with an average that is less than

the number of iterations in an SRT algorithm. Furthermore,

from statistical analysis we found that on average 66% of all

repetitions in an SRT division consist of an addition and a shift,

where a subtraction counts as an addition [6]. In Algorithm H

only 48% of all repetitions consist of an addition plus shift.

In Algorithm E this percentage is 42% [6]. This difference in

number of additions can be exploited further in each repetition

step if the latency in a path with only shifts is smaller than the

latency in a path containing an addition followed by a shift.

III. IMPLEMENTATION

In this section we describe an asynchronous implementation

of algorithm H. The divider is implemented as a stage in

a pipeline, where an input FIFO delivers operands to the

division stage and an output FIFO takes the results from

the division stage. The implementation of the division stage

consists of a data path (see Fig.3) and a control path (see

Fig.6). The data path implements various computational blocks

such as a carry-save adder (CSA), a selection logic component

(SLC), and multiplexers along with the necessary registers.

The registers use latches rather than flip-flops. The control path

generates the control signals for the registers in the data path

at appropriate times. The control path also includes a counter

that keeps track of the number of iterations and terminates the

division operation at the appropriate time. The counter is an

asynchronous down counter. Sections III-A and III-B provide

the implementation details of the data path and the control

path respectively.

A. Data Path
The data path for the divider appears in Figure 3. The

cloud labeled init implements the following initialization

statements (line 1) of algorithm H and generates the select

control signals for the first iteration. The generation of select

control signals is explained in section III-B.

1: rs:=R; rc:=0; qs:=0; qc:=0; c:=C;
In Figure 3, the register labelled ENTER receives the new

operands, R, D, and C from FIFO-A. The init cloud

executes the initialization statements and computes the select

signals for the first iteration. The register MERGE is a 2:1

multiplexing register that selects the data from either the init
cloud or from the register TRUE, depending on its input control

signals. In each repetition step the data path computes the

partial remainder and partial quotient for the next iteration.

When the division operation terminates, the implementation

sends the result of the division operation in carry-save form,

qs and qc, to FIFO-B from register FALSE to register EXIT.
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Fig. 3. Divider Data Path. The registers ENTER and EXIT serve to embed
the divider in a pipeline.

The data path is segregated into a remainder data path and

a quotient data path. The remainder data path implements the

seven alternatives and the selection logic component (SLC).
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The SLC determines the appropriate operation to execute on

the partial remainder and the partial quotient. The quotient data

path implements the actions performed on the partial quotient.

1) Remainder Data Path: Figure 4 shows an implementa-

tion of the remainder data path. The implementation includes

one carry-save adder, indicated by CSA, multiplexers, labelled

Mux A, Mux B, etc., the selection logic, indicated by SLC,

and the shift operations of the algorithm indicated by ovals

with label, 2X, 2X*, and 4X*. The ovals with label 2X* and

4X* implement left shift by 1 and 2 respectively followed by

the inversion of most-significant bit of rs and rc. The oval

with label 2X implements only a left shift by 1. Note that the

only difference between 2X and 2X* is the inversion of the

most-significant bit of rs and rc.

D -D 2D-2D

D

25

[sel1, sel2][i] 2 Mux A

CSA

2 x 25

SLC

2 x 2 msb
2 x 25

5

[sel1, sel2, invert, 4X*, no_add][i+1]

2x*

Mux B

4x*

2 [invert, 4X*][i]

SLC

2 x 2 msb
2 x 25

[rs,rc][i+1]

5

[rs,rc][i]

5

Mux C Mux D

2 x 25

[no_add][i]
1

2X 2x*

Fig. 4. An implementation of the Remainder Data Path.

The implementation computes one of the four addition

operations and one of the three shift operations, and then

selects the correct partial remainder for the next repetition.

Computing one of the four addition operations involves select-

ing the correct multiple of the divisor D. In Figure 4, Mux

A selects the appropriate multiple of D to perform one of the

four additions followed by a 2X* operation, that is, ADD1&

2X*, SUB1 & 2X*, ADD2 & 2X*, or SUB2 & 2X*; Mux B

selects one of three shift operations, that is 2X, 2X*, or 4X*;

Multiplexers C and D choose the correct partial remainder and

the select signals for the multiplexers for the next iteration

respectively.

2) Selection Logic: The selection logic (SLC) determines

which alternative to execute in the next repetition step. The

selection logic takes the two most significant bits of the partial

remainder in carry-save form, rs and rc, as input and produces

five output signals; sel1, sel2, invert, 4X*, and no add.

The signals sel1 and sel2 select the appropriate multiple of

D for the carry-save addition. The combination of invert and

4X* select one of three shift operations: 2X, 2X*, and 4X*.

The no add signal selects the result from the addition or the

result of Mux B. The SLC implements the following functions

to generate corresponding signals for iteration i+1, where i is

the iteration index. In the equations below, rs0 and rs1 are

the most and second most significant bits of the partial sum

respectively and rc0 and rc1 are the most and second most

significant bits of the partial carry respectively. The symbols

⊕ denotes exclusive-OR operation.

4X∗
i+1 = (rs0 ⊕ rc0) · (rs1 ⊕ rc1) (7)

inverti+1 = (rs0 · rs1 · rc0 · rs1) + (rs0 · rs1 · rc0 · rc1) (8)

no addi+1 = inverti+1 + (rs0 ⊕ rc0) (9)

sel2i+1 = (rs1 ⊕ rc1) (10)

sel1i+1 = rs0 (11)

For the very first iteration the value of rc is 0 and the

selection logic implements the following functions in the

init cloud of Figure 3.

4X∗
1 = (rs0) · (rs1) (12)

invert1 = (rs0 · rs1) (13)

no add1 = invert1 + (rs0) (14)

sel21 = (rs1) (15)

sel11 = rs0 (16)

Tables 1(a) to 1(c) summarize various signals and the

corresponding operation performed on the partial remainder.

invert 4X* Type of shift
operation

0 0 2X
0 1 Invalid
1 0 2X*
1 1 4X*

(a)

sel1 sel2 Type of add
operation

0 0 ADD1
0 1 SUB1
1 0 ADD2
1 1 SUB2

(b)

no add Select result from
0 Output of CSA & 2X*
1 Output of Mux B

(c)

TABLE I
VARIOUS PARTIAL REMAINDER ACTIONS ASSOCIATED WITH THE SELECT

SIGNALS FROM THE SLC
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3) Quotient Data Path: The quotient data path appears

in Figure 5. Its implementation is similar to the remainder

data path implementation. Recall that in each repetition step,

algorithm H performs one of five operations on the partial

quotient along with right shifting the c operand by one or

by two. Four out of five operations on the partial quotient

are addition operations and they inversely correspond with

the addition operations in the remainder data path; that is,

when D is added to the partial remainder, c is subtracted

from the partial quotient; when D is subtracted from the

partial remainder, c is added to the partial quotient. However,

when the remainder data path executes one of the three shift

operations, the quotient accumulates one or two zeros by

right shifting c by one or two respectively. Note that in this

implementation, for values of c not equal to 1, the quotient is

the result of both multiplication and division.

-c c -2c 2c

c[i]

26

[sel1, sel2][i] 2 Mux H

CSA

2 x 26

[qs,qc][i]

2 x 26

Mux I

c/2

1 4X*[i]

[qs,qc][i+1]

c[i]

26

Mux J

2 x 26
no_add[i]

26

c[i+1]

1

2 x 26

c/4

Fig. 5. A high-level implementation of Quotient Data Path

The quotient data path produces the quotient in carry-

save form, which is a redundant representation. For further

processing, the carry-save representation is usually converted

to a unique binary representation. This conversion can be done

by a carry-propagate adder, for example in the stage between

the FALSE and EXIT registers. We have omitted this step in

our implementation.

B. Control Path

Figure 6 shows the control path for the divider. The control

path consists of GasP modules and an asynchronous down

counter. The GasP modules were first introduced by Sutherland

and Fairbanks in [10]. These modules generate pulses to enable

the proper registers at appropriate times. We refer to these

pulses as fire pulses. In Figure 6, the wires that connect

two GasP modules are called state wires. For example, wires

pred, enter and req_new are state wires. Whenever a

GasP module fires, the module sets its output state wires HI

and clears its input state wires LO. In this memo, we represent

logic high as HI and logic low as LO.
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from data path

Fig. 6. Control path implementation for the divider

The pred and succ state wires connect GasP modules

ENTER and EXIT with other GasP modules in FIFO-A
and FIFO-B respectively. The ENTER module produces a

fire pulse when both the pred and req_new state wires

are HI. When the ENTER module fires, it sets the enter
state wire HI and clears the pred and req_new state wires

LO. When the enter state wire goes HI, the GasP module

MERGE fires and sets either req_dn1 or req_dn2 state

wire HI, requesting the down counter to decrement by 1 or

2 respectively. Furthermore, the MERGE module clears the

enter state wire LO.
The box with label KC, implements the asynchronous down

counter. The counter can decrement the count value by 1

or 2. It reports whether the count value is zero or not in a

bounded response time of about 3.5 FO4 gate delays. The

implementation of the down counter is a slight modification of

the down counter presented in [11] . The req_new state wire

going HI initializes the counter to a fixed value of K+L+2.
The counter responds to decrement requests, either by setting

the not_empty state wire HI, denoting a non-zero count

value, or by setting the empty state wire HI, denoting a zero

count value.
When the not_empty state wire is set HI, the GasP

module TRUE fires. This makes the register labelled

TRUE in the data path briefly transparent, and sets the

while_not_empty state wire HI, requesting the GasP

module LOOP to fire. The firing of the LOOP module enables

the MERGE register in the data path to select the data from

the TRUE register and sets either the req_dn1 or req_dn2
state wire HI, requesting the counter to decrement by 1 or 2

respectively.
When the counter sets the empty state wire HI, the GasP

module FALSE fires. This makes the register labelled FALSE
in the data path briefly transparent, and sets the exit state

wire HI, requesting the GasP module EXIT to fire. The fire

pulse from the EXIT module enables the EXIT register and

sets the succ and req_new state wires HI. This allows

FIFO-B to receive the computed result and makes the ENTER
module ready to accept new operands from FIFO-A.
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Figure 7 shows the complete top-level implementation of the

divider. The dotted lines in the figure carry the fire signals.
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Fig. 7. Top-level schematic of the divider. The dotted lines carry the fire
pulses.

C. Variable Latency

In the remainder data path, the latency of the shift path

is smaller than the latency of the add & shift path. In our

implementation, the control path exploits this disparity in

the data path latencies by making the latencies of the GasP

modules TRUE and FALSE data dependent. This means that

the delay from the firing of the MERGE or LOOP module to

the firing of the TRUE or FALSE module varies according to

the no add signal from the data path. As a result, the latency

per iteration is a variable rather than fixed worst-case latency.

Furthermore, because the counter can decrement by 1 or 2,

our implementation also does a variable number of iterations

per division.

IV. RESULTS

We simulated Algorithm H in a TSMC 90nm process

technology. We measured the delays on the critical paths from

HSPICE simulations, where we normalize delays to fanout-of-

4 (FO4) inverter delays. In TSMC 90nm technology one FO4

gate delay is 25ps. We used a custom static design style and the

gates were sized using logical effort for equal delay rather than

for the smallest possible path delay [12]. The simulation netlist

included wire delay models. Part of the wire delay models

used wire lengths from back annotated layout and the rest

of the wire delay models used estimated wire lengths from a

plausible floorplan.

In the implementation, the remainder data path is the critical

path and it determines the latency per iteration. Table II pro-

vides the delay of various components used in the remainder

data path of Figure 4. In our design, multiplexers C and D

are built into the registers TRUE and FALSE, and hence we

omit them from Table II. If not included in the registers,

multiplexers C and D take 1 FO4 delay.

Components Delay in FO4

Mux A, LMuxA 2

Mux B, LMuxB 2

CSA, LCSA 2.5

SLC, LSLC 4

TABLE II
DELAY OF VARIOUS COMPONENTS IN FIGURE 4

A. Latency

We compute average delay per quotient bit from average

latency per iteration and average number of iterations per

division. As discussed in the previous section, the latency per

iteration varies because of the difference in the latencies of

the add & shift and shift paths. Using the delay values from

Table II, the add&shift latency Ladd&shift is,

Ladd&shift = LMuxA + LCSA + LSLC

= 2 + 2.5 + 4 = 8.5 FO4 delays

and the shift path latency is,

Lshift = LMuxB + LSLC

= 2 + 4 = 6 FO4 delays

The average latency per iteration, Lavg/iter is,

Lavg/iter = (Padd · Ladd&shift + Pshift · Lshift)

where, Padd is the probability of choosing the result

from the carry save adder and Pshift is the probability of

choosing the result from Mux B. For algorithm H, Padd and

Pshift are approximately equal to 0.5. Therefore, Lavg/iter

is 7.25 FO4 delays. Note that this number excludes the

sequencing overhead per iteration Tseq/iter, which is 7.5 FO4

delays for our implementation. The sequencing overhead is

the delay incurred in the registers.

In [7], Harris, Oberman, and Horowitz compare various

SRT implementation schemes for delay per quotient bit and

area per bit per cycle. The non-overlapped radix-4 SRT

implementation in [7] is similar in architecture and circuit

family to our data path implementation technique. The delay

per quotient bit for this implementation is 9.5 FO4 delays

[7]. This number excludes sequencing overhead per iteration.

In our implementation we compute the average delay per

quotient bit, Davg/bit as follows, taking into account that the

number of iterations per division varies and the latency per

iteration varies.

Davg/bit = (Lavg/iter ·Navg) / Number of quotient bits

where, Navg is the average number of iterations per

division, which is 22.6 for algorithm H, Lavg/iter is 7.25

FO4 delays, and the number of quotient bits accumulated
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is 26. Therefore, Davg/bit = 6.30 FO4 delays. This number

also excludes sequencing overhead. Even, if we include a

delay of 1FO4 for multiplexers C and D, which are hidden

in registers, our design compares favorable to the 9.5 FO4

delays of other static designs.

Ted Williams’s work in [8] reports on several divider archi-

tectures which all use domino circuits. Domino circuits occupy

more area but can be 1.5-1.7x faster than the static circuits

that we use. Williams’s architecture with a non-overlapping

quotient selection logic, like ours, has a delay of 16.8 FO1.

This corresponds to a delay between 5.6 to 6.72 FO4 per

quotient bit assuming 1 FO4 is between 3 to 2.5 FO1 [7][12].

Because Williams’s design uses domino circuits and a ring

of 5 stages, in order to hide the sequencing overhead, the

area overhead for this design is very large. Renaudin’s work

presented in [13] uses a similar idea as Williams, but instead

of domino circuits [13] uses LDCVSL circuits and rings of

only three stages. The delay per quotient bit for [13] is about

16 FO4.

Like average latency per iteration, we can also calculate the

average latency per division, Tavg/div for our implementation

as follows:

Tavg/div = (Lavg/iter + Tseq/iter) · Navg + Lf ,ENTER +
Lf ,EXIT

where, Lf ,ENTER and Lf ,EXIT are the forward latencies of

GasP modules ENTER and EXIT. In our design Lf ,ENTER

and Lf ,EXIT are 6 FO4 delays each. The GasP modules

MERGE, LOOP, TRUE and FALSE are designed such that

the latency per iteration in the control path matches the

latency per iteration plus the sequence overhead in the data

path. Therefore, the average latency per division, Tavg/div

is approximately 345 FO4 delays. Table III summarizes the

best-case, average-case and worst-case delays per quotient

bit and latency per division. For the best-case, Lbest/iter is

6.75 FO4 delays because the 4X* alternative is executed on

the partial remainder and the algorithm takes 13 iterations to

complete. For the worst-case, the algorithm takes 26 iterations

to complete and all the iterations are one of the add&shift

operations with Lworst/iter being 8.5 gate delays.

Cases Delay per
bit without
Tseq/iter
(FO4)

Latency
per division
(FO4)

Delay per
bit with
Tseq/iter
(FO4)

Best-case, N = 13 3 187.5 6.75

Worst-case, N = 26 8.5 428 16

Average-case, N = 22.6 6.30 345 12.82

TABLE III
EXPECTED DELAY PER QUOTIENT BIT AND LATENCY PER DIVISION FOR

DIFFERENT NUMBER OF ITERATIONS N OF ALGORITHM H

The measured average latency per division from 50 simu-

lations was approximately 330 FO4 delays. This is different

from the expected result for following reasons:

• For the 50 simulations, the average number of iterations

per division was 22.2 instead of 22.6.

• The average number of additions per division was 40%

rather than 48%.

• Ladd&shift + Tseq/iter was 15.8 FO4 delays instead of

the expected 16 (=8.5+7.5) FO4 delays.

If Algorithm H was implemented as a synchronous divider

rather than as an asynchronous divider, we expect the latency

per division and delay per quotient bit to increase. This

is because the synchronous implementation fails to exploit

the variable latency per iteration. However, the synchronous

implementation can certainly take advantage of the variable

number of iterations per division feature of algorithm H.

The latency per iteration for a synchronous implementation

will be equal to the latency of the critical path which is the

latency of the add & shift path. Therefore, the latency per

iteration Liter in a synchronous implementation will be:

Liter = Ladd&shift = 8.5 FO4 delays

Using Liter we can compute delay per quotient bit and

latency per division for a synchronous implementation. Table

IV summarizes the best-case, average-case and worst-case

delays per quotient bit and latency per division for a

synchronous implementation.

Cases Delay per
bit without
Tseq/iter
(FO4)

Latency
per division
(FO4)

Delay per
bit with
Tseq/iter
(FO4)

Best-case, N = 13 4.25 220 8

Worst-case, N = 26 8.5 428 16

Average-case, N = 22.6 7.39 373.6 13.90

TABLE IV
EXPECTED DELAY PER QUOTIENT BIT AND LATENCY PER DIVISION FOR

DIFFERENT NUMBER OF ITERATIONS N OF ALGORITHM H (SYNCHRONOUS

IMPLEMENTATION)

In [14] Liu and Nannarelli report that the latency per

division of 24-bit operands using a standard radix-4 SRT

implementation in STM 90nm technology is 13 ns, which

translates to 520 FO4 gate delays per division. Although this

number includes converting redundant representation to binary

representation and final rounding, it is significantly higher

than the expected result of a synchronous implementation and

the simulated result of our asynchronous implementation of

Algorithm H.

B. Energy

We applied random input test vectors to the divider circuit

in 50 simulations and used NanoSim to calculate the average

energy per division. The average energy per division of 25-bit
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operands for our implementation in a 90nm CMOS technol-

ogy is approximately 182pJ. Renaudin et al. [13] report an

average energy per division of 32-bit operands in a 0.5μm

CMOS technology of 3nJ. The energy per division of 24-bit

operands using a standard radix-4 SRT [14] implementation in

STM 90nm technology is 112.5 pJ. Liu and Nannarelli [14]

also present a low-power implementation of the radix-4 SRT

divider which consumes 93.6 pJ per division.

V. CONCLUSION

This paper presents an example of exploiting the average-

case behavior of asynchronous circuits. Our example is an

asynchronous implementation of a multiply-divide circuit,

which on average takes less delay per quotient bit than a

similar SRT divider implementation. There are two reasons

for this improvement. First, Algorithm H, on average, takes

fewer iterations per division than radix-2 SRT algorithm,

which both asynchronous and synchronous design styles can

exploit. Second, each iteration has variable latency, which only

asynchronous circuits can make use of. Although this paper

uses GasP circuits, other asynchronous circuit design styles

such as Delay-Insensitive (DI) and Quasi-Delay Insensitive

(QDI) circuits [15] can also be used to implement Algorithm

H.

Our main goal was to design a simple, straightforward

implementation using static logic. Obviously, there are several

ways to improve our implementation. First, the data path

can be optimized by exploiting a more parallel architecture

like an overlapping digit selection logic. We expect that this

improvement will reduce the average latency per iteration at a

small cost of extra area and energy consumption. Second, the

sequencing overhead per iteration can be reduced. The current

implementation has a sequencing overhead per iteration of 7.5

FO4, which is large when compared to the average latency

per iteration of 7.25 FO4. Because the feedback path in our

repetition cycle performs no computation, inserting another

data computation in the feedback path will mitigate the effect

of the sequencing overhead. Such an implementation will

produce at least two quotient digits per iteration for the same

sequencing overhead. Third, we can try to hide the sequencing

overhead completely by using domino circuits and a self-timed

ring, like Williams’s design. But this solution comes at the cost

of much more area and energy consumption.

If we want to implement a division only, i.e., C = 1, we

can further reduce the energy consumption by simplifying the

quotient data path. The quotient data path then implements an

addition of -2, -1, 0, 1, or 2 and can do an on-the-fly conversion

of the redundant quotient into a unique binary representation

at the same time [9].
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