
Evaluation of Data-Path Topologies for Self-Timed Conditional Statements

by

Navaneeth Prasannakumar Jamadagni

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Dissertation Committee:
Robert W. Daasch, Chair

Ivan E. Sutherland
Xiaoyu Song

Jo C. Ebergen
Bryant W. York

Portland State University
2015

c� 2015 Navaneeth Prasannakumar Jamadagni

i

ABSTRACT

This research presents a methodology to evaluate data path topologies that im-

plement a conditional statement for an average-case performance that is better than

the worst-case performance. A conditional statement executes one of many alterna-

tives depending on how Boolean conditions evaluate to true or false. Alternatives with

simple computations take less time to execute. The self-timed designs can exploit

the faster executing alternatives and provide an average-case behavior, where the

average depends on the frequency of simple and complex computations, and the dif-

ference in the completion times of simple and complex computations. The frequency

of simple and complex computations depends on a given workload. The difference in

the completion times of a simple and complex computations depend on the choice of

a data path topology.

Conventional wisdom suggests that a fully-speculative data path, independent

of the design style, yields the best performance. A fully-speculative data path exe-

cutes all the choices or alternatives in a conditional statement in parallel and then

chooses the correct result. Using a division algorithm as an example of an instruc-

tion that embodies a conditional statement, the proposed methodology shows that a

fully-speculative design is suitable for a synchronous design but a less-speculative

design is suitable for a self-timed design. Consequently, the results from the SPICE

simulation of the extracted netlists show that on average, the self-timed divider is ap-

proximately 10% faster, consumes 42% less energy per division and 20% less area

than the synchronous divider.

In addition to the evaluation methodology, this research also presents the deriva-

tion of four new radix-2 division algorithms that offer a simpler quotient selection logic

ii

compared to the existing radix-2 division algorithms. A circuit optimization technique

called Glissando is presented in this research. Glissando exploits a simple idea that

the non-critical bits can arrive late at the input of the registers to reduce the delay of

the data paths. The effect of the variations in manufacturing on the functionality of the

divider designs is also analyzed in this research.

iii

To my mother and late father

iv

Acknowledgments

I am indebted to Professors Ivan Sutherland and Robert Daasch for their helpful com-

ments and suggestions throughout this research.

I owe a great debt to the Asynchronous Research Center for providing me with

the financial, moral and technical support. Special thanks to my colleagues Marly

Roncken, Chris Cowan, Swetha Mettalagilla and Hoon Park for engaging with me in

fruitful technical discussions throughout this research. I also appreciate the helpful

suggestions that Glenn Sherly and all the members of the Integrated Circuits Design

and Test laboratory provided. I thank Professor Bryant York for helping me understand

the RSA cryptosystems and showing a keen interest in this research.

I thank Oracle Labs for supporting this research through internships and proving

me with the computing infrastructure necessary for this research. I also thank Jo

Ebergen for mentoring me during the internships and for his helpful comments and

suggestions throughout this research.

Finally, I owe a special thanks to my family and friends for keeping me sane during

the tough times.

TABLE OF CONTENTS v

Table of Contents

Abstract i

Dedication iii

Acknowledgments iv

List of Tables ix

List of Figures xii

1 Introduction 1

1.1. Research Objectives . 4

1.2. Research Summary . 4

1.3. Why division? . 5

1.4. Thesis Organization . 6

2 Background 9

2.1. Digit-Recurrence Division Algorithms 9

2.2. Self-Timed Design . 12

3 Division Algorithms 16

3.1. Classification of Division Algorithms 17

3.2. Division Preliminaries . 18

TABLE OF CONTENTS vi

3.3. Invariants and Termination . 19

3.4. SRT Algorithm . 22

3.5. Algorithms A1, A1b and A1c . 25

3.6. Comparison of Division Algorithms 40

4 Evaluation of Datapath Topologies 43

4.1. Evaluation Methodology . 44

4.2. Logical Effort Preliminaries . 45

4.3. Data Path Modules . 48

4.4. Data Path Topologies . 55

4.4.1. Data Path T1D1 . 57

4.4.2. Data Path T2D5 . 61

4.5. Evaluation of Data paths . 66

4.6. Summary of Evaluation Methodology 70

5 Design Optimization Techniques 71

5.1. Sizing Optimization . 72

5.1.1. Data Path T1D1 . 72

5.1.2. Data Path T2D5 . 80

5.2. Glissando . 81

5.2.1. Data Path T1D1 . 82

5.2.2. Data Path T2D5 . 87

5.3. Determining A Race Condition in Glissando 92

5.4. Comparison of Optimization Techniques 93

5.5. Summary of Optimization Techniques 94

6 Design Implementations 96

6.1. Design Flow . 97

6.2. Control Path . 99

TABLE OF CONTENTS vii

6.2.1. GasP . 101

6.2.2. Control Path Modules . 105

6.3. Timing Constraints . 109

7 Design Comparisons 118

7.1. Physical Design . 118

7.2. Comparison of Divider Designs . 123

7.3. Process Variation . 128

7.3.1. Predicting Yield-Loss . 140

8 Conclusion and Future Opportunities 143

8.1. Future Opportunities . 144

References 146

Appendix A Algorithms B1, B1b and B1c 152

Appendix B On-the-Fly Conversion 165

B.1. On-the-Fly Conversion . 166

Appendix C Delay Estimates for the Data Path Topologies 169

C.1. Topology 1 . 169

C.1.1. Data Path T1D2 . 169

C.1.2. Data Path T1D3 . 172

C.1.3. Data Path T1D4 . 174

C.1.4. Data Path T1D5 . 177

C.2. Topology 2 . 180

C.2.1. Data Path T2D1 . 180

C.2.2. Data Path T2D2 . 182

C.2.3. Data Path T2D3 . 185

TABLE OF CONTENTS viii

C.2.4. Data Path T2D4 . 188

C.3. Topology 3 . 191

C.3.1. Data Path T3D1 . 191

C.3.2. Data Path T3D2 . 194

C.3.3. Data Path T3D3 . 198

C.3.4. Data Path T3D4 . 201

C.3.5. Data Path T3D5 . 205

Appendix D Design of a Down Counter that can Decrement by one or two 209

D.1. Specification of Down Counters 209

D.2. Down-one counter . 212

D.2.1. The Idea for an implementation 212

D.2.2. Specification of the cells 214

D.2.3. Mapping a finite state machine to a GasP implementation . . 216

D.2.4. One-hot implementation of the counter 218

D.3. Down-one-two counter . 218

D.3.1. Implementation of down-one-two counter for N > 0 221

LIST OF TABLES ix

List of Tables

Table 3.3.1: Labels to denote the choice of a quotient digit and the statements

executed. 21

Table 3.5.1: The effect of subtracting or adding D . 31

Table 3.6.1: Summary of the characteristics of the division algorithms. For

IEEE 754 double-precision format, L = 52. 40

Table 3.6.2: Comparison of the division algorithms for latency per division, en-

ergy per division and area.. 41

Table 3.6.3: Fraction of shift-only and addition operations per division. 42

Table 4.2.1: Logical effort and parasitic delay of standard gates [37] 48

Table 4.3.1: Logical efforts of inputs for asymmetric parity and majority gates. 50

Table 4.3.2: Summary of Logical Effort and Parasitic Delay of the three quotient

selection logics. 52

Table 4.3.3: Input logical effort and parasitic delay of multiplexers. 55

Table 4.4.1: Data path T1D1: Logical effort and parasitic delay of the gates in

the select, add and shift paths. 60

Table 4.4.2: Data path T1D1: Branching efforts in the select, add and shift

paths. 60

Table 4.4.3: Data path T2D5: Logical effort and parasitic delay of the gates in

the select path along with number of stages in each gate. 63

LIST OF TABLES x

Table 4.4.4: Data path T2D5: Branching effort in the select path. 63

Table 4.4.5: Data path T2D5: Logical effort and parasitic delay of the gates in

the add paths. 64

Table 4.4.6: Data path T2D5: Branching effort in the add paths.. 65

Table 4.4.7: Data path T2D5: Logical effort and parasitic delay of the gates in

the shift paths. 66

Table 4.4.8: Data path T2D5: Branching effort in the shift paths. 66

Table 4.5.1: Ranking of data paths by speed for synchronous designs. 67

Table 4.5.2: Ranking of data paths by speed for self-timed designs designs. . . 68

Table 5.1.1: Delay of the data path T1D1 considering four different cases of

tapering. 80

Table 5.4.1: Data path T1D1: Comparison of the optimization techniques pre-

sented in this chapter. The delay estimates are from a static-timing

analysis tool. 93

Table 5.4.2: Data path T2D5: Comparison of the optimization techniques pre-

sented in this chapter. The delay estimates are from a static-timing

analysis tool. 94

Table 6.3.1: States of the state wires before the start of the division and after

completion of the division. 117

Table 7.2.1: Comparison of synchronous and self-timed designs. 124

Table 7.2.2: Post-Layout comparison of various divider implementations for de-

lay, energy and area. 127

Table 7.2.3: Pre-Layout comparison of various divider implementations for de-

lay, energy and area. 128

Table 7.3.1: Number of samples collected at different process corners. 131

Table 7.3.2: The two environmental corners considered in this research.. . . . 131

LIST OF TABLES xi

Table 7.3.3: Functional Yield for self-timed and synchronous divider designs at

all corners . 132

Table 7.3.4: Minimum slack required and the measured slack from simulations

in various process corners at low voltage and high temperature

(LH). 134

Table 7.3.5: Minimum slack required and the measured slack from simulations

in various process corners at high voltage and low temperature

(HL). 135

LIST OF FIGURES xii

List of Figures

Figure 1.0.1: Two different ways of writing a conditional statement. 2

Figure 1.0.2: Two different hardware designs for the conditional statements in

Figure 1.0.1 . 3

Figure 2.2.1: Bundled-data method: Figure 2.2.1a shows a bundled-data stage

with a unit-delay model and Figure 2.2.1b shows the singal tran-

sitions in a bundled-data method.. 13

Figure 2.2.2: Bundled-data method: Figure 2.2.2a shows a bundled-data stage

with a two-delay model and Figure 2.2.2b shows the timing dia-

gram for f ire_A and f ire_B signals in the two-delay model. . . . 14

Figure 3.1.1: Classification of the division algorithms based on the type of ad-

dition that an algorithm performs. 17

LIST OF FIGURES xiii

Figure 3.4.1: Standard radix-2 SRT algorithm. (a) the quotient selection areas

(colored areas) for a standard radix-2 SRT division in the diamond

diagram using only the 4 most-significant bits. In the diamond di-

agram, each point has coordinates (rs, rc). Each horizontal line

rs + rc = r modulo 2

4 represents a set of points with different rs

and rc values but the same remainder value. Addition is modulo

2

4, so vertical-axis wrap around the diamond. For radix-2 SRT di-

vision, the remainder rs + rc remains within the range [-2D, 2D).

(b) the P-D diagram for a standard radix-2 SRT algorithm. The

x-axis represents the value of the divisor and y-axis represents

the value of the partial remainder. In the figure Dmax = 2-ulp. . 24

Figure 3.5.1: The area of partial remainder (rs, rc) satisfying the range invari-

ant (3.3.7). The value of the remainder, r, is r = rs + rc, where

rs and rc are in a two’s complement representation. The points

(rs, rc) on a horizontal line, like rs + rc = 4, can have different

values for rs and rc but have the same remainder value. The

center diamond, S0 to S15, satisfies the range invariant (3.3.7)

that is r = rs + rc 2 [-4, 4) and rs, rc 2 [�2, 2). The range of

the partial remainder includes the lower bound and excludes the

upper bound. 26

Figure 3.5.2: The effect of doubling a point in diamonds S6 and S9. Doubling

a point (rs, rc) denotes multiplying a point (rs, rc) by 2. For ex-

ample doubling a point (-1, 1) yields a point (-2, 2). 27

Figure 3.5.3: The effect of doubling a point in diamonds S0, S1, S4, S5, S10,

S11, S14 and S15 . 28

LIST OF FIGURES xiv

Figure 3.5.4: The effect of translating Q0 over (2, -2). Translation over (2, -2)

is adding 2 to rs and subtracting 2 from rc and keeps the value of

rs + rc unchanged.. 29

Figure 3.5.5: The effects of carry-save additions and subtractions with D.. . . . 30

Figure 3.5.6: Algorithm A1. (a) the quotient selection areas using the diamond

diagram and (b) P-D diagram. 35

Figure 3.5.7: Algorithm A1b: (a) the quotient selection areas using the dia-

mond diagram and (b) P-D diagram. 36

Figure 3.5.8: Algorithm A1c: (a) the quotient selection areas using the dia-

mond diagram and (b) P-D diagram. This is the same algorithm

presented in [10]. 37

Figure 4.3.1: One bit carry-save adder consisting of a parity and a majority

circuit. 50

Figure 4.3.2: Gate-level design of the quotient selection logic for various data

paths. 53

Figure 4.3.3: Multiplexers with different fan-in. 54

Figure 4.4.1: A two-stage pipeline that implements the recurrence loop. 56

Figure 4.4.2: Classification of the data path topologies based on when during

the clock period, the quotient selection logic (QSLC) is computed.

In topologies 1, 2 and 3, the QSLC is computed at the beginning,

middle and the end of the clock period respectively. 57

Figure 4.4.3: Data path T1D1 with the quotient data path. This is a fully-

speculative design because the design executes all five alter-

natives and then selects the correct alternative. This data path

topology computes the quotient selection logic at the beginning

of the clock period, hence topology 1. 58

LIST OF FIGURES xv

Figure 4.4.4: Data path T2D5 showing the path of the two most-significant bits

(MSB Path) and lesser-significant bits (LSB Path) of the partial

remainder along with the quotient data-path. This is a less spec-

ulative data path because the data path selects an appropriate

multiple of the divisor first and then performs the carry-save ad-

dition. 62

Figure 4.5.1: Scatter plot of energy per iteration vs the average delay per iter-

ation for various data path topologies. The green data points are

for self-timed designs and the red data points are for synchronous

designs. 70

Figure 5.1.1: The three cases of tapering the register sizes.. 73

Figure 5.1.2: Data path T1D1: Register-to-register path for the three most-

significant bits. 74

Figure 5.1.3: Case1: The delay of select and add paths as a function of s. The

delay of the select path decreases as the value of s increases.

On the contrary, the delay of an add path increases as the value

of s increases. An optimum value for s is when the delay of the

select and add paths are equal. For case1, s ⇡ 7 and delay of

the select path is approximately 9 FO4. 76

Figure 5.1.4: Case2: Delay of the select and add paths as a function of s. An

optimum value for s ⇡ 4 and the delay of the select path is 8.9

FO4. 78

Figure 5.1.5: Case3: Delay of the select and add paths as a function of s. An

optimum value for s ⇡ 3 and the delay of the select path is 8.8

FO4. 79

LIST OF FIGURES xvi

Figure 5.2.1: Glissando: Main idea. The figure illustrates the glissando tech-

nique for the T1D1 data path. The main idea behind glissando

is to delay the selection of the lesser-significant bits by inserting

additional amplification stages for lesser-significant bits. 83

Figure 5.2.2: Timing requirement for the bits in select1, select2 and add paths

in Figure 5.2.1 . 84

Figure 5.2.3: A Simple model for the select path. 86

Figure 5.2.4: Delay of the select2 path as a function of the number of phase

groups for the T1D1 data path. Different data point represents

different value for the common ratio, r.. 87

Figure 5.2.5: The select and shift paths for the T2D5 data path with the glis-

sando technique. 88

Figure 5.2.6: Timing requirement for the bits in select and shift paths in Fig-

ure 5.2.5. 89

Figure 5.2.7: Delay of select2 path as function of total number of phase groups

for the T2D5 data path. Different data point represents different

value for common ratio, r.. 90

Figure 5.2.8: The add paths for the T2D5 data path with the glissando tech-

nique. 91

Figure 6.0.1: Divider Pipeline: For the synchronous design, the recDP module

implements the data path T1D1 and for the self-timed design, the

recDP module implements the data path T2D5. The control path

for the synchronous design is a clock-tree network that a single

clock source drives. The control path for the self-timed design

consists of GasP modules that produce pulses called f ire pulses

only when required. The self-timed control path produces three

f ire signals, one each for the three registers in the data path. . . 97

LIST OF FIGURES xvii

Figure 6.1.1: Design flow to implement synchronous and self-timed dividers.

The data path implementation uses a standard-cell based design

flow and the control path implementation uses a custom design

flow. 98

Figure 6.2.1: Control path for the self-timed divider. The control path has two

loops: an inner and outer loops. The Rx and Tx modules form

the outer loop. The Capture module along with Timing and

kc modules form the inner loop. The outer loop initiates a new

division operation and the inner loop performs L + 4 number of

iterations, where L = 52 and L = 23 for IEEE 754 double and

single precision formats.. 100

Figure 6.2.2: A 6-4 GasP Module. The signals pred[sw] and succ[sw] are

the state wires. The GasP circuit produces a brief pulse on the

f ire signal. The f ire signal is usually connected to the registers

in the data path. A pulse on the f ire signal does three things:

copies the data from the input of the register to the output, drives

the pred[sw] LO and succ[sw] HI. A HI on the state wire is a

request to process the data along with an indication of the validity

of the data in the data path. A 6-4 GasP module has forward and

reverse latencies of six and four gate delays, respectively. 103

Figure 6.2.3: Timing diagram of the signals in the 6-4 GasP module in Fig-

ure 6.2.2. A 6-4 GasP module has forward and reverse latencies

of six and four gate delays respectively, and a cycle time of ten

gate delays. 104

Figure 6.2.4: The Rx module produces a pulse on the f ireRx signal when

both receive[sw] and done[sw] state wires are HI, and both

start[sw] and load[sw] state wires are LO. 105

LIST OF FIGURES xviii

Figure 6.2.5: The Tx module produces a pulse on the f ireTx signal when

fetch[sw] is HI and send[sw] and done[sw] are LO. 106

Figure 6.2.6: The Capture module captures the data[add] and data[shift]

signals from the datapath accordingly sets the state wires succ-

[add][sw] or succ[shift][sw] HI. State wires succ[add][sw]

and succ[shift][sw] are mutually exclusive. Similarly, pred-

[add][sw], pred[succ][sw] and pred[start][sw] are also

mutually exclusive. 108

Figure 6.2.7: The Timing module generates the necessary timing delay for the

add period. The add period is the shift period plus some delay. A

chain of buffers implements the delay module.. 109

Figure 6.3.1: The drive conflict on succ[start][sw] wire occurs when both

f ireRx and f ireRec signal drive the state wire to opposite states.

To avoid the drive conflict, the minimum delays of the predRx and

succRx loops of the Rx module must be less than or equal to the

delay of the predB loop of the Capture module. 111

Figure 6.3.2: To avoid the drive conflicts on succ[add][sw], succ[shift][sw],

pred[add][sw] and pred[shift][sw] state wires, the min-

imum delay of the three loops in the Capture module should

be equal to the minimum delay of the two loops in the Timing

module for the corresponding state wire as described in Equa-

tions (6.3.4) and (6.3.5). 113

Figure 6.3.3: To avoid drive conflicts on fetch[sw] state wire, the delay of the

pred_empty loop in the Capture module should be less than or

equal to the delay of the predTx loop in the Tx module. 114

Figure 7.1.1: Physical design of the synchronous divider. Different colors in the

figure denote different phase groups.. 119

LIST OF FIGURES xix

Figure 7.1.2: Physical design of the data path for the self-timed divider. Differ-

ent colors in the figure denote different phase groups. 119

Figure 7.1.3: Physical design of the self-timed divider along with the control

path. 120

Figure 7.1.4: Waveforms showing: (a) clocks in different phase groups and (b)

f ireRec signals in different phase groups. The self-timed design

modulates the period of the f ireRec signal according to an addi-

tion or a shift-only operation. 121

Figure 7.1.5: Waveforms showing the arrival of the select-signals for the multi-

plexers in different phase groups.. 122

Figure 7.3.1: Scatter plot of NMOS and PMOS currents under process varia-

tion. The x-axis is the NMOS current and the y-axis is the PMOS

current. The gray data-points are from 1024 monte carlo runs and

denote the total variation space for an NMOS and PMOS transis-

tor. The red data-points denote the NMOS and PMOS transistor

configurations that I considered for the 2-factorial DOE simula-

tions. 130

Figure 7.3.2: Cumulative distribution function (CDF) of slacks for the synchronous

divider design: (a) for a passing sample in an FFLH corner and

(b) for a failing sample in a SSLH corner. The blue line indicates

the setup time or the minimum slack required for that instance. 136

Figure 7.3.3: CDF of slacks for the self-timed divider design: (a) for a passing

sample in a FFLH corner and (b) for a failing sample in a SSHL

corner. The blue line indicates the setup time or the minimum

slack required for that instance. 137

Figure 7.3.4: A typical Differential Flop-Flop circuit [39]. 139

LIST OF FIGURES xx

Figure 7.3.5: Waveform illustrating the failure of the flip-flop circuit in Fig.7.3.4

to capture the data in FSHL corner. 139

Figure 7.3.6: Slack distribution of the synchronous divider: (a) from a SPICE

simulation and (b) from an STA tool. 141

Figure 7.3.7: Slack distribution of a self-timed divider: (a) from a SPICE simu-

lation and (b) from an STA tool. 142

CHAPTER 1. INTRODUCTION 1

1

Introduction

Conditional statements execute one of many choices depending on how the Boolean

conditions evaluate to true or false. Figure 1.0.1a shows an example of an if-then-else

conditional statement for which we seek a hardware implementation. In the figure, S0

to S3 are some statements. Depending on how the conditions condA and condB

evaluate, the code in the figure executes one of the following three sequence of state-

ments: S1&S0, S2&S0 and S3. There are different ways of writing the conditional

statement in Figure 1.0.1a, and Figure 1.0.1b shows one such alternative.

Just as there are different ways of writing a conditional statement, there are differ-

ent ways to implement a conditional statement in hardware. Figures 1.0.2a and 1.0.2b

show two different ways of implementing the data path for the conditional statement

in Figure 1.0.1a. In Figures 1.0.2a and 1.0.2b the modules with labels S0, S1, S2 and

S3 implement the statements S0, S1, S2 and S3 respectively, and the module with

label cond implements the logic for condition evaluation. The choices, S1&S0, S2&S0

and S3 may take different computation times. For example, S3 may execute a simpler

computation than either S1&S0 or S2&S0 resulting in faster execution of S3. In such a

scenario an asynchronous or self-timed design may be preferred over a synchronous

design to take advantage of the faster execution of the S3 choice.

CHAPTER 1. INTRODUCTION 2

…
if (condA) then
 S1;
 S0;
else if (condB) then
 S2;
 S0;
else
 S3;
endif
…

(a)

…
if (condA) then
 S1;
endif

if (condB) then
 S2;
endif

if (condA or condB) then
 S0;
else
 S3;
endif
…

(b)

Fig. 1.0.1: Two different ways of writing a conditional statement.

Asynchronous or self-timed circuits can exploit a simple idea that some computa-

tions are faster than others. Self-timed circuits taking advantage of the faster compu-

tations have an average-case behavior, where the average depends on the difference

in the completion times of a hard computation and an easy computation, and the fre-

quency of hard and easy computations for a given workload. The difference in the

completion times of a hard and an easy computation depends on the choice of a data

path topology.

Conventional wisdom suggests that a fully-speculative execution technique, in-

dependent of the circuit design style, yields the best performance. A fully-speculative

execution technique executes all the choices or alternatives in a conditional statement

in parallel and then chooses the correct result. The data path in Figure 1.0.2a is an

example of a fully-speculative execution technique which executes all three choices,

S1&S0, S2&S0 and S3 in parallel and then selects a correct result depending on how

the condition evaluates.

CHAPTER 1. INTRODUCTION 3

Reg
A

Reg
B

3:
1

Mu
x

cond

S1 S0

S2 S0

S3

data_in data_out

condA,
condB

(a) Hardware design of the conditional statement in Fig. 1.0.1a

Reg
A

Reg
B

cond

S1

S2
S0

S3

data_in data_out

2:
1

Mu
x

2:
1

Mu
x

condA or
condB

condA

(b) Hardware design of the conditional statement in Fig. 1.0.1b

Fig. 1.0.2: Two different hardware designs for the conditional statements in Figure 1.0.1

In this research, I challenge the conventional notion that a fully-speculative data

path yields an optimum performance for self-timed designs. In Figure 1.0.2a, if the

select signals to the 3:1 multiplexer arrive last, then the select signals determine the

delay of the design rather than the data signals, failing to take advantage of the faster

execution of the S3 choice. There are many reasons why the select signals could

arrive last, for example a high fan-out at the output of the cond module which is com-

mon in wide data paths. Therefore, a self-timed design using the data path topology

in Figure 1.0.2a may fail to take advantage of the faster execution of the S3 choice.

CHAPTER 1. INTRODUCTION 4

1.1 Research Objectives

The primary objective of this research is to present a systematic method to evaluate

various data-path topologies that implement a conditional statement for an optimum

average-case performance. To achieve an optimum average-case performance, the

data computations such as S3 or S2&S0 must determine the delay of a data path rather

than the select signals, condA or condB, of the multiplexers. This research uses a

division algorithm as an example of a conditional statement to develop a methodology

to evaluate data paths for average-case performance. Section 1.3 enumerates the

reasons for considering a divider example.

The secondary objectives of this research are as follows:

1. Propose and evaluate modifications to the division algorithms presented in [10]

and [34].

2. Present an analysis of a new circuit optimization technique.

3. Present a control-path circuit for the self-timed design that can take advantage

of the faster execution of the S3 statement.

4. Analyze the response of synchronous and self-timed designs under the influ-

ence of process and environmental variations.

1.2 Research Summary

To achieve the primary objective, the methodology proposed in this research takes

into account how frequently a division algorithm executes a shift-only and add oper-

ations. The methodology shows that while a fully-speculative design is suitable for

a synchronous design, a less-speculative design is suitable for a self-timed design.

Consequently, the results from the SPICE simulation of the extracted netlists show

CHAPTER 1. INTRODUCTION 5

that compared to the synchronous divider design, the self-timed counterpart offers an

improvement of 10%, 42% and 20% in average latency per division, average energy

per division and area, respectively. The results from SPICE simulations at different

process and environment corners expose a new duty-cycle constraint. The duty-cycle

violation results in functional failure. A regression analysis of the slacks from static

timing analysis tool (STA) and SPICE simulation shows the possibility of predicting

an yield-loss for a less-speculative design from STA’s slack estimates. For a fully-

speculative design, STA’s slack estimates fail to predict yield-loss.

The other contributions of this research include three new division algorithms that

offer a simpler quotient selection logic compared to the division algorithms in [10]

and [34]. An optimization technique called Glissando that offers a way to increase

the operand word-size without affecting the delay of the data path. A Design of a

control path for the self-timed divider that can take advantage of the faster shift-only

operation.

1.3 Why division?

Division is an iterative operation where each iteration involves either performing a

shift-only or an addition operation. Shift-only operation is faster than an addition op-

eration and the condition for performing a shift-only or an addition operation is based

on the value of the partial remainder that makes a division algorithm a good example

of the if-then-else conditional statement in Figure 1.0.1a.

Division is also the slowest of the basic arithmetic operations performed in a

general-purpose microprocessors. Oberman and Flynn in [24] showed that although

division occurs less frequently than other arithmetic operations, having an efficient

divider is necessary for a good system performance. Even in case of modern mi-

croprocessors which contain multiple cores with multiple division modules, computer

CHAPTER 1. INTRODUCTION 6

architects give careful consideration to divide instructions to improve the system per-

formance. Shah et al. in [32] describe how divide instructions in a SPARC T4 pro-

cessor can potentially take over most or all of the core’s shared resources resulting

in performance degradation. Furthermore, from a design cycle perspective, a divi-

sion module is a bottleneck in achieving the overall-system timing-closure. Failure to

achieve timing-closure results in increasing the clock-period for the divide pipeline or

the entire core, reducing the system performance.

1.4 Thesis Organization

The following is a general overview of the organization of this document. The or-

ganization is such that the chapters reflect various stages of a design cycle, from

evaluating algorithms to analyzing the response of the designs to variations in manu-

facturing.

• Chapter 2 presents a background on the works related to division algorithms,

self-timed designs and self-timed divider designs.

• Chapter 3 derives several radix-2 division algorithms that are modifications to

the algorithms in [10] and [34]. The derivation method uses a graphical tool

called Diamond diagram and invariants to prove the correctness of the algo-

rithms. This chapter also evaluates the division algorithms for latency per divi-

sion, average energy per division, area and the frequency of shift-only and add

operations. The evaluation employs static methods such as STA to estimate la-

tency, and switching activity and gates sizes to estimate energy. Dynamic sim-

ulations with a pair of input operands that represents a target workload gives

the frequency of shift-only and add operations. This chapter addresses the

secondary objective #1 in Section 1.1.

CHAPTER 1. INTRODUCTION 7

In the context of a design cycle, Chapter 3 reflects an initial stage in the design

cycle where a designer must choose one of the several algorithms for a hard-

ware implementation. At this stage of the design cycle, a designer can also

make a decision about pursuing either synchronous or self-timed design style

by examining the frequency of hard and easy computations.

• Chapter 4 presents a methodology to evaluate various data path topologies

for an optimum average-case delay. The data path topologies implement a

division algorithm selected in Chapter 3. To estimate an average-case delay, the

proposed methodology takes into account how frequently a division algorithm

executes shift-only and add operations. The method of logical effort is used

to estimate the delay of the data path topologies. For comparison, ranking of

the data path topologies using logical effort and static timing analysis tool is

also presented in this chapter. Chapter 4 addresses the primary objective of

this research. The outcome of this chapter is two data paths, one each for

synchronous and self-timed divider designs.

In the context of a design cycle, Chapter 4 reflects the stage in the design flow

where a designer must evaluate the data path topologies that implement an

algorithm from the previous stage for delay, energy and area, and choose a

data path for potential optimization.

• Chapter 5 introduces and evaluates a new optimization technique called Glis-

sando to further reduce the delay of the data paths selected in Chapter 4. The

method of logical effort is used to evaluate the optimization technique. The

Glissando technique is applicable for both synchronous and self-timed designs.

This chapter addresses the secondary objective #2 in Section 1.1.

Chapter 5 reflects the optimization stage in the design flow where a designer

can make minor structural changes to the data path.

CHAPTER 1. INTRODUCTION 8

• Chapter 6 presents the physical design of synchronous and self-timed divider

designs. This chapter also presents the design of a control path for self-timed

divider that can take advantage of the faster shift-only operations in the data

path. The proposed control path uses two bits from the data path to modulate

the period of the synchronization pulses according to the operation performed

in the data path. This chapter addresses the secondary objective #3 in sec-

tion 1.1.

Chapter 6 reflects the physical-design stage in the design flow where a design

can undergo further optimizations such as gate sizing and Vt-swapping to sat-

isfy timing, energy and area requirements.

• Chapter 7 compares the synchronous and self-timed divider designs developed

in this research with other designs for delay, energy and area. The comparisons

use results from the SPICE simulation of extracted netlists. This chapter also

compares the response of synchronous and self-timed dividers to process vari-

ations. Furthermore, using a simple regression analysis this chapter examines

if an earlier stage in the design flow can predict yield-loss. This chapter ad-

dresses the secondary objective #4 in Section 1.1.

Chapter 7 reflects one of the final and important stages in the design flow

where a designer performs a SPICE-level timing validation and estimates the

functional-yield of the design, because a design with low functional-yield is often

rejected from manufacturing.

The numbering of the figures, equations and tables follows the format x.y.z,

where x.y is the chapter-section combination, and z is the figure, equation or table

number.

CHAPTER 2. BACKGROUND 9

2

Background

In this chapter, I discuss the previous works related to this research along with their

limitations and describe how this research is different from the previous works.

2.1 Digit-Recurrence Division Algorithms

The digit-recurrence SRT division algorithm is the most frequently implemented divi-

sion algorithm in general purpose processors [15]. The name SRT comes from the

initials of the inventors of the algorithm, Sweeny, Robertson and Tocher [38, 30]. A

standard radix-2 SRT algorithm retires a quotient digit from the set {-1, 0, 1}. Typ-

ically, the selection of a quotient digit relies on the four most-significant bits of the

partial remainder in a redundant representation.

The latency of a division operation is a product of the number of iterations per

division and the cycle time of an iteration. We can reduce the latency of a division

operation by reducing the number of iterations per division, the cycle time of an it-

eration or both. A higher radix division algorithm reduces the number of iterations

per division by retiring more quotient bits per iteration. For example, a radix-4 divi-

sion algorithm retires two quotient bits per iteration and thus requires half as many

CHAPTER 2. BACKGROUND 10

iterations per division as a radix-2 division algorithm that retires one quotient bit per

iteration. The reduction in the number of iterations per division comes at the cost of

increased cycle time of an iteration because of the increased complexity of the quo-

tient selection function. Higher-radix division algorithms also require generating hard

multiples of divisor such as 3D, 5D etc, adding to the latency of the division opera-

tion. Harris, Oberman and Horowitz in [15] assert that the increased cycle time along

with generating hard multiples of a divisor for high-radix division algorithms will limit

the practical divider implementations to radix-2 and radix-4. This is evident from the

work presented in [27, 18, 19] and [7], where the authors build a high-radix divider by

cascading low-radix stages. In this research, comparisons with higher-radix division

is limited to radix-4 implementations.

Alternatively, we can reduce the latency of a division operation by reducing the

cycle time of an iteration. The logic that selects a quotient digit is called the quotient

selection logic and it appears in the critical path of a divider design. Therefore, sim-

plifying the quotient selection logic potentially leads to a low-latency divider design.

Burgess in [5] presented a radix-2 algorithm that simplified the quotient selection

logic to inspect only the two most-significant bits of the partial remainder in a redun-

dant representation to retire a quotient digit. This algorithm works only for the divisors

in the range [1.5, 2) and according to the IEEE 754 standard a divisor can be in the

range [1, 2). Therefore, the algorithm in [5] requires pre-scaling of both divisor and

dividend for divisors in the range [1.5, 2). In [8], Cortadella and Lang proposed a

technique of speculating the quotient digit. The speculated quotient digit has a high

probability of being correct and when the speculation is incorrect, a rollback is per-

formed. Because the rollback requires additional clock cycles, the number of cycles

per division varies depending on the accuracy of the quotient speculation logic. Of-

ten, division and square-root operations share the same hardware which makes the

algorithms in [5] and [8] difficult to implement.

CHAPTER 2. BACKGROUND 11

Montuschi in [21], first presented the idea of using an over-redundant digit set to

simplify the quotient selection logic for a radix-4 SRT algorithm. Srinivas, Parhi and

Montalvo in [34] extended the work in [21] to develop a radix-2 SRT algorithm. The

quotient selection logic for the algorithm in [34] inspects only the two most-significant

bits of the partial remainder in a redundant representation. In [10], Ebergen, Suther-

land and Chakraborty presented a new division algorithm that also simplifies the quo-

tient selection logic to inspect only the two most-significant bits of the partial remain-

der in the a redundant representation. The difference between the algorithms in [34]

and [10] are as follows:

• The algorithm in [34] uses a signed-digit representation for the partial remainder

and carry-free additions. But, the algorithm in [10] uses a two’s complement

representation for the partial remainder and carry-save addition.

• The algorithm in [34] keeps the range of the partial remainder, r 2 (�2D, 2D).

But, the algorithm in [10] keeps the range of the partial remainder, r 2 [�4, 4).

A detailed discussion on these differences along with several new division algorithms

that enhance the performance characteristics of [33] and [10] appear in Chapter 3

In addition to simplifying the quotient selection logic of an algorithm, we can make

optimizations at the circuit level to further reduce the latency of a division operation.

When building a high-radix divider from low-radix stages, some of the computations

in a stage can be overlapped with the computations in the next stage. Thus reducing

the cycle time of an iteration. Harris et al., analyze various overlapped techniques for

SRT dividers in [15]. Antelo et al., in [2] presented a technique of reducing the cycle

time of an iteration by skewing the clock and applying the skewed clock to launch

and capture the critical path. Burgess in [6] and Liu and Nannarelli in [19] presented

radix-4 designs that use the technique presented in [2]. The overlapping techniques

analyzed in [15] and the skewed-clock technique in [2] are a function of word size

CHAPTER 2. BACKGROUND 12

and the cycle time increases as the word size increases. The optimization technique

presented in this research called Glissando extends the technique in [2] to non-critical

paths resulting in a cycle time that is independent of the word size. Chapter 5 presents

a detailed analysis of the glisando optimization technique.

2.2 Self-Timed Design

There are two methods to design self-timed systems, completion-detection and bundled-

data [3]. This research uses the bundled-data method.

The Bundled-data method uses a delay-matching technique. In this technique, the

delay between the pulses latching the data at the two subsequent stages of a pipeline

is matched to the worst-case delay in the data path. Figures 2.2.1a and 2.2.1b show

a basic bundled-data stage and the timing-diagram, respectively. In Figure 2.2.1a,

the module with the label delay is a delay module matching the delay in the data

path such that t f ire � tcq + tdp + tsetup, where t f ire is the delay between the two fire

pulses, f ire_A and f ire_B, tcq is the clock-to-q delay of the register RegA, tdp is the

critical-path delay in the data path and tsetup is the setup time of the register RegB.

The matched delay is asymmetric; the delay is only for the request signal but not for

the acknowledgment signal. The main advantage of the bundled-data method is that

a standard synchronous single-rail implementation may be used, so implementations

are easy to design, have low power and limited area. The key disadvantage, however,

is that the completion is fixed to a worst-case computation, regardless of the actual

data inputs.

In [23] Nowick et.al., presented a technique to allow bundled-data designs to

operate at several different deterministic-speeds. The work presented in [23] uses

multiple-delay models, one for each different case. The example in Figure 2.2.2a

shows a bundled-data design using two delay models: one for the worst-case, delay2,

CHAPTER 2. BACKGROUND 13

Reg
A

Reg
BData Path

delaycntl
A

cntl
B

fire_A fire_B

data_in data_out

req_inA req_outA req_outBreq_inB

(a)

data

req_inA

fire_A

req_outA

req_inB

fire_B

tdp

tcq+tdp+tsetup

(b)

Fig. 2.2.1: Bundled-data method: Figure 2.2.1a shows a bundled-data stage with a unit-delay
model and Figure 2.2.1b shows the singal transitions in a bundled-data method.

CHAPTER 2. BACKGROUND 14

Reg
A

Reg
BData Path

delay2
cntl
A

cntl
B

fire_A fire_B

data_in data_out

req_inA
req_outA

req_outBreq_inB

2:
1

Mu
x

delay1

delay2

(a)

if (delay2)

else

fire_A

fire_B

fire_A

fire_B

(b)

Fig. 2.2.2: Bundled-data method: Figure 2.2.2a shows a bundled-data stage with a two-delay
model and Figure 2.2.2b shows the timing diagram for f ire_A and f ire_B signals in the
two-delay model.

and the other one for the best-case, delay1.

There are several works [9, 4] and [14] that analyze the performance of self-timed

pipelines, but after extensive literature search, I failed to find any work that quantita-

tively analyzes the effect of a design topology on the average-case performance. The

methodology presented in Chapter 4 analyzes the effect of a design topology on the

average-case performance of a division operation. The methodology can be easily

extended to other conditional statements such as a booth-encoded iterative multiplier

or at a macro-level for different conditional subroutine implementations.

Williams and Horowitz in [40] presented a self-timed divider implementing radix-2

SRT division algorithm. Matsubara et al., in [20] and Renaudin, Hassan and Guyot in

CHAPTER 2. BACKGROUND 15

[29] also present self-timed divider designs that are extensions to the work in [40]. The

self-timed dividers in [40, 29] and [20] use dynamic circuits with completion-detection

design approach. All three self-timed designs fail to take advantage of the faster

shift-only operation in the SRT algorithm. In this research, the self-timed divider uses

static CMOS circuits and a single-rail bundle-data design method. Furthermore, the

self-timed divider takes advantage of the faster shift-only operation using the method

proposed in [23]. Chapter 6 presents the design of a control path for the self-timed

divider.

CHAPTER 3. DIVISION ALGORITHMS 16

3

Division Algorithms

This chapter presents the derivation of the division algorithms that offer simpler quo-

tient selection logic compared to the division algorithms in [10] and [34]. The deriva-

tion method uses invariants and the “Diamond diagram” to prove the correctness of

the algorithms. The diamond diagram is a graphical tool to visualize carry-save num-

bers and operations.

This chapter also evaluates the division algorithms for four figures of merit, latency

per division, average energy consumption per division, area, and the fraction of shift-

only operation and an addition operation per division. The fourth figure of merit, the

fraction of shift-only operation and addition operation per division, is important when

evaluating data paths for average-case performance, because the self-timed design

can take advantage of the faster shift-only operation. By examining the fourth figure of

merit, a designer can make a decision about pursuing a synchronous or a self-timed

design style.

This research uses a division algorithm as an example of an if-then-else con-

ditional statement and therefore the evaluation of the division algorithms presented in

this chapter is applicable to other algorithms with if-then-else conditional state-

ments, where different statements have different computation times.

CHAPTER 3. DIVISION ALGORITHMS 17

3.1 Classification of Division Algorithms

Figure 3.1.1 shows the classification of the division algorithms considered. The clas-

sification is based on the type of addition that an algorithm performs. Division algo-

rithms SRT, A1, A1b and A1c use a two’s complement representation for the partial

remainder and carry-save additions to perform addition and subtract operations. Al-

gorithms B1, B1b and B1c use a binary signed-digit representation for the partial

remainder and carry-free additions to perform addition and subtract operations. Algo-

rithms A1, A1b, B1 and B1b are other contributions of this research.

The Section 3.4 explains the diamond diagram using a well-known standard radix-

2 SRT algorithm [13, 25]. Section 3.5 presents the derivation of the algorithms A1,

A1b and A1c. The derivation of the algorithms B1, B1b and B1c is in Appendix A.

Carry-Save
Addition

Carry-Free
Addition

Nu
m

be
r o

f
Al

te
rn

at
iv

es SRT

A1, A1b B1, B1b

A1c

3

4

5

6

Type of
Addition

B1c

Fig. 3.1.1: Classification of the division algorithms based on the type of addition that an
algorithm performs.

CHAPTER 3. DIVISION ALGORITHMS 18

3.2 Division Preliminaries

Division Preliminaries

A division algorithm must compute an approximation to Q = R/D, where Q is the

quotient, D is the divisor and R is the dividend. According to IEEE 754 standard,

R, D 2 [1, 2). (3.2.1)

For binary representations of R and D, performing the appropriate shift operations

before the start of a division algorithm can satisfy these assumptions.

In general, digit-recurrence division algorithms can be described by a recurrence

relation

ri+1

= 2 ⇤ ri � qi ⇤ D, (3.2.2)

where i represents the iteration index and ri is the remainder after the i-th itera-

tion with initially r
0

= R/2, and qi is the i-th quotient digit selected from the set

{�1, 0, 1}. In each iteration, the algorithm doubles the remainder, then selects a

quotient digit qi, and subtracts qi ⇤ D from rn. Alternatively, if we start with a different

initialization r
0

= R, then we can use the recurrence relation

ri+1

= 2 ⇤ (ri � qi ⇤ D). (3.2.3)

For an algorithm using the recurrence relation in (3.2.3), each repetition step starts

with selecting a quotient digit qi, then subtracting qi ⇤ D, and finally doubling the

result. This research assumes the latter recurrence relation (3.2.3) for describing all

the algorithms.

Additionally, we require that the error interval of the computed quotient be less

than one unit of least precision (ulp), where ulp = 2

�L for some L > 0. In other

words, if q is the computed quotient and the error, e, is given by e = q � R/D,

CHAPTER 3. DIVISION ALGORITHMS 19

then we require that e 2 (�ulp/2, ulp/2). Alternatively, the error interval may

include one of the bounds, but not both bounds. For IEEE-754 single-precision format,

L = 23, and for IEEE-754 double-precision format, L = 52.

3.3 Invariants and Termination

We can use recurrence relations and invariants to prove the correctness of the divi-

sion algorithms and calculate the error in the computed quotient, similar to the one

presented in [10]. The formula

Q ⇤ D = R (3.3.1)

expresses the desired relation between Q, D, and R, where Q is the exact quotient.

Lower-case variables q and r, represent the quotient calculated ‘thus far,’ and the

remainder calculated ‘thus far’, respectively. The invariant for all the variables is

q ⇤ D + 2

�i ⇤ r = R, (3.3.2)

where i is the iteration index and qi ⇤ 2

i is added to q in the ith iteration, where qi is

the quotient digit selected in ith iteration.

In addition, we also have a range invariant for the partial remainder which de-

pends on the choice of a recurrence relationship and a division algorithm. The SRT

algorithms that use the recurrence relation in (3.2.2) and a two’s complement repre-

sentation for the partial remainder, have a range invariant of

r = rs + rc 2 [�D, D). (3.3.3)

The SRT algorithms that use the recurrence relation in (3.2.3) and a two’s complement

representation for the partial remainder, have a range invariant of

r = rs + rc 2 [�2D, 2D). (3.3.4)

CHAPTER 3. DIVISION ALGORITHMS 20

When we use a signed-digit representation for the partial remainder, the range invari-

ant for the partial remainder excludes the lower bound, that is,

r = rc � rs 2 (�D, D) (3.3.5)

for recurrence relation in (3.2.2) and

r = rc � rs 2 (�2D, 2D) (3.3.6)

for recurrence relation in (3.2.3). Because the division algorithms in this document

use the recurrence relation in (3.2.3), consider the invariants (3.3.4) and (3.3.6) for

the SRT algorithms.

Some of the algorithms presented in this chapter have a different range invariant.

The algorithms that use a two’s complement representation for the partial remainder,

r = rs + rc, have a range invariant of

rs, rc 2 [�2, 2) and r = rs + rc 2 [�4, 4) (3.3.7)

The algorithms that use a signed-digit representation for the partial remainder,

r = rc � rs have a range invariant of

rs, rc 2 [0, 4) and r = rc � rs 2 (�4, 4) (3.3.8)

We look for a number of program statements for the program variables q, r, and c

that establish and maintain invariants (3.3.2), and (3.3.4) or (3.3.7) when two’s com-

plement representation is used for the partial remainder, or (3.3.6) or (3.3.8) when

a signed-digit representation is used for the partial remainder. Once we have these

program statements, we can then combine the statements in various ways to obtain

a division algorithm.

The initialization q=0; r=R; i=0 establishes invariant (3.3.2). Any quotient digit

from an over-redundant digit-set {�2,�1, 0, 1, 2} and the recurrence equation (3.2.3)

CHAPTER 3. DIVISION ALGORITHMS 21

will maintain the invariant (3.3.2). The challenge is to choose a quotient digit that will

maintain the range invariant (3.3.4) or (3.3.7) if the partial remainder is in a two’s com-

plement representation, or the range invariant (3.3.6) or (3.3.8) if the partial remainder

is in a signed-digit representation.

Labels are used to denote the choice of a quotient digit and the statements exe-

cuted to update the partial remainder according to (3.2.3), quotient, and the iteration

index. Table 3.3.1 lists the labels corresponding to the choice of a quotient digit and

the statements executed.

Table 3.3.1: Labels to denote the choice of a quotient digit and the statements executed.

Label Quotient Digit, qn Statements executed

ADD2 & 2X -2 r=2*(r+2D); q=q-2*2

�n;
n=n+1

ADD1 & 2X -1 r=2*(r+D); q=q-1*2

�n; n=n+1

2X 0 r=2*r; q=q-0*2

�n; n=n+1

SUB1 & 2X +1 r=2*(r-D); q=q+1*2

�n; n=n+1

SUB2 & 2X +2 r=2*(r-2D); q=q+2*2

�n;
n=n+1

Now we need to make sure that the error in the computed quotient is small

enough, that is e 2 [�ulp/2, ulp/2). Using invariant (3.3.2) we can express the

error, e, in the computed quotient as follows

e =
R
D

� q = 2

�i ⇤ r
D

2 [
�ulp

2

,

ulp
2

). (3.3.9)

For a given ulp and the range of the partial remainder, r, the expression in Equa-

tion. (3.3.9) translates into a condition that determines the value of i.

For example, if we consider ulp = 2

�L and the range invariant (3.3.3), then from

Equation 3.3.9, the termination condition becomes i � L + 2. The range invariant

may also exclude the lower bound, that is, (�2D, 2D) instead of [�2D, 2D)

CHAPTER 3. DIVISION ALGORITHMS 22

If we consider the range invariants (3.3.7) or (3.3.8), then the termination condi-

tion is i � L+ 3. Consequently a division algorithm using the range invariants (3.3.7)

or (3.3.8) requires one more iteration to obtain the same accuracy as a division algo-

rithm using the range invariant (3.3.3) or (3.3.5).

3.4 SRT Algorithm

A standard radix-2 SRT algorithm uses a two’s complement representation for the

partial remainder, r, and carry-save additions (subtractions). The result of a carry-

save addition is two numbers, rs and rc, whose sum is the actual value. Therefore,

r = rs + rc, where rs represents the sum or parity bits and rc represents the carry

or majority bits. The standard SRT algorithm has four non-fractional bits and carry-

save addition is done modulo 2

4. More information on SRT algorithms can be found

in [25, 13] and [17]. The selection of the quotient digit is based on the values of the

four most-significant digits of the remainder in carry-save form rs, rc. Let cpa(rs, rc)

denote the result of a carry-propagate addition of only the four most significant digits of

rs and rc. The algorithm selects a quotient digit qi according to the following conditions

qi = 0 if cpa(rs, rc) = -1

qi = + 1 if cpa(rs, rc) > -1

qi = -1 if cpa(rs, rc) < -1

Figures 3.4.1b and 3.4.1a show the quotient selection function in a conventional

P-D diagram and in the diamond diagram respectively. In Figure 3.4.1b, the x-axis

represents the value of the divisor and the y-axis represents the value of the partial

remainder. Figure 3.4.1a show the quotient selection function in the diamond diagram.

In the diamond diagram, the diagonal axes represent the value of rs and rc. The

diagonal axes carry labels with both the four non-fractional bits of rs and rc in a two’s

complement representation (top) and the absolute value of rs and rc (bottom). The

CHAPTER 3. DIVISION ALGORITHMS 23

vertical-axis represents the actual value of the partial remainder, r = rs + rc. A point

in the diamond diagram has coordinates (rs, rc). Each horizontal line rs + rc = r

modulo 2

4 represents a set of points with the same remainder value.

The area labeled 2X is the area where cpa(rs, rc) = -1. For every remainder in

this area, the SRT algorithm selects the quotient digit 0 and performs a doubling. The

area labeled SUB1&2X is the area where cpa(rs, rc) > -1. For every remainder in

this area, the SRT algorithm selects quotient digit 1 and performs a subtraction with D

followed by a doubling. The area labeled ADD1&2X is the area where cpa(rs, rc) <

-1. For every remainder in this area, the SRT algorithm selects quotient digit -1 and

performs an addition with D followed by a doubling. Because addition is calculated

modulo 2

4, the diagonal bands wrap around the square.

Because the SRT algorithm satisfies the invariant rs + rc 2 [-2D, 2D), only the

colored areas are accessible. There are large inaccessible areas. In fact, at least half

the area is inaccessible. These large inaccessible areas suggest that more efficient

quotient selection functions can be derived.

CHAPTER 3. DIVISION ALGORITHMS 24

-8

4

-4

-2

2

0

-4

4

2

-2

0

-8

8

8

-6

-6

6

6

11
10
.
11
00
.
10
10
.
10
00
.

01
10
.
01
00
.

00
00
.

00
10
.

10
00

.1
01

0.
11

00
.

11
10

.
00

00
.

00
10

.
01

00
.0

11
0.

r s,
 su

m/p
ari

ty
bit

s

rc, ca
rry

/m
ajo

rit
y b

its

r s
+r

c=
2D
ma

x

cp
a
=
-1

r s
+r

c=
-2

D m
ax

in
ac
ce
si
bl
e

in
ac
ce
si
bl
e

2X

AD
D1

 &
 2

X

SU
B1

&

2X

SU
B1

 &
 2

X

AD
D1

&

2X

(a
)S

ta
nd

ar
d

ra
di

x-
2

S
R

T
al

go
rit

hm
in

di
am

on
d

di
ag

ra
m

.

124

r n

D

1
0

q n
=0

q n
=1

2

r n
=D

r n
=2

D

-1 -2 -4

r n
=-

D

r n
=-

2D

q n
=-

1

(b
)

P
-D

di
ag

ra
m

fo
r

th
e

st
an

da
rd

ra
di

x-
2

S
R

T
al

go
-

rit
hm

.

Fi
g.

3.
4.

1:
S

ta
nd

ar
d

ra
di

x-
2

S
R

T
al

go
rit

hm
.

(a
)

th
e

qu
ot

ie
nt

se
le

ct
io

n
ar

ea
s

(c
ol

or
ed

ar
ea

s)
fo

r
a

st
an

da
rd

ra
di

x-
2

S
R

T
di

vi
si

on
in

th
e

di
am

on
d

di
ag

ra
m

us
in

g
on

ly
th

e
4

m
os

t-s
ig

ni
fic

an
tb

its
.I

n
th

e
di

am
on

d
di

ag
ra

m
,e

ac
h

po
in

th
as

co
or

di
na

te
s

(r
s,

r c
).

E
ac

h
ho

riz
on

ta
ll

in
e

r s
+

r c
=

r
m

od
ul

o
2

4

re
pr

es
en

ts
a

se
to

fp
oi

nt
s

w
ith

di
ffe

re
nt

r s
an

d
r c

va
lu

es
bu

tt
he

sa
m

e
re

m
ai

nd
er

va
lu

e.
A

dd
iti

on
is

m
od

ul
o

2

4

,
so

ve
rt

ic
al

-a
xi

s
w

ra
p

ar
ou

nd
th

e
di

am
on

d.
Fo

rr
ad

ix
-2

S
R

T
di

vi
si

on
,t

he
re

m
ai

nd
er

r s
+

r c
re

m
ai

ns
w

ith
in

th
e

ra
ng

e
[-

2
D

,
2

D
).

(b
)t

he
P

-D
di

ag
ra

m
fo

ra
st

an
da

rd
ra

di
x-

2
S

R
T

al
go

rit
hm

.T
he

x-
ax

is
re

pr
es

en
ts

th
e

va
lu

e
of

th
e

di
vi

so
ra

nd
y-

ax
is

re
pr

es
en

ts
th

e
va

lu
e

of
th

e
pa

rt
ia

lr
em

ai
nd

er
.I

n
th

e
fig

ur
e

D
m

ax
=

2
-u

lp
.

CHAPTER 3. DIVISION ALGORITHMS 25

3.5 Algorithms A1, A1b and A1c

The first set of algorithms assume that the partial remainder is in a two’s complement

representation and additions are carry-save additions. A two’s complement represen-

tation of m non-fractional bits can represent numbers in the range [�2

m�1

, 2

m�1).

Note that the lower bound is inclusive while the upper bound is exclusive. Adding

and subtracting numbers in two’s complement arithmetic can be done by means of

modulo 2

m carry-save addition . Therefore, to represent the initial value of D 2 [1, 2)

and partial remainders rs and rc in the range [�2, 2) we only need two non-fractional

bits rather than four in the SRT algorithm of Figure 3.4.1.

Let us look at the effect of the addition and doubling operations on all the points

that satisfy range invariant (3.3.7). The bold center-diamond, S0 to S15, in Fig-

ure 3.5.1 satisfies the range invariant (3.3.7). In the context of division algorithms,

the diamonds with label are simply referred by their labels. For example, diamond S1

in Figure 3.5.1 is referred as S1. An addition or doubling a point in the center diamond

can yield a point inside the center diamond or outside the center diamond. We can

map the points that land outside the center diamond to the center diamond by means

of a translation operation maintaining the range invariant (3.3.7).

Doublings and Translations

Figure 3.5.2 illustrates the effect of doubling any point in S6 and S9, and Figure 3.5.3

illustrates the effect of doubling a point in S0, S1, S4, S5, S10, S11, S14 and S15.

Doubling a point (rs, rc) denotes multiplying a point (rs, rc) by 2. For example dou-

bling a point (-1, 1) yields a point (-2, 2).

Doubling a point in S6 and S9 yields a point in S2[S3[S6[S7 and S8[S9[S12[S13

respectively, maintaining the range invariant (3.3.7). Doubling a point in S0[S1[S4[S5

yields a point in bigger diamond Q0. In Q0, r 2 [-4, 4) but rs 2 [-4, 0) and rc 2 [0, 4)

CHAPTER 3. DIVISION ALGORITHMS 26

S3
S2 S7

S6S1 S11
S0 S5 S10 S15

S4
S8

S9 S14
S13

S12

rs , parity/sum
r c,

 m
ajo

rit
y/

car
ry

011.
010.

001.
000.

111.
110.

101.
100.10

0.
10

1.
11

0.
11

1.
00

0.
00

1.
01

0.
01

1.

-4

-2

0

2

44

2

0

-2

-4

r = 4

r = -4Ac
tu

al
Va

lu
e

of
 th

e
Re

m
ain

de
r,

r =
 r s

 +
 r c

Q0

Q1

Q2

Q3

Fig. 3.5.1: The area of partial remainder (rs, rc) satisfying the range invariant (3.3.7). The
value of the remainder, r, is r = rs + rc, where rs and rc are in a two’s complement repre-
sentation. The points (rs, rc) on a horizontal line, like rs + rc = 4, can have different values
for rs and rc but have the same remainder value. The center diamond, S0 to S15, satisfies
the range invariant (3.3.7) that is r = rs + rc 2 [-4, 4) and rs, rc 2 [�2, 2). The range of the
partial remainder includes the lower bound and excludes the upper bound.

which violates invariant (3.3.7).

To maintain the range invariant (3.3.7), we need to map the points in the Q0 to the

center diamond. A translation over (2, -2) map the points in Q0 to the center diamond

maintaining the the range invariant (3.3.7), as illustrated in Figure 3.5.4. Translation

over (2, -2) is adding 2 to rs and subtracting 2 from rc and keeps the value of rs + rc

unchanged. In fact, any translation of a point (rs, rc) over a distance (t,�t) for any

number t maintains the value of rs + rc. Because the translations involve addition and

subtraction with a constant, a simple recoding of rs and rc can implement translations.

Any doubling of a point, (rs, rc) in S0[S1[S4[S5 followed by a translation over

(2, -2) in effect yields a point in the center diamond. Similarly, doubling of a point

CHAPTER 3. DIVISION ALGORITHMS 27

S3
S2 S7

S6S1 S11
S0 S5 S10 S15

S4
S8

S9 S14
S13

S12

rs , parity/sum
r c,

 m
ajo

rit
y/

car
ry

011.
010.

001.
000.

111.
110.

101.
100.10

0.
10

1.
11

0.
11

1.
00

0.
00

1.
01

0.
01

1.

-4

-2

0

2

44

2

0

-2

-4

r = 4

r = -4Ac
tu

al
Va

lu
e

of
 th

e
Re

m
ain

de
r,

r =
 r s

 +
 r c

Q0

Q1

Q2

Q3

Fig. 3.5.2: The effect of doubling a point in diamonds S6 and S9. Doubling a point (rs, rc)
denotes multiplying a point (rs, rc) by 2. For example doubling a point (-1, 1) yields a point
(-2, 2).

in S10[S11[S14[S15 followed by a translation over (-2, 2) yields a point in the

center diamond. In both the cases, a doubling followed by a translation will maintain

invariant (3.3.2) and range invariant (3.3.7).

How do we implement these doublings and translations? Doublings can be im-

plemented by left shifting the partial remainders rs and rc by one position. The trans-

lations over (2,�2) and (�2, 2) can be implemented by a simple recoding of the

most-significant bits of rs and rc as follows.

10 ! 11

11 ! 00

01 ! 00

00 ! 11

CHAPTER 3. DIVISION ALGORITHMS 28

S3
S2 S7

S6S1 S11
S0 S5 S10 S15

S4
S8

S9 S14
S13

S12

rs , parity/sum
r c,

 m
ajo

rit
y/

car
ry

011.
010.

001.
000.

111.
110.

101.
100.10

0.
10

1.
11

0.
11

1.
00

0.
00

1.
01

0.
01

1.

-4

-2

0

2

44

2

0

-2

-4

r = 4

r = -4Ac
tu

al
Va

lu
e

of
 th

e
Re

m
ain

de
r,

r =
 r s

 +
 r c Q0

Q1

Q2

Q3

Fig. 3.5.3: The effect of doubling a point in diamonds S0, S1, S4, S5, S10, S11, S14 and S15

The second-most significant bit in each case changes and the most significant bit is

a copy of the second-most significant bit.

If all operations start and end in the center diamond, we can apply some sim-

plifications to the doubling and translation implementations. First, because the two

most-significant bits of rs and rc are always the same in the center diamond, we can

omit the most significant bit. Second, if we omit the most significant bit, a doubling

followed by a translation of a point (rs, rc) in the center diamond simply becomes

a left shift by one followed by an inversion of the most significant bit of both rs and

rc. Because of the extra inversion of the most significant bit, the 2X* label denotes a

doubling followed by a translation operation.

Here is an example of a doubling followed by a translation operation, 2X*. Con-

sider a point (rs, rc) with three non-fractional bits (000.u, 110.v), where u and v are

some bit-sequences. Doubling the point (000.u, 110.v) yields a point (00?.u0
, 10?.v0),

CHAPTER 3. DIVISION ALGORITHMS 29

100.

101.

110.

111.

000.

001.

010.

011.

10
0.

10
1.

11
0.

11
1.

00
0.

00
1.

01
0.

01
1.

Q0

rs , parity/sum

-4

-2

0

2

4

r c,
 m

ajo
rit

y/
car

ry

-4

-2

0

2

4

Ac
tu

al
Va

lu
e

of
 th

e
Re

m
ain

de
r,

r =
 r s

 +
 r c

r = 4

r = -4

Fig. 3.5.4: The effect of translating Q0 over (2, -2). Translation over (2, -2) is adding 2 to rs
and subtracting 2 from rc and keeps the value of rs + rc unchanged.

where u0 and v0 are u and v left shifted by 1 position respectively, and ? represents a

bit value of either 1 or 0 corresponding to the most-significant bit of u or v. Translation

of the point (00?.u0
, 10?.v0) yields a point (11?.u0

, 11?.v0) in S8[S9[S12[S13 of

Figure 3.5.1.

Carry-Save Addition

Figure 3.5.5 shows the diamond diagram with center diamond partitioned into smaller

diamonds. Consider subtracting D from a point (rs, rc) in the S1 diamond.

In a two’s complement representation, D = 001.x, for some bit vector x, thus -D

is represented by the bit-wise complement of D plus ulp, that is, -D = 110.y + ulp,

where y is the bit-wise complement of x and ulp is the unit of least precision. The

majority bits are left shifted by one position. Here is the calculation for a point in S1

CHAPTER 3. DIVISION ALGORITHMS 30

S3
S2 S7

S6S1 S11
S0 S5 S10 S15

S4
S8

S9 S14
S13

S12

rs , parity/sum
r c,

 m
ajo

rit
y/

car
ry

011.
010.

001.
000.

111.
110.

101.
100.10

0.
10

1.
11

0.
11

1.
00

0.
00

1.
01

0.
01

1.

-4

-2

0

2

44

2

0

-2

-4

T4

T0

T1

T5

T2

T3

Ac
tu

al
Va

lu
e

of
 th

e
Re

m
ain

de
r,

r =
 r s

 +
 r c

r = 4

r = -4

Fig. 3.5.5: The effects of carry-save additions and subtractions with D.

considering only the three most significant bits of each number.

rs 001.
rc 111.

-D 110.y + ulp

sum 000.
carry 11?.

Following is the calculation for subtracting a point (rs, rc) in S2:

rs 001.
rc 000.

-D 110.y + ulp

sum 111.
carry 00?.

CHAPTER 3. DIVISION ALGORITHMS 31

Consequently, subtracting D from a point in S1 yields a point in S4[S5. Subtract-

ing D from a point in the S2 yields a point in S10[S11. Because carry-save addition

is symmetrical in rs and rc, subtracting D from a point in S11 also yields a point in

S4[S5.

The addition of D to a point in S4 or S14 yields a point in S10[S11, and addition

of D to any point in S8 or S13 yields a point in S4[S5.

Table 3.5.1 gives a summary of adding and subtracting D from small diamonds.

Subtraction is performed in the diamonds where the value of the partial remainder r

is greater than 0. An addition is performed in the diamonds where the value of the

partial remainder r is less than 0.

Table 3.5.1: The effect of subtracting or adding D

Origin
Destination after

subtracting D Origin
Destination after

adding D

S1 S4[S5 S4 S10[S11

S2 S10[S11 S8 S4[S5

S3 T2[T3 S9 S0[S1

S6 S14[S15 S12 T0[T1

S7 S10[S11 S13 S4[S5

S11 S4[S5 S14 S10[S11

A subtraction of D from points in S1, S2, S6, S7, and S11 always ends in S0

[S1[S4[S5 or S10[S11[S14[S15 of Figure 3.5.1. This means that any such

point can subsequently undergo a doubling and a translation (ie. a 2X* operation)

and land in the center square.

Diamond S3 is different. Subtraction of D from points in S3 yields a point in

T2[T3. Translating a point in T2[T3 yields a point in S6[S7, where the point must

undergo another subtraction before a doubling. Instead, let us calculate what happens

CHAPTER 3. DIVISION ALGORITHMS 32

when we subtract 2D, instead of D, from any point in S3. First, recall that in a two’s

complement representation with 3 non-fractional bits D = 001.bx for some bit b and

bit vector x. Thus 2D = 01b.x0, and -2D is represented by the bit-wise complement

of 2D plus ulp, that is, -2D = 10d.y + ulp, where d is the bit complement of b and

y is the bit-wise complement of x0.

rs 001.
rc 001.

-2D 10d.y + ulp

sum 10?.
carry 01?.

Consequently, subtracting 2D from a point in S3 yields a point in T5 of Fig-

ure 3.5.5.

We can translate each point in T5 over (2,�2) and the final result lands in

S10[S11[S14[S15 of Figure 3.5.1. Subsequently, for each point in S10[S11[S14[S15

we can perform a doubling and translation (ie a 2X* operation) and obtain a point in

the center diamond again.

We can make the same remarks for the additions of D or 2D to points in S4,

S8, S9, S12, S13 and S14 of Figure 3.5.5. Addition of D a point in S4, S8, S9,

S13, and S14 always yields a point inside S0[S1[S4[S5 or S10[S11[S14[S15 of

Figure 3.5.1. This means that any such point can undergo a doubling and a translation

and again land in the center diamond.

Addition of D to any point in S12 yields a point in T0[T1. Translating a point in

square T0[T1 yields a point in S8[S9 where a point must undergo another addition

before a doubling. Adding 2D, however, to any point in S12 yields a point in T4.

Furthermore, T4 can be translated over (�2, 2) to obtain a point in S0[S1[S4[S5

of Figure 3.5.1. Doubling and translation of a point in S0[S1[S4[S5 yields a point

in the center diamond.

CHAPTER 3. DIVISION ALGORITHMS 33

For each small diamond in the center square there is a sequence of operations

that maintain invariants (3.3.2) and (3.3.7). Each sequence of operations ends with

a doubling and a translation, which a subtraction or addition of D or 2D may be pre-

cede. For example, for a point in S12, the operations are an addition of 2D, followed

by a translation, then a doubling and a translation. Some squares even have two

possible sequences of operations that maintain invariant (3.3.2) and (3.3.7) (keeps a

point in the center diamond of Figure 3.5.1). For example, for points in S4, the se-

quence of operations may be a doubling followed by a translation (2X*) or an addition

of D followed by a doubling and a translation. The diamonds S1, S6, S9, S11, and

S14 also have two possible sequences of operations.

By confining the points to the center diamond, we can omit the most-significant bit

and consider the remaining two non-fractional bits. The operations are implemented

as follows.

• Each addition is a carry-save addition in two’s complement arithmetic.

• Each doubling is a left shift of both rs and rc by one position.

• Each translation is an inversion of the most-significant bit for rs and rc.

A translation followed by a doubling and then another translation is the same as a

doubling followed by a translation, because each doubling throws away the most sig-

nificant bit.

Putting Together the Division Algorithms

With the analysis of the previous section, we can put together various division algo-

rithms. For each division algorithm we can specify what sequence of operations must

be performed on the points (rs, rc) in each of the small diamonds, S0 to S15, in Fig-

ure 3.5.5. There are six sequences of operations to choose from which are described

as follows:

CHAPTER 3. DIVISION ALGORITHMS 34

• 2X: A doubling operation. The selected quotient digit is 0.

• 2X*: A doubling followed by a translation. The selected quotient digit is 0.

• SUB1&2X*: A subtraction of D followed by a doubling and then a translation.

The selected quotient digit is +1.

• SUB2&2X*: A subtraction of 2D followed by a doubling and then a translation.

The selected quotient digit is +2.

• ADD1&2X*: An addition of D followed by a doubling and then a translation. The

selected quotient digit is -1.

• ADD2&2X*: An addition of 2D followed by a doubling and then a translation.

The selected quotient digit is -2.

An inversion of the most-significant bit implements the translation over (2, -2) or (-2,

2).

Figures 3.5.6, 3.5.7 and 3.5.8 illustrate the three possible choices for a division

algorithm. Other algorithms can be derived by making different choices for the dia-

monds S1, S4, S6, S9, S11 and S14. Algorithms A1, A1b and A1c are the symmetric

choices. The selection of a quotient digit relies on only the two most-significant bits of

rs and rc. Algorithm A1b has a simpler selection logic than Algorithms A1 and A1c,

which can lead to a faster divider implementation.

CHAPTER 3. DIVISION ALGORITHMS 35

r =
 2

r =
 -

2

10
.

11
.

00
.

01
.

10
.

11
.

00
.

01
.

rc, m
ajo

rit
y/

car
ry

-2

0

2

r s,
 pa

rit
y/

su
m

-2

0

2

AD
D1

&2
X*

AD
D1

&2
X*

AD
D1

&2
X*

AD
D2

&2
X*

AD
D1

&2
X*

SU
B1

&2

X*

SU
B1

&2
X*

SU
B2

&2
X*

SU
B1

&2
X*

2X
*

2X
*

2X
*

2X
*

SU
B1

&2
X*

SU
B1

&2
X*

AD
D1

&2
X*

Actual Value of the Remainder,
r = rs + rc

(a
)

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)

Fi
g.

3.
5.

6:
A

lg
or

ith
m

A
1.

(a
)t

he
qu

ot
ie

nt
se

le
ct

io
n

ar
ea

s
us

in
g

th
e

di
am

on
d

di
ag

ra
m

an
d

(b
)P

-D
di

ag
ra

m
.

CHAPTER 3. DIVISION ALGORITHMS 36

10
.

11
.

00
.

01
.

10
.

11
.

00
.

01
.

rc, m
ajo

rit
y/

car
ry

-2

0

2

r s,
 pa

rit
y/

su
m

-2

0

2

AD
D1

&2
X*

AD
D1

&2
X*

AD
D1

&2
X*

AD
D2

&2
X*

2X
*

SU
B1

&2

X*

SU
B1

&2
X*

SU
B2

&2
X*

SU
B1

&2
X*

2X
*

2X
*

2X
*

2X
*

2X
*

2X
*

2X
*

r =
 2

Actual Value of the Remainder,
r = rs + rc

r =
 -

2

(a
)

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)

Fi
g.

3.
5.

7:
A

lg
or

ith
m

A
1b

:(
a)

th
e

qu
ot

ie
nt

se
le

ct
io

n
ar

ea
s

us
in

g
th

e
di

am
on

d
di

ag
ra

m
an

d
(b

)P
-D

di
ag

ra
m

.

CHAPTER 3. DIVISION ALGORITHMS 37

10
.

11
.

00
.

01
.

10
.

11
.

00
.

01
.

rc, m
ajo

rit
y/

car
ry

-2

0

2

r s,
 pa

rit
y/

su
m

-2

0

2

AD
D1

&2
X*

2X

AD
D1

&2
X*

AD
D2

&2
X*

2X
*

2X

SU
B1

&2
X*

SU
B2

&2
X*

SU
B1

&2
X*

2X
*

2X
*

2X
*

2X
*

2X
*

2X
*

2X
*

r =
 2

Actual Value of the Remainder,
r = rs + rc

r =
 -

2

(a
)

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)

Fi
g.

3.
5.

8:
A

lg
or

ith
m

A
1c

:
(a

)t
he

qu
ot

ie
nt

se
le

ct
io

n
ar

ea
s

us
in

g
th

e
di

am
on

d
di

ag
ra

m
an

d
(b

)P
-D

di
ag

ra
m

.
Th

is
is

th
e

sa
m

e
al

go
rit

hm
pr

es
en

te
d

in
[1

0]

CHAPTER 3. DIVISION ALGORITHMS 38

A Different Range Invariant

Thus far, we have seen that algorithms A1, A1b and A1c maintain the range invariant

(3.3.7) for the partial remainder, that is, r = rs + rc 2 [�4, 4). Following is the

proof that algorithm A1 maintains a more conservative range invariant (3.3.4), that is,

r = rs + rc 2 [�2D, 2D).

First, the range invariant (3.3.4) holds after initialization rs = R; rc = 0 for

R, D 2 [1, 2).

Second, each of the operations ADD2&2X*, ADD1&2X*, 2X*, SUB1&2X*, and

SUB2&2X* maintains the range invariant 3.3.4. For the proof, assume that the invari-

ant (3.3.4) holds before each of those five sequences of operations.

In the regions of Figure 3.5.6 where algorithm A1 executes the SUB1&2X* opera-

tions, the range of the partial remainder is

r = rs + rc 2 [0, 2D). (3.5.1)

After subtracting D from rs + rc and doubling rs and rc, the range of the partial re-

mainder is

r = rs + rc 2 [�2D, 2D), (3.5.2)

which is the range invariant (3.3.4).

In the regions of Figure 3.5.6 where algorithm A1 executes the SUB2&2X* opera-

tions, the range of the partial remainder is

r = rs + rc 2 [2, 2D). (3.5.3)

After subtracting 2D from rs + rc and doubling rs and rc, the range of the partial

remainder is

r = rs + rc 2 [2(2 � 2D), 0). (3.5.4)

The lower bound 2(2 � 2D) = (4 � 2D)� 2D > �2D, because 4 � 2D > 0 for

D 2 [1, 2). Consequently, after the operations SUB2&2X*, we have r = rs + rc 2

CHAPTER 3. DIVISION ALGORITHMS 39

[�2D, 2D). Replacing additions with subtractions, we can prove that the ADD1&2X*

and ADD2&2X* operations also maintain invariant (3.3.4).

Finally, in the regions of Figure 3.5.6 where algorithm A1 executes the 2X* oper-

ation, the range of the partial remainder is, r = rs + rc 2 [�1, 1). For D 2 [1, 2),

r = rs + rc 2 [�D, D). Consequently, after the 2X* operation, r = rs + rc 2

[�2D, 2D), satisfying the range invariant 3.3.4.

From the discussion in Section 3.3, because algorithm A1 maintains the range

invariant (3.3.4), algorithm A1 must execute one fewer iteration than algorithms A1b

and A1c. In other words, algorithm A1 must execute L + 3 iterations per division

whereas algorithms A1b and A1c must execute L+ 4 iterations per division, including

an extra quotient digit that may be required for normalization.

CHAPTER 3. DIVISION ALGORITHMS 40

3.6 Comparison of Division Algorithms

This section evaluates the division algorithms considered for this research for latency

per division, average energy per division, area, and the fraction of shift-only and addi-

tion operations per division. A shift-only operation is one of the 2X or 2X* alternatives.

An addition operation is one of the following four alternatives: ADD1& 2X*, ADD2&

2X*, SUB1& 2X* and SUB2& 2X*.

For a fair comparison, I synthesized the behavioral verilog code for all the algo-

rithms using a TSMC 40nm standard cell library with the same compiler settings.

Table 3.6.1 summarizes some of the important characteristics of the division algo-

rithms considered for this research. The derivation of algorithms B1, B1b and B1c is

in Appendix A.

Table 3.6.1: Summary of the characteristics of the division algorithms. For IEEE 754 double-
precision format, L = 52.

Algorithm
Number of Alternatives

per Iteration
Type of
Addition

Number of Iterations
per division, N

SRT 3 Carry-save L + 3

A1 5 Carry-save L + 3

A1b 5 Carry-save L + 4

A1c [10] 6 Carry-save L + 4

B1 [33] 5 Carry-free L + 3

B1b 5 Carry-free L + 4

B1c 6 Carry-free L + 4

Tables 3.6.2 lists the latency per division, average energy per division and the

area consumption from a static timing-analysis tool for all the division algorithms.

Algorithms A1b and B1b offer an improvement of about 8% in latency per division

compared to the standard radix-2 SRT algorithm. This improvement comes at the

cost of 28% and 47% more energy and area consumption. The standard radix-2 SRT

CHAPTER 3. DIVISION ALGORITHMS 41

algorithm must choose from one of the three alternatives each iteration, but the rest of

the algorithm must choose from one of the five or six alternative each iteration. Hence

the radix-2 SRT algorithm consumes less energy and area. Compared to algorithms

A1, A1c, B1 and B1c, algorithms A1b and B1b offer a modest improvement of 4% in

latency per division.

Table 3.6.2: Comparison of the division algorithms for latency per division, energy per division
and area.

Algorithm
Latency per

Iteration,
Liter in ps

Latency per
Division, Ldiv

in ns

Average Energy
per Division,

Ediv in pJ

Area in
µm2

SRT 250 13.75 5.7 7900

A1 240 13.20 7.3 11383

A1b 225 12.60 7.3 11676

A1c 235 13.16 7.5 11772

B1 240 13.20 7.3 11376

B1b 225 12.60 7.3 11673

B1c 235 13.16 7.5 11768

Table 3.6.3 lists the fraction of shift-only and addition operations per division ob-

tained from two million simulations with a pair of uniform-random operands. From the

point-of-view of developing a methodology for evaluating data path topologies for an

asynchronous conditional statement, an algorithm that has approximately the same

fraction of shift-only and addition operations per division is a good candidate. From

Table 3.6.3, Algorithms A1b, A1c, B1b and B1c are equally good candidates and this

research uses algorithm A1b.

Finally, we can convert a quotient digit from a redundant set {-1, 0, 1} or {-2, -1, 0,

1, 2} to a unique binary representation by means of on-the-fly conversion presented

in [12, 13] and [25]. Appendix B shows how we can implement on-the-fly conversion

using the method of invariants.

CHAPTER 3. DIVISION ALGORITHMS 42

Table 3.6.3: Fraction of shift-only and addition operations per division.

Algorithm Fraction of shift-only
operations per division

Fraction of addition operations
per division

SRT 0.35 0.65

A1 0.35 0.65

A1b 0.53 0.47

A1c 0.57 0.43

B1 0.35 0.65

B1b 0.53 0.47

B1c 0.57 0.43

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 43

4

Evaluation of Datapath Topologies

A circuit designer is often baffled by an array of choices for designing circuits to satisfy

various constraints. What design style to choose? Which data path topology to im-

plement? This chapter presents a methodology to evaluate the delay of the data path

topologies for self-timed designs implementing an asynchronous conditional state-

ment.

The following is the difference between evaluating the data path topologies for

synchronous and self-timed designs. The synchronous designs always consider the

worst-case delay but the self-timed designs consider both the worst and best case

delays. Therefore, the self-timed designs have an average-case behavior where the

average depends on the difference between the worst and best case delays, and the

frequency of the worst and best cases. Frequency of the worst and best case delays

depend on the workload, and the difference between the worst and the best delays

depend on the data path topology.

This research uses the division algorithm A1b presented in Chapter 3 as an ex-

ample of an asynchronous conditional statement. Hence this chapter uses the data

path topologies that implement the if-then-else conditional statements in algo-

rithm A1b. In a division algorithm, the best case is when the algorithm executes a

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 44

shift-only operation and the worst case is when the algorithm executes an addition

operation. To calculate the frequency or the fraction of shift-only and addition opera-

tions per division, I assumed a pair of random input-operands.

The methodology proposed in this chapter evaluates the average-case delay of

the data path topologies for the self-timed divider design considering the fraction of

shift-only and addition operations per division. For comparison this chapter also eval-

uates the worst-case delay of the data path topologies for the synchronous divider

design. After the evaluation of the data path topologies, I identify one data path each

for the synchronous and self-timed designs that has an optimum delay for both the de-

signs. The evaluation shows that the synchronous design prefers a fully-speculative

design but the self-timed design prefers a less-speculative design.

4.1 Evaluation Methodology

The division algorithm A1b executes one of the following five alternatives every itera-

tion: SUB2&2X*, SUB1&2X*, ADD1&2X*, ADD2&2X* and 2X*. The four alternatives,

SUB2&2X*, SUB1&2X*, ADD1&2X* and ADD2&2X* require a carry-save addition fol-

lowed by a shift. The 2X* alternative is a shift-only operation.

A data path topology for algorithm A1b has the following three paths: add, shift

and select paths. An add path executes one of the four addition alternatives, the shift

path executes the shift-only 2X* alternative and the select path selects the result from

an add path or the shift path.

For the synchronous designs the delay of the data path is

Dsync = MAX(Dsel, Dadd, Dshi f t), (4.1.1)

where Dsel, Dadd and Dshi f t are the delay of select, add and shift paths, re-

spectively. The delay of the data path is also the cycle time of an iteration or the

clock-period for the synchronous design.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 45

A self-timed design can take advantage of the faster shift-only operation and we

can estimate the average-case delay of the data path as follows

Dasync = Nadd ⇤ MAX(Dsel, Dadd)

+ Nshi f t ⇤ MAX(Dsel, Dshi f t),
(4.1.2)

where Nadd and Nshi f t are the fraction of the addition operations per division and

the fraction of the shift-only operations per division. From Table 3.6.3 in Section 3.6,

Nadd = 0.47 and Nshi f t = 0.53 for algorithm A1b. For a self-timed design the

term MAX(Dsel, Dadd) in Equation (4.1.2) sets the period of the self-timed synchro-

nization pulse for an addition operation, also referred to as add period. The term

MAX(Dsel, Dshi f t) in Equation (4.1.2) sets the period of the self-timed synchroniza-

tion pulse for a shift-only operation also referred to as shift period.

The evaluation of data path topologies for the synchronous and self-timed designs

use equations (4.1.1) and (4.1.2), respectively. The delay estimated for synchronous

designs is deterministic, but the delay estimated for self-timed designs is statistical.

The method of logical effort is used to estimate the delay of the data paths.

4.2 Logical Effort Preliminaries

The method of logical effort estimates the delay of circuits and is effective for evaluat-

ing various design alternatives early in the design cycle [37, 39]. This section presents

a brief introduction to the method of logical effort.

The method of logical effort statically estimates the delay of a logic gate by cap-

turing the electrical environment of a gate, the drive capability of the logic gate, and

the gate’s topology.

The method of logical effort uses a linear delay model and describes the delay of

a logic gate as the sum of two delays. The first delay is called the e f f ort delay, and

is proportional to the output load. The second delay is called the parasitic delay, p,

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 46

and is the intrinsic delay of the logic gates. The effort delay depends on the electrical

environment and the drive capability of the logic gate. The logical e f f ort, g, of a

gate captures the ability of a gate to drive the output load. The electrical e f f ort, h,

captures the electrical environment of a gate. Thus the delay of a gate is expressed

as

d = gh + p (4.2.1)

and the electrical effort is

h =
Cout
Cin

(4.2.2)

where Cout is the output capacitance of the gate and Cin is the input capacitance of

the gate.

When analyzing multi-stage logic networks, branching e f f ort captures the effect

of branches or fanout within a multi-stage network on delay. The branching effort b at

the output of a logic gate is:

b =
Con-path + Co f f-path

Con-path
(4.2.3)

where Con-path is the input capacitance of the next logic gate along the path of anal-

ysis and Co f f-path is the sum of capacitances of the logic gates in the off path.

When analyzing multi-stage logic networks, path e f f ort, F, captures the stage

effort of the logic gates in the path as follows:

F = GBH

where, G = ’ gi, B = ’ bi and H =
Cout
Cin

(4.2.4)

The subscript i indexes the logic stages along the path, and G, B and H are called

path logical effort, path branching effort and path electrical effort, respectively.

The path parasitic delay, P, is the sum of all the parasitic delays of the gates in

the path.

P = Â pi (4.2.5)

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 47

For a path with N stages, the path delay is minimum when each stage bears the

same stage effort, that is,

ˆf = F1/N (4.2.6)

The symbol ˆf denotes an optimal value. Additionally, from [37], we know that any

value from 2.4 to 6 for the stage effort gives optimal result and a value of 4 is a good

choice. To get ˆf = 4, a path with path effort F, requires ˆN = log

4

F stages. In a

path with N stages, where N < ˆN, inserting additional amplification stages reduces

the delay of the path.

The delay of an ˆN-stage path is

D = ˆNF1/

ˆN + P (4.2.7)

Expression in (4.2.7) is the key result of Logical Effort which allows the designer

to estimate the delay of a given path without knowing the actual sizes or the drive

strengths of the gates. The unit of delay estimated using equation (4.2.7) is t. We

can also express the delay in terms of fan-out-of-4 “FO4" inverter delays by dividing

by 5 because one FO4 is approximately equal to 5t. In this document, the delays

estimated using the method of logical effort are expressed in terms of FO4 inverter

delays.

Equation in (4.2.8) gives the capacitance transformation formula to calculate gate

sizes. I have used the capacitance transformation formula to estimate the branching

effort, b, when evaluating various data path alternatives.

Cini =
giCouti

ˆf
(4.2.8)

Table 4.2.1 lists the logical effort and parasitic delay of the standard gates. The

numbers in the table and the logical effort calculations in this chapter assume the

following:

• The ratio of the sizes of the PMOS and NMOS transistors in a minimum sized

inverter is two-to-one.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 48

• The drain and gate capacitances of a transistor are the same.

Table 4.2.1: Logical effort and parasitic delay of standard gates [37]

Gate Type

Logical Effort Parasitic Delay

Number of inputs Number of inputs

1 2 3 4 1 2 3 4

INVERTER 1 1

NAND 4/3 5/3 6/3 2 3 4

NOR 5/3 7/3 9/3 2 3 4

LATCH 2 2

XOR, XNOR 4,4 6,6,12 4 6

MAJORITY 2,4,4 6

4.3 Data Path Modules

This section presents the description of some of the key components of the divider

data paths in Section 4.4. The key components are carry-save adder, quotient-

selection logic (QSLC) and multiplexers with different fan-in.

Carry-save Adder

Figure 4.3.1 shows a one-bit carry-save adder with three inputs and two outputs. The

figure also carries the label denoting the logical effort for the corresponding input.

There are different input configurations for the carry-save adder and the configuration

in the figure distributes the logical effort more evenly. A carry-save adder consists of

parity and majority circuits to produce parity and majority bits, par and maj, respec-

tively. The majority bits are always left shifted by one position and therefore the inputs

a, b and c at position j produce a majority bit at position j + 1. The carry-save adder

in Figure 4.3.1 requires inputs in both true and complement form. The amplification

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 49

stages that may be inserted to drive the carry-save adders can potentially use 0-1

or 1-2 forks to provide both true and complement signals. Therefore, we can defer

considering the details of generating true and complement signals until later.

Table 4.3.1 lists the logical effort of parity and majority gates. The parasitic delays

for both majority and parity gates, pmaj and ppar are 6. Because the input bundle a⇤

has higher logical effort than input bundles b⇤ and c⇤, connecting a signal that arrives

early to the input bundle a⇤ would be prudent. In some data paths the divisor arrives

first and in other data paths remainder arrives first. When evaluating data paths, I will

make explicit what signals connect to which input of a carry-save adder.

When evaluating data paths, to eliminate the need to keep track of individual

gates, it is useful to consider a carry-save adder as a single gate rather than two

gates. We can use the path effort of the carry-save adder cell to treat the carry-save

adder cell as a single gate. If both the parity and majority circuits drive the same

output load, then the path effort for an input of the carry-save cell is the sum of the

logical efforts of the parity and majority circuits for that input.

Considering the input bundle c⇤ and cases when both the parity and majority

circuits drive the same output load, that is, Lpar = Lmaj = L, the branching effort b

for a path through the parity circuit is

b = (6 ⇤ L + 4 ⇤ L)/(6 ⇤ L) = 5/3 (4.3.1)

Assuming H = 1, the path effort is

F = GB = 6 ⇤ 5/3 = 10 (4.3.2)

If we consider a path through the majority circuit, the path effort turns out to be 10.

Following the calculation for the input bundle c⇤, for input bundles a⇤ and b⇤ the path

effort is 14 and 10 respectively. Thus, when the parity and majority circuits drive the

same load we can calculate the path effort of a carry-save adder by simply adding the

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 50

logical effort of the parity and majority gates. We can extend this reasoning to simple

multi-stage modules such as the quotient selection logic, multiplexers etc.

MAJ

PAR

maj[j+1]
Load=Lmaj

par[j]
Load=Lpar

a[j]
b[j]
c[j]

2
4
4

6

6
12

*

*

*

Fig. 4.3.1: One bit carry-save adder consisting of a parity and a majority circuit.

Table 4.3.1: Logical efforts of inputs for asymmetric parity and majority gates.

(a) Majority

Input Logical effort, gmaj

a 2

b 4

c 4

(b) Parity

Input Bundle Logical effort, gpar

a⇤ 12

b⇤ 6

c⇤ 6

Quotient Selection Logic

The quotient selection logic or QSLC module is a key component in the divider de-

sign. The QSLC module accepts the two most significant bits of the partial remainder

in carry-save form, rs and rc, and produces the select signals for the multiplexers in

the data path. The quotient selection logic differs for data paths with different multi-

plexer organizations. For example, the QSLC modules for the two data paths T1D1

and T2D5 in Figures 4.4.3 and 4.4.4, respectively, are different because of the differ-

ence in the multiplexer organization. But the QSLC modules for the data paths T1D2

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 51

and T1D4, or T1D1 or T2D1 (see Appendix C) are the same because they have the

same multiplexer organization. Therefore, we need three different QSLC modules

and Figure 4.3.2 shows the gate-level implementation of all three QSLC modules. In

the figures, indices [n] and [n-1] denote the most and second-most significant bits,

respectively, and indices [T] and [F] denote true and false (complement) signals re-

spectively. The data path T1D1 uses the QSLC in Figure 4.3.2a and data path T2D5

uses the QSLC in 4.3.2b. Following is the description of the QSLC signals:

1. S2: Selects the result from SUB2 & 2X* module or -2D for carry-save addition.

2. S1: Selects the result from SUB1 & 2X* module or -D for carry-save addition.

3. A1: Selects the result from ADD1 & 2X* module or D for carry-save addition.

4. A2: Selects the result from ADD2 & 2X* module or 2D for carry-save addition.

5. TWOX: Selects the result from the 2X* module.

6. ADD: Selects the result from the 4:1 multiplexer in data paths with D2 label or

selects the result from CSA & 2X* module in data paths with D5 label.

7. A: Selects the result from ADD1 & 2X* or ADD2 & 2X* module in data paths

with D3 label, or ADD & 2X* module in data paths D4 label.

8. S: Selects the result from SUB1 & 2X* or SUB2 & 2X* module in data paths

with D3 label, or SUB & 2X* module in data paths with D4 label.

In Figures 4.3.2a, 4.3.2b and 4.3.2c, LS1

, LS2

etc., are the loads presented for the

corresponding signals. Assuming that all the output signals of a QSLC design drive

the same load, we can estimate the logical effort of the QSLC inputs. Table 4.3.2 lists

the logical effort, g, and parasitic delay, p, of the input bundles for all three quotient

selection logic modules.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 52

Table 4.3.2: Summary of Logical Effort and Parasitic Delay of the three quotient selection
logics.

Design Inputs Logical Effort, g Parasitic Delay, p

1
rs[n]⇤, rc[n]⇤ 12.88 4

rs[n-1]⇤, rc[n-1]⇤ 10 4

2
rs[n]⇤, rc[n]⇤ 11.33 4

rs[n-1]⇤, rc[n-1]⇤ 10 4

3
rs[n]⇤, rc[n]⇤ 7.33 4

rs[n-1]⇤, rc[n-1]⇤ 6 4

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 53

TWOX
rc[n][T,F]
rs[n][T,F]

S1

S2

rc[n][F]

rc[n-1][F]

rs[n-1][F]

rs[n-1][T]
rc[n-1][T]

rc[n][T]

rs[n-1][F]
rc[n-1][F]

rc[n-1][T]

rs[n-1][T]

A2

A1

rs[n][F] rs[n][T]

Load=LSHIFT

Load=LS1

Load=LS2 Load=LA1

Load=LA2

4

4/3

4/3

4/3

4/3

5/3
5/3

5/35/3

5/3

5/3

(a) QSLC 1: This QSLC module used in data paths T1D1, T2D1 and T3D1

SHIFT
rc[n][T,F]

rs[n][T,F]

S1

S2

rs[n][F]

rc[n-1][F]
rs[n-1][F]

rs[n-1][T]
rc[n-1][T]

rs[n][T]

rs[n-1][F]
rc[n-1][F]

rc[n-1][T]

rs[n-1][T]

A2

A1

rc[n][T,F]
rs[n][T,F]ADD

5/3

5/3

5/3 5/3

5/3

5/3

4 4

4/3

4/3

Load=LSHIFT

Load=LS1

Load=LS2 Load=LA1

Load=LA2

Load=LADD

(b) QSLC 2: This QSLC module used data path T1D2, T1D5, T2D2, T2D5, T3D2 and T3D5

SHIFT
rc[n][T,F]
rs[n][T,F]

S1

S2

rc[n-1][T]

rs[n-1][T]

rs[n-1][F]
rc[n-1][F]

S
rs[n][T]
rc[n][T]

A

A1

A2
rs[n-1][T]
rc[n-1][T]

rs[n-1][F]

rc[n-1][F]

rs[n][F]
rc[n][F]

5/35/3

5/3 5/3

4/3 4/3

4
Load=LSHIFT

Load=LSUB Load=LADD

Load=LA1

Load=LA2

Load=LS1

Load=LS2

(c) QSLC 3: This QSLC module is used in data paths T1D3, T1D4,
T2D3, T2D4, T3D3 and T3D4.

Fig. 4.3.2: Gate-level design of the quotient selection logic for various data paths.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 54

Multiplexers and Latches

Figure 4.3.3 shows the gate-level structures of the multiplexers used for data path

evaluation. In the figure, the select inputs carry labels s[0] to s[4] and the data in-

puts carry labels d[0] to d[4]. Table 4.3.3 lists the logical effort and parasitic delay

associated with each of the inputs.

4/3

4/3

s[0]
d[0]
s[1]
d[1]

out4/3

(a) 2:1 Multiplexer

4/3

4/3

s[0]
d[0]
s[1]
d[1]

out

4/3
s[2]
d[2]

5/3

(b) 3:1 Multiplexer

4/3

4/3

4/3

4/3

s[0]
d[0]
s[1]
d[1]
s[2]
d[2]
s[3]
d[3]

7/3 out

(c) 4:1 Multiplexer

2

2

s[0]
d[0]
s[1]
d[1]
s[2]
d[2]
s[3]
d[3]

out5/3

4/3
s[4]
d[4]

(d) 5:1 Multiplexer

Fig. 4.3.3: Multiplexers with different fan-in.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 55

Table 4.3.3: Input logical effort and parasitic delay of multiplexers.
(a) Input logical effort and parasitic delay of 5:1 and 4:1 multiplexers.

Inputs
5:1 Mux 4:1 Mux

Logical effort,

g
5:1Mux

Parasitic delay,

p
5:1Mux

Logical effort,

g
4:1Mux

Parasitic delay,

p
4:1Mux

s[0] to s[3],

d[0] to d[3]
3.33 7 2.67 6

s[4], d[4] 2.22 5

(b) Input logical effort and parasitic delay of 3:1 and 2:1 multiplexers.

Inputs
3:1 Mux 2:1 Mux

Logical effort,

g
3:1mux

Parasitic delay,

p
3:1mux

Logical effort,

g
2:1mux

Parasitic delay,

p
2:1mux

s[0], s[1],

d[0], d[1]
2.22 5 1.78 4

s[2], d[2] 2.22 5

4.4 Data Path Topologies

Figure 4.4.1 shows the basic architecture of a two-stage pipeline that implements

the division. In the figure, RxReg, RecReg and TxReg are the registers. The reg-

ister RxReg receives the new data operands from FIFO-A and the register TxReg

passes the output result for post-processing, for example, rounding, normalization

etc to FIFO-B. The register RecReg is the recurrence register. The module with la-

bel init denotes the initialization of the different registers. The module with label

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 56

RecDP denotes a data path that implements the if-then-else statements in algo-

rithm A1b. The 2-input multiplexer selects the data from either the init module or

from the RecDP module. The path from the clock input of the register RecReg to the

data-input of the register RecReg is the critical path and sets the clock-period for the

pipeline in case of a synchronous design A self-timed synchronization pulse replaces

the clock in a self-timed design. A self-timed design modulates the period of the

synchronization pulse to the register RecReg according to the delay of an addition or

shift-only operations in the RecDP module.

2:1 Mux
Recurrence Data

Rx
Reg

Rec
Reg

Tx
RegRecDP

Input
Operands

to post
processing

from
FIFO-A

to
FIFO-B

Data Path

R0

init

Fig. 4.4.1: A two-stage pipeline that implements the recurrence loop

There are fifteen different candidates for the data path. The fifteen data paths

can be classified into three different topologies of five different data paths each. The

five different data paths in a topology result from different multiplexer organizations.

The classification of topologies is based on when during the clock period, the quotient

selection logic (QSLC) is computed, as illustrated in Figure 4.4.2. Based on the two

most-significant bits of the partial remainder, the quotient selection logic determines

the quotient digit accumulated each iteration. In topologies 1, 2 and 3, the QSLC is

computed at the beginning, middle and the end of the clock period respectively.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 57

QSLC QSLC QSLC

Topology 1 Topology 2 Topology 3

clock

Fig. 4.4.2: Classification of the data path topologies based on when during the clock period,
the quotient selection logic (QSLC) is computed. In topologies 1, 2 and 3, the QSLC is
computed at the beginning, middle and the end of the clock period respectively.

The following four letter naming convention denotes different data-path topologies.

The first two letters denote the topology and the last two letters denote one of the five

data paths in that topology. For example, T1D1 denotes data path 1 in topology 1.

The Sections 4.4.1 and 4.4.2 show the logical effort calculations for the data paths

T1D1 and T2D5 respectively. The logical effort calculations for the remaining data-

path topologies appear in Appendix C.

4.4.1 Data Path T1D1

Figure 4.4.3 shows the data path T1D1. The data path T1D1 computes the QSLC at

the beginning of the clock cycle, hence topology 1. In the figure, index [i] denotes the

iteration index and all the signals originate at the output of registers and end at the

input of the 2:1 multiplexer in Figure 4.4.1. This is a fully-speculative design because

all five alternatives are executed speculatively and then the QSLC module chooses

the correct result.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 58

QSLC

5:
1

Mu
x

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2D

D

-D

-2D

rs[i+1],
rc[i+1]

2x54

2x54

5:
1

Mu
x

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

4x56

Qu
ot

ie
nt

 u
pd

at
e

rs[i],
rc[i]

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

4x56

4x56

4x56

2x2 MSBs

56

56

56

56

5

R1

R2

2X*

2x54

2x54

2x54

2x54

2x54

4x56

remainder data-path

quotient data-path

add path

add path

add path

add path

shift path

select path

Fig. 4.4.3: Data path T1D1 with the quotient data path. This is a fully-speculative design
because the design executes all five alternatives and then selects the correct alternative. This
data path topology computes the quotient selection logic at the beginning of the clock period,
hence topology 1.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 59

Consider the following three paths to estimate the delay of the data path T1D1:

Add path: This is the path of the lesser-significant bits of the partial remainder

through one of the four carry-save adders, that is, register ! ADD2&2X*

or ADD1&2X* or SUB1&2X* or SUB2&2X* ! 5:1 Mux ! 2:1 Mux !

register. Add path executes one of the addition operations.

Shift path: This is the path of the lesser-significant bits of the partial remainder

through the 2X* module, that is, register ! 2X* ! 5:1 Mux ! 2:1 Mux

! register. Shift path executes the shift-only operation.

Select path: This is the path of the two most-significant bits of the partial remainder,

rs and rc, through the QSLC module, that is, register ! qslc ! 5:1

Mux ! 2:1 Mux ! register. Select path selects the result from an add

path or the shift path.

In the above paths, the last 2:1 multiplexer selects the data from the recurrence

loop or the new operands in Figure 4.4.1.

Table 4.4.1 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table 4.4.2 lists the

branching effort at various nodes in the select, add and shift paths.

Let Dsel, Dadd and Dshi f t be the delays of the select, add and shift paths respec-

tively. Using the values of G, P, and N from Table 4.4.1, and B from Table 4.4.2,

the delay of the select, add and shift paths are as follows. The letters G, B, P and

N denotes the path logical effort, path branching effort, total parasitic delay and total

number of stages, respectively.

Dsel = 10.3 FO4,

Dadd = 7.6 FO4,

Dshi f t = 5.7 FO4.

(4.4.1)

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 60

Table 4.4.1: Data path T1D1: Logical effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add Path Shift Path

p g n p g n p g n

reg 2 2 1 2 2 1 2 2 1

QSLC 13 4 2

CSA 10 6 1

5:1 Mux 3.3 7 2 3.3 7 2 3.3 7 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

G 153 119 8

P 17 19 13

N 7 6 5

Table 4.4.2: Data path T1D1: Branching efforts in the select, add and shift paths.

Node Select Path Add Path Shift Path

R0 2 2 2

R1 4 11

R2 332

B 664 8 22

The delay in Equation (4.4.1) takes into account the additional amplification stages

necessary to amplify the signals. Using the delay values in Equation (4.4.1), the

worst-case delay of the data path for the synchronous design is

Dsync = MAX(Dsel, Dadd, Dshi f t) = 10.3 FO4. (4.4.2)

For a self-timed design, the average-case delay of the data path is

Dasync = 0.47 ⇤ MAX(Dselect-path, Dadd-path)

+ 0.53 ⇤ MAX(Dselect-path, Dshi f t-path) = 10.3 FO4.

(4.4.3)

For the data path T1D1, the worst-case delay and the average-case delay are the

same because the select path delay, Dsel, sets the delay of the data path for both

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 61

shift-only and add operations. A self-timed divider fails to take advantage of the faster

shift-only operation using the data path T1D1. The data path T1D1, whilst suitable for

synchronous design, is unsuitable for a self-timed design. The next section presents

the data path T2D5 that is more suitable for a self-timed design.

4.4.2 Data Path T2D5

Figure 4.4.4 shows the data path T2D5. The data path T2D5 computes the QSLC

in the middle of the clock cycle, hence topology 2. The data path T2D5 is a less-

speculative data path because the data path selects an appropriate multiple of the

divisor first and then performs a carry-save addition. In this data path the amplification

of the select signals for the multiplexers in the lesser-significant bit position and in the

quotient data path can be overlapped with the computation of the quotient selection

logic, as illustrated in Figure 4.4.4.

Select Path

The select path is: qslc-reg ! amp ! 2:1 Mux ! 2:1 Mux ! qslc-reg.

Table 4.4.3 shows the logical effort and parasitic delay of the logic gates in the se-

lect path along with the number of stages in each gate. Table 4.4.4 shows the the

branching effort at various nodes in the select path. Using the values of G, P and N

in Tables 4.4.3 and B in Table 4.4.4, the delay of the select path is

Dsel = 7 FO4. (4.4.4)

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 62

4:
1

Mu
x

CSA &
2X*

2X*

2:
1

Mu
x

QSLC

QSLC

add1 path

shift1 path

2:
1

Mu
x

2:
1

Mu
x

CSA &
2X

2X

4:
1

Mu
x

amp

4:
1

Mu
x

amp

amp

Qu
ot

ie
nt

 u
pd

at
e

add2 path

shift2 path

shift3 path

add3 path

qslc[i+1]

-D

-2D

2D

D

-D

-2D

2D

D

R1

R3

R5

R2

R4 R6

2

4

2x54

qslc[i+2]

6

6

6

4x56

rs[i+1],
rc[i+1]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

select path

3

3

3

52

2x52

4x56

4x56

q0[i]

qp1[i]

qm1[i]

qm2[i]

2x54rs[i],
rc[i]

MSB data path

LSB data path

Quotient
data path

56

56

56

56

2

Fig. 4.4.4: Data path T2D5 showing the path of the two most-significant bits (MSB Path) and
lesser-significant bits (LSB Path) of the partial remainder along with the quotient data-path.
This is a less speculative data path because the data path selects an appropriate multiple of
the divisor first and then performs the carry-save addition.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 63

Table 4.4.3: Data path T2D5: Logical effort and parasitic delay of the gates in the select path
along with number of stages in each gate.

Gate Logical effort, g Parasitic delay, p Number of Stages, n

reg 2 2 1

amp 1 2 2

2:1 Mux 1.78 4 2

2:1 Mux 1.78 4 2

G 6.4

P 12

N 7

Table 4.4.4: Data path T2D5: Branching effort in the select path.

Node Branching effort, b

R0 2

R6 338

B 676

Add Paths

The following are the four add paths that we have to consider for the data path T2D5:

Add1 path: qslc-reg ! 4:1 Mux ! CSA & 2X* ! QSLC ! 2:1 Mux !

2:1 Mux ! qslc-reg.

Add2 path: qslc-reg ! amp ! 4:1 Mux ! CSA & 2X* ! 2:1 Mux ! 2:1

Mux ! remainder-reg.

Add3 path: qslc-reg ! amp ! amp ! 4:1 Mux ! 2:1 Mux ! 2:1 Mux

! quotient-reg.

Add4 path: remainder-reg ! CSA & 2X* ! QSLC ! 2:1 Mux ! 2:1 Mux

! qslc-reg.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 64

Table 4.4.5 lists the logical effort and parasitic delay of the logic gates in the add

paths along with the number of stages in each gate. Table 4.4.6 lists the branching

effort at various nodes in the respective add paths.

Using the values of G, P and N in Tables 4.4.5 and B in Table 4.4.6, the delays

of the add paths are as follows:

Dadd1

= 11 FO4,

Dadd2

= 10.7 FO4,

Dadd3

= 10.6 FO4,

Dadd4

= 8.3 FO4.

(4.4.5)

The delay to consider for the add path is the maximum of the delays in the expression

(4.4.5). Thus Dadd = 11 FO4.

Table 4.4.5: Data path T2D5: Logical effort and parasitic delay of the gates in the add paths.

Gate
Add-path1 Add-path2 Add-path3 Add-path4

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 4 4

4:1 Mux 2.7 6 2 2.7 6 2 2.7 6 2

CSA & 2X* 10 6 1 10 6 1 14 6 1

QSLC 10 4 2 10 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

G 1692 170 17 887

P 26 24 20 20

N 10 10 11 8

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 65

Table 4.4.6: Data path T2D5: Branching effort in the add paths.

Node Add-path1 Add-path2 Add-path3 Add-path4

R0 2 2 2 2

R1 5.2 2.6 23.9

R2 1.25

R3 52

R4 2.6

R5 225

B 27.04 270.4 10707 2.5

Shift Paths

To estimate the delay of the shift path, consider the following two paths.

Shift1 path: rem-reg ! 2X* ! QSLC ! 2:1 Mux ! 2:1 Mux ! qslc-reg

Shift2 path2: rem-reg ! 2X ! 2:1 Mux ! 2:1 Mux ! rem-reg

Table 4.4.7 lists the logical effort and parasitic delay of the logic gates in the shift

paths along with the number of stages in each gate. Table 4.4.8 lists the the branch-

ing effort at various nodes in the respective shift paths. The delay of the shift path,

Dshi f t = MAX(Dshi f t1, Dshi f t2), where Dshi f t1 and Dshi f t2 are the delay of shift1

and shift2 paths.

Using the values of G, P and N in Tables 4.4.7 and B in Table 4.4.8, we get

Dshi f t1 = 6.6 FO4,

Dshi f t2 = 4.3 FO4.

(4.4.6)

Therefore, Dshi f t = Dshi f t1 = 6.6 FO4.

If data path T2D5 is used in a synchronous environment, then the delay of the

data path is

Dsync = MAX(Dsel, Dadd, Dshi f t) = 11 FO4. (4.4.7)

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 66

Table 4.4.7: Data path T2D5: Logical effort and parasitic delay of the gates in the shift paths.

Gate
Shift-path1 Shift-path2

g p n g p n

reg 2 2 1 2 2 1

QSLC 10 4 2

2:1 Mux 1.78 4 2 1.78 4 2

2:1 Mux 1.78 4 2 1.78 4 2

G 64 6.4

P 14 10

N 7 5

Table 4.4.8: Data path T2D5: Branching effort in the shift paths.

Node Shift-path1 Shift-path2

R0 2 2

R2 9 5

B 18 10

On the other hand, if this data path is used in a self-timed design environment then

the average-case delay of the data path is

Dasync = 0.47 ⇤ MAX(Dsel, Dadd)

+ 0.53 ⇤ MAX(Dsel, Dshi f t) = 8.9 FO4.

(4.4.8)

4.5 Evaluation of Data paths

The logical effort calculations for the remaining thirteen data paths are in Appendix C.

In addition to the delay estimation using logical effort, I synthesized all the data paths

using Synopsys Design Compiler and mapped to a TSMC 40nm standard cell library.

Table 4.5.1 shows the ranking of the data paths by delay using the logical effort

method (Table 4.5.1a) and static-timing analysis (Table 4.5.1b) in a synchronous en-

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 67

vironment. Table 4.5.2 shows the ranking of the data paths by average delay using

the logical effort method (Table 4.5.2a) and static-timing analysis (Table 4.5.2b) in a

self-timed environment. The rank column in Tables 4.5.1b, 4.5.2 and 4.5.2b show the

rank of the corresponding data path topology in Table 4.5.1.

Table 4.5.1: Ranking of data paths by speed for synchronous designs.

(a) Using Logical Effort

Data
path

Delay in
FO4

Rank

T2D1 10.3 1

T1D1 10.3 1

T3D1 10.3 1

T1D3 10.5 4

T2D3 10.6 5

T2D4 10.6 5

T3D3 10.6 5

T3D4 10.7 8

T1D2 10.8 9

T2D5 11.0 10

T2D2 11.2 11

T3D2 11.2 11

T3D5 11.2 11

T1D4 11.8 14

T1D5 12.2 15

(b) Using Design Compiler’s STA

Data
path

Delay in
ps

Rank in
Table 4.5.1a

T2D1 246 1

T1D1 247 1

T3D1 248 1

T1D3 252 4

T3D4 257 8

T2D3 258 5

T2D4 259 5

T1D2 261 9

T2D5 263 10

T3D3 264 5

T3D5 265 11

T2D2 271 11

T3D2 272 11

T1D4 280 14

T1D5 284 15

From the Tables 4.5.1 and 4.5.2 we can make the following observations:

1. For the synchronous designs, the three data paths T2D1, T1D1 and T3D1 ap-

pear at the top of the Tables 4.5.1a and 4.5.1b. This suggests that synchronous

designs prefer a fully-speculative design.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 68

Table 4.5.2: Ranking of data paths by speed for self-timed designs designs.

(a) Using Logical Effort

Data
path

Avg.
delay in

FO4

Rank in
Table 4.5.1a

T2D5 8.9 10

T2D2 9.0 11

T2D3 9.0 5

T2D4 9.0 5

T3D3 9.1 5

T2D1 9.2 1

T3D4 9.2 8

T3D5 9.3 11

T3D2 9.3 11

T3D1 9.5 1

T1D2 10.0 9

T1D3 10.0 4

T1D1 10.3 1

T1D5 10.6 15

T1D4 10.6 14

(b) Using Design Compiler’s STA

Data
path

Avg.
delay in

ps

Rank in
Table 4.5.1a

T3D1 229 1

T3D4 232 8

T2D5 233 10

T3D3 235 5

T2D3 236 5

T3D5 236 11

T3D2 240 11

T2D1 242 1

T1D2 245 9

T1D3 246 4

T1D1 247 1

T2D4 248 5

T1D5 255 15

T2D2 257 11

T1D4 259 14

2. For self-timed designs, all the data paths in Topology 1 (T1) appears in the

bottom-half of the table. Therefore, the data paths in Topology 1 are less suit-

able for self-timed designs.

3. There is a discordance between the ranking of the data paths using logical effort

and static-timing analysis. The two primary reasons for the discordance are as

follows:

a) The logical effort calculations use the logical effort and parasitic delay

values mentioned in the logical effort book [37]. The logical effort and

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 69

parasitic delay values of the gates in the standard cell library can be quite

different from the values in the book, especially the parasitic delay values.

b) The delay calculation using the logical effort method ignores input transi-

tion times. The static-timing analysis engine, however, takes input transi-

tion times into account to estimate path delays. This is important because

the difference in delay values for some of the datapaths is on the order of

1 to 2 picoseconds.

Figure 4.5.1 shows the scatter-plot of average energy consumption per iteration

and delay per iteration for all the data paths. The data points in green are for self-

timed designs and the data points in red are for synchronous designs. The figure

also shows the possible data path choices for self-timed and synchronous design for

further optimization. From the figure, we can notice that there are several data paths

for self-timed designs that offer better performance while consuming less energy per

iteration, on average, compared to synchronous design alternatives.

For a synchronous design, data paths T2D1, T3D1 and T1D1 are all good choices

considering the delay per iteration. All three data paths are fully-speculative. I choose

T1D1 data path for further optimization because this data path is presented in several

references [15, 18, 19, 6] and it would be easier to make a fair comparison of the

optimization techniques presented in the next chapter with the work presented in the

references.

For a self-timed design, the data paths T3D1, T3D4, T2D5 and T3D3 are all good

choices considering the average delay per iteration. I chose T2D5 data path for further

optimization because this data path consumes the least energy of the four choices at

the cost of 2% slower speed on average.

CHAPTER 4. EVALUATION OF DATAPATH TOPOLOGIES 70

Energy vs Delay

D
el

ay
 p

er
 It

er
at

io
n

in
 p

s

222.5

245

267.5

290

Average Energy per Iteration in pJ
2.74 3.03 3.31 3.60

Synchronous
Self-timed

≈

≈

Choice of data paths for Self-timed design.

Choice of data paths for Synchronous design.

0

0.5

0 0.5

�1

Fig. 4.5.1: Scatter plot of energy per iteration vs the average delay per iteration for various
data path topologies. The green data points are for self-timed designs and the red data points
are for synchronous designs.

4.6 Summary of Evaluation Methodology

In this chapter, using the divider example I presented a methodology to evaluate var-

ious data path topologies for a conditional statement. In the context of a division

algorithm, a self-timed design can take advantage of the faster shift-only operation.

Therefore, the evaluation methodology takes into account how frequently a shift-only

operation and an addition followed by a shift operation are executed on average per

division. Using this methodology I have shown that a fully-speculative data path,

T1D1, is suitable for synchronous design but unsuitable for a self-timed design. For

self-timed design, however, a less-speculative data path, T2D5, is suitable. For fur-

ther data path optimization, I chose data path T1D1 for synchronous design and data

path T2D5 for self-timed design.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 71

5

Design Optimization Techniques

After evaluating the data paths for worst and average case delay in Chapter 4, I se-

lected the data path T1D1 for the synchronous design and data path T2D5 for the

self-timed design. In a divider data path, the high-capacitive load that the multiplexers

present to their select signals limit the delay of the data paths. This chapter presents

two optimization techniques that address the problem of high capacitance to further

reduce the delay of the data paths. The first technique is the sizing optimization where

the register bits that drive the critical path have bigger drive strengths than the rest of

the register bits. The second technique is called Glissando which exploits a simple

idea of delaying the computation of the non-critical bits.

Section 5.1 presents an analysis of the various cases of tapering of the register

sizes using the method of logical effort. This analysis will give a designer an idea

about the relative drive strengths of the gates required to achieve an optimum perfor-

mance.

Section 5.2 presents an analysis of the Glissando optimization technique. The

Glissando technique offers a way to increase the word-size of the operands with-

out effecting the delay of the data path. This is very useful when we increase the

accuracy requirements from double-precision to quadruple-precision or when consid-

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 72

ering a divider design to implement the “mod” function for a 1024-bit or 2048-bit RSA

crypto-systems[28].

5.1 Sizing Optimization

The delay estimates in Sections 4.4.1 and 4.4.2 assume that all the register bits have

the same drive strengths. Tapering the register sizes such that the registers driving

the critical path have larger drive-strengths than the rest of the registers can reduce

the delay of the data paths. Tapering of the register sizes can be sudden or gradual.

Figure 5.1.1 illustrates that three cases I have considered in this chapter. Case1 is an

example of sudden tapering, and case2 and case3 are examples of gradual tapering.

Case1 has two groups of registers: Group1 and Group2. Group1 registers con-

sist of few most-significant bits and Group2 registers consist of the rest of the less-

significant bits. Let Group1 registers be s times bigger than Group2 registers. Case2

has three groups of registers: Group1, Group2 and Group3. Group2 registers con-

sist of the next few most-significant bits and Group3 registers consist of the rest of the

less-significant bits. Group1 registers are s2 times bigger drive strengths than Group3

registers. Case3 has four groups of registers: Group1, Group2, Group3 and Group4.

Group3 registers consist of the next few most-significant bits and Group4 registers

consist of the rest of the bits. Group1 registers are s3 times bigger drive strengths

than Group4 registers.

5.1.1 Data Path T1D1

Consider case1 for T1D1 where there are two groups of registers: Group1 and Group2.

Group1 registers drive the critical path and Group2 registers drive the non-critical

path. In T1D1 data path, the critical path is the select path through the quotient se-

lection logic. The non-critical path is an add path through one of the four carry-save

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 73

msb lsb………………………………

Group1 Group2

(a) Case1 has two groups of registers: Group1
and Group2. Group1 registers consist of few most-
significant bits and Group2 registers consist of the rest
of the less-significant bits. Let Group1 registers be s
times bigger than Group2 registers.

msb lsb………………

Group1 Group3Group2

(b) Case2 has three groups of registers: Group1,
Group2 and Group3. Group2 registers consist of the
next few most-significant bits and Group3 registers con-
sist of the rest of the less-significant bits.

lsbmsb …

Group1 Group2 Group3 Group4

(c) Case3 has four groups of registers: Group1, Group2,
Group3 and Group4. Group3 registers consist of the
next few most-significant bits and Group4 registers con-
sist of the rest of the bits. Group1 registers are s3 times
bigger drive strengths than Group4 registers.

Fig. 5.1.1: The three cases of tapering the register sizes.

adders. Therefore, Group1 registers consist of the two most-significant bits of rs and

rc and Group2 registers consist of the rest of the less-significant bits of the partial

remainder and the quotient bits.

Figure 5.1.2 shows the register-to-register path for the three most-significant bits

of the partial remainder. A bit at position n is the most-significant bit. In the figure,

the modules with label MAJ and PAR produce majority and parity bits from all five

alternatives, respectively. Figure 5.1.2 shows Group1 bits in red color and Group2

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 74

5:
1
Mu
x

2:
1
Mu
x

X[n] X[n]

X[n-1] X[n]

2:
1

Mu
x

5:
1

Mu
x

PAR

MAJ

X[n-2] X[n-2]
2:

1
Mu

x

5:
1

Mu
x

PAR

MAJ

QSLC

…
…

…

…
…

…

1

4

5

5

5

5
1x1

1x1

1x1

1x1

1x1

1x1

1x1

1x1

1x1

1

4

All five
alternatives

All five
alternatives

5

R2

To LSB
muxes

majority and parity
bits from

n-3 position

5

majority bits
from

n-4 position

Fig. 5.1.2: Data path T1D1: Register-to-register path for the three most-significant bits.

bits in light-green color.

Let the Group1 registers be s times bigger than the Group2 registers. With this

configuration, the branching effort at node R2 of Figure 5.1.2 is

bR2

=
(4 ⇤ C

5:1Mux,g1

) + 328 ⇤ C
5:1Mux,g2

C
5:1Mux,g1

, (5.1.1)

where C
5:1Mux,g1

and C
5:1Mux,g2

are the input capacitances of the 5:1 multiplexers

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 75

in Group1 and Group2 respectively. Because the Group1 registers are s times bigger

than the Group2 registers, C
5:1Mux,g1

= s ⇤ C
5:1Mux,g2

and yields

bR2

= 4 +
328

s
. (5.1.2)

In equation (5.1.2), the first term is the number of multiplexers in Group1 and the

second term is the number of multiplexers in Group2 scaled by s. The path effort of

the select path is

Fsel = 306 ⇤ (4 + 328

s
). (5.1.3)

From Equation (5.1.3), Fsel reduces as s increases. Increasing s comes at the cost of

increasing the path electrical effort of an add path at bit positions n-2 and n-3 of the

partial remainder for the following reasons. The register bits at position n-2 drive the

majority and parity circuits that in turn drive 5:1 multiplexers at position n and n-1,

respectively, in Group1. The register bits at position n-3 drive the majority circuit that

in turn drive the 5:1 multiplexer at position n-1 in Group1. To estimate the delay of an

add path, consider the bit at position n-2.

The path effort of an add path is

Fadd = 1047s. (5.1.4)

Assuming all the bits arrive at the input of the register at the same time, an opti-

mum value for s is when the delay of the select path is the same as the delay of an

add path. Omitting the effects of parasitic delay reduces the complexity of the algebra

considerably and gives a good estimate for the value of s. Consequently,

Fsel = Fadd, (5.1.5)

1047s2 � 1224s � 100368 = 0. (5.1.6)

In Equation (5.1.5), the first term comes from the path effort of an add path, the sec-

ond term comes from the path effort of the select path considering only the Group1

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 76

s vs Delay
De

la
y

in
 F

O
4

8

9.5

11

Select Path
Add Path

0

1

s, ratio of the sizes of Group1 registers to Group2 registers
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

≈

�1

Fig. 5.1.3: Case1: The delay of select and add paths as a function of s. The delay of the
select path decreases as the value of s increases. On the contrary, the delay of an add path
increases as the value of s increases. An optimum value for s is when the delay of the select
and add paths are equal. For case1, s ⇡ 7 and delay of the select path is approximately 9
FO4.

bits and the third constant-term comes from the path effort of the select path consid-

ering the Group2 bits. Solving the quadratic Equation in 5.1.5 gives s ⇡ 10. Using

s = 10, we get 8.7 FO4 for the delay of the select path and 9.4 FO4 for the delay of

the add path. Omitting the effects of parasitic delay results in an overestimated value

for s.

A more accurate estimate for s can be obtained numerically by taking into account

the effects of parasitic delay. Figure 5.1.3 shows the delay of the select and add

paths as a function of s. An optimum value for s is the x-coordinate of the point of

intersection of the two curves. Therefore, s ⇡ 7 and the delay of both select and add

paths are approximately 9 FO4 each.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 77

Case2 has three groups of registers: Group1, Group2 and Group3, where Group2

consists of the third and the fourth most-significant bit registers and Group3 consists

of the rest of the less-significant remainder bits and the quotient bits. Let Group1

registers be s times bigger than Group2 registers and Group2 registers be s1 times

bigger than Group3 registers. For all the bits to arrive at the input of the register bits

at the same time requires that the path effort of the bits in Group2 and Group3 be

the same. Consequently, s = s1 and Group1 registers are s2 times bigger than the

Group3 registers.

The polynomial that represents case2 configuration is

1047s3 � 1224s2 � 1224s � 99144 = 0 (5.1.7)

In Equation 5.1.7, the first term comes from the path effort of an add path and the

second, third and fourth terms come from the path efforts of the select path consider-

ing only the bits in Group1, Group2 and Group3 respectively. Finding a real-positive

root for the polynomial in Equation (5.1.7) gives s ⇡ 5.

Taking the effect of parasitic delay into account and solving for s numerically gives

s ⇡ 4. Figure 5.1.4 shows the plot of add and select paths as a function of s for

the configuration in case2. For s = 4, the delay of the select and add paths are

approximately 8.9 FO4.

Case3 has four groups of registers: Group1, Group2, Group3 and Group4, where

Group3 consists of the fifth and sixth most-significant bit registers and Group4 con-

sists of the rest of the lesser-significant remainder bits and the quotient bits. The

polynomial that represents case3 configuration is

1047s4 � 1224s3 � 1224s2 � 1224s � 97920 = 0. (5.1.8)

Finding a real-positive root for the polynomial in Equation (5.1.8) gives s ⇡ 4.

Taking the effect of parasitic delay into account and solving for s numerically gives

s ⇡ 3. Figure 5.1.5 shows the plot of select and add paths as a function of s for

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 78

s vs Delay
De

la
y

in
 F

O
4

8

9.5

11

Select Path
Add Path

0

1

s, ratio of the sizes of Group1 registers to Group2 registers
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

≈

�1

Fig. 5.1.4: Case2: Delay of the select and add paths as a function of s. An optimum value for
s ⇡ 4 and the delay of the select path is 8.9 FO4.

the configuration in case3. For s = 3, the delay of the select and add paths are

approximately 8.8 FO4.

From Equations (5.1.5), (5.1.7) and (5.1.8), we can see a pattern emerging that

can be generalized for a case with n number of groups as follows:

Fadd ⇤ sn � Fsel ⇤ m ⇤ sn�1

. . . � Fsel ⇤ m ⇤ sn�(n�1)

�Fsel ⇤ (w � m ⇤ (n � 1)) = 0,

(5.1.9)

where m is the number of multiplexers in each group, n is the total number of groups

and w is the total number of multiplexers in the datapath.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 79

s vs Delay
De

la
y

in
 F

O
4

8

9.5

11

Select Path
Add Path

0

1

s, ratio of the sizes of Group1 registers to Group2 registers
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

≈

�1

Fig. 5.1.5: Case3: Delay of the select and add paths as a function of s. An optimum value for
s ⇡ 3 and the delay of the select path is 8.8 FO4.

Table 5.1.1 summarizes the estimated delay for the T1D1 data path considering

each case. From the table, a case with sudden tapering of the register sizes (case1)

yields an improvement of 13% in the delay compared to a case with no tapering at

all (case0). A gradual tapering of the register sizes, case2 and case3, yields a min-

imal improvement to the delay. It is clear that sudden tapering offers the maximum

incremental improvement. Furthermore, gradual tapering requires big registers which

consume more power and area. For example, if 4X is the drive strength of the reg-

isters in less-significant position, then Group1 registers need to be 64X in case2 and

108X in case3. Keeping this in mind, I will now analyze the effect of sudden tapering

on the average delay of the T2D5 data path.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 80

Table 5.1.1: Delay of the data path T1D1 considering four different cases of tapering.

Case Summary Comments

case0 s = 1 and Delay = 10.3 FO4 All the registers are of the same size

case1 s = 7 and Delay = 9.0 FO4 Group1 = 7 x Group2

case2 s = 4 and Delay = 8.9 FO4 Group1 = 16 x Group3

case3 s = 3 and Delay = 8.8 FO4 Group1 = 27 x Group4

5.1.2 Data Path T2D5

This research uses the data path T2D5 in a self-timed divider design. Hence the

objective is to reduce the average-case delay rather than the worst-case delay for the

data path T2D5. The average-case delay of the data path is

Davg = 0.47 ⇤ MAX(Dsel, Dadd)

+ 0.53 ⇤ MAX(Dsel, Dshi f t),
(5.1.10)

where, Dsel, Dadd and Dshi f t are the delays of the select, add and shift paths respec-

tively. From the analysis presented in Section 4.4.2, we know that Dsel = 7FO4,

Dadd = 11FO4 and Dshi f t = 6.6FO4. Therefore,

MAX(Dsel, Dadd) = Dadd = 11 FO4,

MAX(Dsel, Dshi f t) = Dsel = 7 FO4.

(5.1.11)

In the data path T2D5, Dadd and Dsel sets the add and shift periods, respectively.

The objective is to reduce the average-case delay of the data path by reducing the

delay of the select path or add path or both.

First, consider the register configuration in case1 to reduce the delay of the select

path. Case1 has two groups of registers: Group1 and Group2. In the T2D5 data

path, Group1 has six QSLC register bits and two most-significant bits of rs and rc.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 81

Group2 has the rest of the register bits. Let Group1 registers be s times bigger than

the Group2 registers. With this configuration, the path effort of the select path is

Fsel = 12.6 ⇤ (10 +
328

s
). (5.1.12)

An optimum value of s is when the delay of the select and shift paths are the same.

Omitting the effects of parasitic delay, an optimum value for s is approximately 4.

Using s = 4, Dsel = 6.2 FO4 and Dshi f t = 6.6 FO4. The value of s has no effect on

the shift path delay, Dshi f t, because the bits driving the shift path are in Group1.

With s = 4, the branching effort at node R1 of Figure 4.4.4 is

bR1

= 3 +
2.2

s
. (5.1.13)

For s = 4, bR1

⇡ 3.5 which in turn gives an add path delay, Dadd = 10.8 FO4.

Increasing the value of s in Equation (5.1.13) reduces the branching effort at node

R1. The minimum value of bR1

can be 3 which then gives an add path delay of 10.7

FO4. Therefore, there is not much benefit in attempting to find an optimum value

of s considering the add path. Consequently with sudden-tapering configuration, the

average-case delay is Davg ⇡ 8.6FO4. Approximately a 3% reduction in average-

case delay with sudden tapering can be obtained compared to a configuration where

all the register bits are of the same size.

5.2 Glissando

Thus far, we have considered inserting the amplification stages in the select path to

drive all the multiplexers at the same time so that all the bits arrive at the input of the

registers at the same time. What if we relax this constraint by allowing the critical bits

to arrive sooner and the non-critical bits to the arrive later? This relaxed constraint

is the main idea behind the optimization technique called Glissando. Glissando is a

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 82

musical term that refers to a glide from one pitch to another. In the optimization pre-

sented in this section, the critical higher-order bits arrive at the registers first and the

non-critical lower-order bits arrive at the registers gradually late. This action resem-

bles sliding a finger over the keys of a piano creating a Glissando.

The glissando optimization technique minimizes the high capacitance in the select

path by delaying the computation of the lesser-significant bits. Let me explain the

glissando technique with help of T1D1 data path.

5.2.1 Data Path T1D1

Figure 5.2.1 shows the main idea of glissando using the T1D1 data path. In the figure,

there is an amplification stage between two successive groups. Amplification stages

carry label amp in the figure. Typically, an amplification stage is an inverter, but I will

use a buffer as an amplification stage to avoid signal inversions. Let damp be the delay

of an amplification stage. An amplification stage between two successive groups

delays the selection of the less-significant bits by damp. For example, in Figure 5.2.1,

an amplification stage between groups f1 and f2 delays the selection of the less-

significant bits in group f2 by damp. A design with n number of groups has n-1

amplification stages between groups f1 and fn, delaying the selection of the bits in

group fn by (n-1) ⇤ damp.

Inserting amplification stages between the groups reduces the capacitance at the

output of the QSLC module but skews the arrival of the bits at the input of the registers

in the following manner. The bits from groups f1, f2 and fn arrive first, second and

last respectively. To compensate for the skew in the arrival times of the bits, the arrival

times of the clock are also skewed appropriately. The amplifiers carrying the label f

in Figure 5.2.1 serves the purpose of skewing the clock. The clocks, clk1, clk2

. . .clkn have the same clock period, tclk, but with a phase difference equal to the

delay of the f module, df. I will use the term phase group to denote a group of

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 83

dp

2x2
MSBs

5
MSB Bits Group Ø1

Group Ø2

Group Øn

reg

2:
1
Mu
x

5:
1
Mu
x

QSLC

reg

dp
reg

2:
1

Mu
x

5:
1

Mu
x reg

2x2

amp

dp
reg

2:
1

Mu
x

5:
1

Mu
x reg

Ø

Ø

Ø

Ø

amp

clkn clkn

clk2 clk2clk1 clk1

Select1 Path
Select2 Path

Add Path

Fig. 5.2.1: Glissando: Main idea. The figure illustrates the glissando technique for the T1D1
data path. The main idea behind glissando is to delay the selection of the lesser-significant
bits by inserting additional amplification stages for lesser-significant bits.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 84

registers that receive the same clock period and phase. Registers in different phase

groups receive the same clock period but different phase.

In Figure 5.2.1, the module carrying the label dp implements all five alternatives

to update the partial remainder and the quotient. Because of the 2X* operation at the

end of every iteration, there are bits that move from phase group fn to f(n-1). In

Figure 5.2.1, a line from phase group fn to f(n-1) shows the movement of bits from

phase group fn to f(n-1). Because the launching of the bits in phase group fn

is delayed by df, we need to consider the paths originating in phase group fn and

terminating in phase group f(n-1) to estimating the clock period.

reg QSLC 5:1 Mux 2:1
Mux

amp

Ø dp

clk1

clk2

dø

tclk

reg QSLC 5:1 Mux 2:1
Mux

reg 5:1 Mux 2:1
Mux

Select2 Path

Select1 Path

Add Path

Fig. 5.2.2: Timing requirement for the bits in select1, select2 and add paths in Figure 5.2.1

To estimate the clock period, consider the following three paths: select1, select2

and add paths. In Figure 5.2.1, red, orange and blue lines show select1, select2 and

add paths. Figure 5.2.2 shows the launching and capturing clocks for each path. Clk1

launches the bits in select1 and select2 paths, and clk2 launches the bits in the add

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 85

path. Clk1 captures the bits from select1 and add paths, and clk2 captures the bits

from select2 path. The delays of the select1, select2 and add paths are

dsel1 = dreg + dqslc + d
5:1Mux + d

2:1Mux,

dsel2 = dreg + dqslc + damp + d
5:1Mux + d

2:1Mux,

dadd = df + dreg + ddp + d
5:1Mux + d

2:1Mux,

(5.2.1)

where dreq, df, dqslc, d
5:1Mux, d

2:1Mux, and ddp are the delays of register, f, QSLC,

5:1 Multiplexer, 2:1 multiplexer and dp modules respectively.

The clock period, tclk, is

tclk � MAX(dselect1-path, dadd-path) (5.2.2)

and From Section 4.4.1, we know that dreg + ddp + d
5:1Mux + d

2:1Mux = 7.6 FO4.

Therefore,

dadd = (df + 7.6) FO4 (5.2.3)

Setting df = 0 in Equation (5.2.3) takes us back to the assumption that all the bits

are launched and captured at the same time resulting in dqslc >> ddp.

The expressions in (5.2.1) present the following challenges. On the one hand, if

each phase group has as few as four multiplexers, then the total number of phase

groups required for a divider with 332 multiplexers is 81. Managing 81 phase groups

is cumbersome. On the other hand, adding more multiplexers in each group increases

the delay of the amplifier, damp, resulting in an increased clock period. So the objec-

tive is to find an optimum number of phase groups and the number of bits per phase

group that will minimize the clock period.

To estimate the clock period, we need to find a value for df and dsel1. Assuming

df = damp, we can estimate df by subtracting dsel1 from dsel2. The delays, dsel1 and

dsel2, depend on how the bits are distributed across different phase groups.

Lets us consider Figure 5.2.3 to estimate dsel1 and dsel2. The figure shows a

simpler model of the select paths with n number of phase groups. Let phase-group

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 86

QSLC
2x2 MSBs

amp amp amp

m1 muxes
in Group Ø1

m2 muxes
in Group Ø2

m3 muxes
in Group Ø3

mn muxes
in Group Øn

5 5 5 5

2R1 3 n

Fig. 5.2.3: A Simple model for the select path

f1 contain m
1

bits, phase-group f2 contain m
2

bits and so on. The total capacitance

at node R1 is

CR1

= m
1

⇤ C
5:1Mux +

m
2

⇤ C
5:1Mux

f 2

+
m

3

⇤ C
5:1Mux

(f 2)2

+ . . . +
mn ⇤ C

5:1Mux
(f 2)n�1

,

(5.2.4)

where f is the stage effort and f = 4 is a good choice. To estimate dsel1 and dsel2, I

make the following two assumptions:

1. The phase-group f1 contains the minimum number of bits required to compute

the the select signals for the next cycle, that is, m
1

= 4.

2. The number of bits in each phase group increase in a geometric progression,

that is,
m

2

m
1

=
m

3

m
2

= . . .

mn
mn�1

= r, (5.2.5)

where r is the common ratio.

Figure 5.2.4 shows the delay dsel2 as a function of the number of phase groups

and each data point represents delay for different values of r for r > 1. The figure

also shows the two choices for distributing the bits across different phase groups.

Choosing series1 results in three phase groups with m
1

= 4, m
2

= 36, and m
3

=

290. I chose series2 that results in four phase groups with m
1

= 4, m
2

= 16,

m
3

= 64, and m
4

= 248 (remaining bits). For this configuration of bit distribution,

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 87

dsel2 = 9.3 FO4 and dsel1 = 7.4 FO4. Consequently, df = damp = 1.8 FO4.

Using df = 1.8 FO4 in Equation 5.2.3 and substituting the values of dsel1 and dadd in

Equation 5.2.1 results in tclk � 9.4 FO4.

Number of Phase Groups vs Delay

De
la

y
in

 F
O

4

9.1

9.3

9.5

9.7

9.9

10.1

10.3

Delay for different common ratio, r

Series1 = [4, 36, 290]

Series2 = [4, 16, 64, 256, 56]

≈

Total Number of Phase Groups
0 1 2 3 4 5 6 7 8

0

r = 2
r = 3

r = 4

r = 8r = 9

�1

Fig. 5.2.4: Delay of the select2 path as a function of the number of phase groups for the T1D1
data path. Different data point represents different value for the common ratio, r.

5.2.2 Data Path T2D5

For the T2D5 data path, we need to estimate two different clock-periods: shift and

add periods. Shift period is for selecting the result from the shift-only operation and

add period is for selecting the result from an add operation. Let tshi f t and tadd denote

the shift and add periods respectively.

Figure 5.2.5 shows the paths that we need to consider to estimate tshi f t. We need

to consider the following four paths: select1, select2, shift1 and shift2 paths. The four

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 88

paths are color coded. Figure 5.2.5 shows select1, select2, shift1 and shift2 paths

with red, orange, green and blue lines. In the figure, clk1 and clk2 have the same

shift-period but clk2 is delayed by df.

qslc
reg

rem
reg

2:
1

Mu
x

QSLC

rem
reg

qslc
reg

2:
1

Mu
x

rem
reg

amp

2:
1

Mu
x

2X*

2:
1

Mu
x

rem
reg

2:
1

Mu
x

2:
1

Mu
x

2X

to
add path

from
add path

from
add path

from
add path

amp

ØØ

to
add path

clk2clk1 clk2clk1

from Group Ø3 to Group Ø3

2
4

6

2x2

2x2
MSBs

Group Ø2

Group Ø1MSB Bits

Select1 Path
Select2 Path

Shift1 Path
Shift2 Path

Fig. 5.2.5: The select and shift paths for the T2D5 data path with the glissando technique.

Timing diagram in Figure 5.2.6 shows the launching and capturing clocks asso-

ciated with each path. Clk1 launches the bits in select1, select2 and shift1 paths,

and clk2 launches the bits for the shift2 path. Clk1 captures the bits from the select1,

shift1 and shift2 paths, and clk2 captures the bits from the select2 path. The delays

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 89

reg 2:1 Muxamp

Ø

clk1

clk2

dø

tshift

reg QSLC 2:1 Mux

reg 2:1 Mux

Select2 Path

Select1 Path

Shift1 Path

2:1 Mux

2:1 Mux

2:1 Mux

reg 2:1 Muxamp 2:1 Muxamp

Shift2 Path

Fig. 5.2.6: Timing requirement for the bits in select and shift paths in Figure 5.2.5.

of select1, select2, shift1 and shift2 paths are calculated as follows:

dselect1-path = dreg + damp + d
2:1Mux + d

2:1Mux,

dshi f t1-path = dreg + dqslc + d
2:1Mux + d

2:1Mux,

dshi f t2-path = df + dreg + d
2:1Mux + d

2:1Mux,

dselect2-path = dreg + damp + damp + d
2:1Mux + d

2:1Mux.

(5.2.6)

The shift-period, tshi f t, is

tshi f t � MAX(dsel1, dshi f t1, dshi f t2) (5.2.7)

From Section 4.4.2, we know that dshi f t1 = 6.6FO4 and dshi f t2 = df + 4.9 FO4.

Assuming f = damp, we can estimate damp by subtracting dsel1 from dsel2. The

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 90

delays, dsel1 and dsel2, depend on how the bits are distributed across different phase

groups.

Figure 5.2.7 shows a plot of delay dsel2 as a function of number of phase groups.

Choosing a configuration with 10, 40, 160 and 128 bits in groups f1, f2, f3, and f4

gives dsel2 = 6.7 FO4 and dsel1 = 4.8 FO4 resulting in damp = df = 1.9 FO4. The

value of damp is the same for different configurations of bit distribution. Substituting

the values of dsel1, dshi f t1 and dshi f t2 in Equation (5.2.7) yields tshi f t � 6.8FO4.

Number of Phase Groups vs Delay

De
la

y
in

 F
O

4

6.50

6.68

6.85

7.03

7.20

Delay for different common ratios, r

Total Number of Phase Groups
0 1 2 3 4 5 6 7

Series1 = [10, 40, 160, 128]

r = 2
r = 3
r = 4
r = 5

≈

0

�1

Fig. 5.2.7: Delay of select2 path as function of total number of phase groups for the T2D5
data path. Different data point represents different value for common ratio, r.

To estimate the add period, consider Figure 5.2.8 and the following two add paths:

add1 and add2 paths. Figure 5.2.8 shows add1 and add2 paths with red and blue

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 91

lines. The delays of add1 and add2 paths are calculated as follows:

dadd1

= dreg + d
4:1Mux + dcsa + dqslc + d

2:1Mux + d
2:1Mux,

dadd2

= df + dreg + dcsa + dqslc + d
2:1Mux + d

2:1Mux.

(5.2.8)

qslc
reg

rem
reg

2:
1
Mu
x

QSLC

rem
reg

qslc
reg

2:
1
Mu
x

rem
reg

2:
1

Mu
x

2:
1

Mu
x

rem
reg

2:
1

Mu
x

2:
1

Mu
x

ØØ clk2clk1 clk2clk1

from
Group Ø3

to
Group Ø3

4:
1

Mu
x

CSA &
2X*

4:
1

Mu
x

CSA &
2X*

amp

2x2
MSBs

6
64

MSB Bits Group Ø1

Group Ø2

Add1 Path
Add2 Path

Fig. 5.2.8: The add paths for the T2D5 data path with the glissando technique.

The add period, tadd, is

tadd � MAX(dadd1

, dadd2

). (5.2.9)

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 92

Using the configuration [10, 40, 160, 128], dadd1

= 10.7 FO4 and df = 1.9 FO4.

From Section 4.4.2, we know that dadd2

= df + 8.6 FO4 = 10.5 FO4. Consequently,

tadd � 10.7FO4.

5.3 Determining A Race Condition in Glissando

In glissando, we need to examine for race conditions, that is, can the select signals

for the multiplexers generated in ith clock cycle can override the select signals gener-

ated in (i-1)th cycle?. For example, in T1D1 data path, race occurs if the following

condition holds true

dqslc�wc � tclk + dqslc�bc, (5.3.1)

where dqslc�wc and dqslc�bc are the worst and best case delays of the QSLC module

associated with certain input patterns and transitions. Static timing analysis tools

take input transitions into account when estimating the delay, but fail to consider input

patterns. A dynamic simulation of the QSLC with different input patterns may be

necessary.

Alternatively, we can guarantee that no race occurs if we can guarantee that the

QSLC signals produced during i-1 cycle arrive at a multiplexer in the least-significant

bit position before the ith cycle begins. This condition translates to a limit on the

number of phase groups as follows:

number of phase groups  tclk
f

. (5.3.2)

For the T1D1 data path, the number of phase groups should be less than five, we

have four phase groups. For the T2D5 data path, we have to consider shift and add

periods separately. For tclk = tadd, the number of phase groups should less than six.

For tclk = tshi f t, the number of phase groups should less than four. Currently there

are four phase groups in the T2D5 data path.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 93

5.4 Comparison of Optimization Techniques

Tables 5.4.1 and 5.4.2 compare the two optimization techniques presented in this

chapter for the delay per iteration for the data paths T1D1 and T2D5, respectively.

The delay estimates are from a static-timing analysis tool after synthesizing the two

data paths using a TSMC 40nm standard cell library. In the tables, the comparison of

optimization techniques is with respect to a design without any optimization.

For the data path T1D1, optimizing the register sizes reduces the delay per it-

eration by 11%. A design with glissando optimization alone reduces the delay per

iteration by 9%. Combining the sizing and glissando optimizations reduces the delay

per iteration of the data path by 15%.

Table 5.4.1: Data path T1D1: Comparison of the optimization techniques presented in this
chapter. The delay estimates are from a static-timing analysis tool.

Optimization Technique
Delay per

Iteration in ps
Improvement

in %

No Optimization 247

Bigger-sized MSBs 220 11

Glissando 225 9

Glissando with
bigger-sized MSBs

210 15

For the data path T2D5, optimizing the register sizes reduces the average-case

delay by 3%. Combining glissando with sizing optimizations reduces the average-

case delay by 13%. In the data path T2D5, the two 2:1 multiplexers in sequence can

be merged together to form one 3:1 multiplexer. Merging the two 2:1 multiplexers

in addition to glissando and sizing optimizations reduces the average-case delay by

23%.

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 94

Table 5.4.2: Data path T2D5: Comparison of the optimization techniques presented in this
chapter. The delay estimates are from a static-timing analysis tool.

Optimization
Technique

Add Delay
in ps

Shift Delay
in ps

Weighted
Average in ps

Improvement
in %

No Optimization 262 209 237

Bigger-sized
MSBs

249 208 230 3

Glissando with
bigger-sized

MSBs
245 165 207 13

Glissando with
bigger-sized

MSBs and Mux
optimization

220 140 182 23

5.5 Summary of Optimization Techniques

In this chapter, I presented two optimization techniques to reduce the delay of the

data paths. Commercial synthesis tools such as Design Compiler, RTL Compiler

etc implement register sizing optimization. The tools will choose an appropriate size

of a register from a given standard cell library to meet a given timing, power and

area constraints. A designer can use the sizing analysis presented in this chapter to

either add gates with bigger drive strengths to the standard-cell library to achieve a

certain amount of improvement or estimate how much improvement is possible with

the given standard-cell library. Typically, adding more gates to a standard-cell library

is a feedback to the standard-cell library developer and can potentially increase the

design cycle- time.

The glissando optimization technique offers a different way to think about the high

fanout problem. Compute the bits that are necessary for the very next iteration im-

CHAPTER 5. DESIGN OPTIMIZATION TECHNIQUES 95

mediately and the bits that are less important can come later. Without glissando, the

select path sets the clock period for a synchronous design and the shift period for a

self-timed design. With the glissando technique an add or shift path sets the clock pe-

riod for a synchronous design, and the add and shift periods for a self-timed design.

What this means is that increasing the operand word-size will have no or little effect on

the clock, add or shift periods. Increasing the word-size simply means adding more

phase groups. For example, a 1024-bit divider for a 1024-bit RSA crypto-system has

approximately 6k bits. A divider implementing the glissando optimization will have

about 8 phase groups. I suspect that at some point wire-capacitance will limit the

number of bits per group.

The next chapter presents a physical design for synchronous and self-timed di-

viders.

CHAPTER 6. DESIGN IMPLEMENTATIONS 96

6

Design Implementations

In this chapter, I present the design flows used to implement the synchronous and self-

timed divider designs, the control path for the self-timed design and timing constraints

for the control path. The control path design presented in this chapter can be extended

to any data path implementing an if-then-else conditional statement.

Figure 6.0.1 shows the divider pipeline implemented in this research for both the

synchronous and self-timed designs. There are two major differences between the

synchronous and self-timed designs. First, the recDP module implements the data

path T1D1 for the synchronous design and data path T2D5 for the self-timed design.

Second, the control path in Figure 6.0.1 has a single clock that drives all the registers

in different stages of the pipeline for the synchronous design. A clock-tree network

amplifies the clock signal. Typically, a phase-lock loop (PLL) circuit generates a clock.

Design of PLL is out-of-the-scope of this research. The control path for the self-timed

design has a network of self-timed modules that generate synchronization pulses for

each stage in a pipeline. To avoid confusion with the synchronous clock, f ire is

used to denote the synchronization pulses in the self-timed design. In the self-timed

design, the control path consists of GasP circuits that generate f ire signals only when

required, unlike a clock that is always ON. The self-timed designs also require a buffer-

CHAPTER 6. DESIGN IMPLEMENTATIONS 97

tree to amplify the f ire signal, but the tree distribution is on a per stage basis rather

than per pipeline basis as in the case of synchronous designs.

Both the synchronous and self-timed designs implement the glissando optimiza-

tion technique along with appropriately sizing the register bits.

Rx
Reg

Rec
Reg

Tx
Reginit RecDP

Input
Operands

to post
processing

Control Path

from
FIFO-A

to
FIFO-B

Data Path

Fig. 6.0.1: Divider Pipeline: For the synchronous design, the recDP module implements the
data path T1D1 and for the self-timed design, the recDP module implements the data path
T2D5. The control path for the synchronous design is a clock-tree network that a single
clock source drives. The control path for the self-timed design consists of GasP modules that
produce pulses called f ire pulses only when required. The self-timed control path produces
three f ire signals, one each for the three registers in the data path.

6.1 Design Flow

Figure 6.1.1 shows the design flow used in this research to implement the syn-

chronous and self-timed divider designs. This research uses two design flows, one for

data path and the other for control path. The synchronous divider uses only the data-

path design flow but the self-timed divider uses both the design flows. A standard-cell

based design flow implements the data paths for synchronous and self-timed dividers

and the custom design flow implements the control path for the self-timed design flow.

CHAPTER 6. DESIGN IMPLEMENTATIONS 98

RTL

Synthesis

Place and
Route

DRC and
LVS

Spice-Level
Timing Check

Margin
Analysis

Extracted
Netlist

Data Path

Control Path

Schematic

Layout

DRC and LVS

Extracted
Netlist

Fig. 6.1.1: Design flow to implement synchronous and self-timed dividers. The data path
implementation uses a standard-cell based design flow and the control path implementation
uses a custom design flow.

The standard-cell based flow begins with an RTL description of the divider. The

RTL description is a structured verilog code. The synthesis tool maps the verilog

description to the gates in a standard size library and performs gate sizing. The syn-

thesized netlist is then given to the place-and-route tool. The place-and-route tool

performs floor planning, cell placement, clock-tree synthesis and routing. To imple-

ment the glissando optimization technique, the clock-tree synthesis tool can be guided

to insert amplifiers in the clock-tree or buffer-tree to appropriately delay the clock for

different groups of bits.

CHAPTER 6. DESIGN IMPLEMENTATIONS 99

The custom design flow begins with a schematic of the control path for the self-

timed divider. Gate sizing and the layout of the control path is done manually to

match the delays in the control path with the appropriate delays in the data path. The

next section presents the design of the control path for the self-timed divider and a

discussion on various timing constraints for the control path appears in Section 6.3.

6.2 Control Path

Figure 6.2.1 shows an overview of the control path for the self-timed divider. The

control path consists of five modules: Rx, Capture, kc, Timing and Tx. These GasP

modules generate pulses to enable the proper registers at appropriate times. These

pulses are called f ire pulses. In the Figure 6.2.1, the signals f ireRx, f ireRec and

f ireTx are the f ire pulses and drive the registers RxReg, RecReg and TxReg in the

data path (see Fig. 6.0.1), respectively. To take advantage of the faster-shift only

operation in the data path, the period of the f ireRec signal must modulate according

to the shift-only and add operations in the data path. For this purpose the period of the

f ireRec signal is normally set for the shift-only operation and the period is increased

for an add operation.

The following is a brief description on the behavior of the control path. Circuit

details of the modules are discussed in Section 6.2.2. The control path has two loops:

an inner and outer loops. The Rx and Tx modules form the outer loop. The Rx

module receives a request for a division operation from FIFO-A and initiates a new

division operation when the previous division operation completes. Upon completion

of a division operation, the Tx module sends the result to FIFO-B for further post

processing and informs the completion of the division to the Rx module.

The Capture module along with Timing and kc modules form the inner loop. The

inner loop is active for i number of iterations, where i is the number of quotient bits

CHAPTER 6. DESIGN IMPLEMENTATIONS 100

Ca
pt

ur
e

Ti
m

in
g

kc

su
cc

[a
dd

][s
w]

su
cc

[sh
ift

][s
w]

pr
ed

[a
dd

][s
w]

pr
ed

[sh
ift

][s
w]

re
q_

dn
1[

sw
]

Rx

em
pt

y[s
w]

lo
ad

[sw
]

do
ne

[sw
]

su
cc

[st
ar

t][
sw

]

fir
eR

ec
fir

eR
x

fir
eT

x

da
ta

[a
dd

, s
hi

ft]

Tx

no
t_

em
pt

y[s
w]

se
nd

[sw
]

re
ce

ive
[sw

]
fe

tc
h[

sw
]

to
 d

at
ap

at
h

fro
m

 d
at

ap
at

h

fro
m

FIF

O-
A

to

FIF
O-

B

Fig. 6.2.1: Control path for the self-timed divider. The control path has two loops: an inner
and outer loops. The Rx and Tx modules form the outer loop. The Capture module along with
Timing and kc modules form the inner loop. The outer loop initiates a new division operation
and the inner loop performs L + 4 number of iterations, where L = 52 and L = 23 for IEEE
754 double and single precision formats.

CHAPTER 6. DESIGN IMPLEMENTATIONS 101

to accumulate. The Capture module receives two data bits, data[add, shift],

from the data path informing if the next iteration is an add operation or a shift-only

operation. The Capture module encodes this information in pred[add][sw] and

pred[shift][sw] wires. The Timing module then produces an appropriate delay

for an add operation. The kc module is a down counter and keeps track of the number

of iterations performed. A count value of zero terminates the inner loop. The wires

succ[start, shift, add][sw] drive the select inputs of the three-input multiplex-

ers in the data path.

The pseudo-code in Algorithm 1 describes the behavior of the control path.

1 if request[sw] & done[sw] then
2 i := L+4;
3 do
4 if add then
5 fireRec period = add period;
6 else
7 fireRec period = shift period;
8 end
9 i = i-1;

10 while i>0;
11 else
12 wait for request[sw] & done[sw];
13 end

Algorithm 1: Statements that the self-timed control path executes.

6.2.1 GasP

The control path for the self-timed divider uses a network of GasP modules. Suther-

land and Fairbanks first introduced the GasP circuit family in [35]. Figure 6.2.2 shows

the circuit of a simple GasP module. The pred[sw] and succ[sw] are implemented

as a tri-state wire with half keepers. A tri-state wire is a wire that can be either “driven

HI”, “driven LO”, or “undriven”. In the undriven state, the keeper keeps the previous

CHAPTER 6. DESIGN IMPLEMENTATIONS 102

state of the wire. For this reason, wires pred[sw] and succ[sw] are also called state

wires. When the GasP modules are connected in a pipeline, the pred[sw] state wire

connects to a predecessor stage and the succ[sw] connects to a successor stage.

In Figure 6.2.1 all the state wires have names that end with [sw].

The divider’s control path follows the HI means FULL and LO means EMPTY

convention for the state wires. FULL and EMPTY also means request and acknowl-

edgment respectively. During the operation, when the state wire pred[sw] becomes

HI and the state wire succ[sw] becomes LO, the GasP circuit produces a brief f ire

pulse. The f ire pulse performs the following three actions:

• Copies the data from input to output of the registers.

• Turns on the NMOS transistor driving the pred[sw] state wire LO, sending an

acknowledge to the predecessor stage.

• Turns on the PMOS transistor driving the succ[sw] state wire HI, sending a

request to the successor stage.

For the GasP circuits to work properly, all transistors must be sized such that each

gate has about the same delay [36]. When properly sized, we can express the delay

in terms of “gate delays”. A gate delay is about 1 FO4 delay.

Figure 6.2.3 shows a timing diagram for the GasP module in Figure 6.2.2. For-

ward latency is the minimum time that a GasP module takes to pass the request to the

next stage. Reverse latency is the minimum time that a GasP module takes to pass

the acknowledgment to the previous stage. Cycle time is the minimum time that a

GasP module takes to process the next request. The GasP module described in Fig-

ure 6.2.2 has forward and reverse latencies of six and four gate delays, respectively.

Hence, the GasP module in the figure is also called 6-4 GasP module. A 6-4 GasP

module has a cycle time of ten gate delays. Self-timed designs often use forward

latency, reverse latency and cycle time to characterize the performance of pipelines.

CHAPTER 6. DESIGN IMPLEMENTATIONS 103

Rec
Reg

half
keeper

half
keeper

fire

pred[sw] succ[sw]

Reg
n n

In Out

Fig. 6.2.2: A 6-4 GasP Module. The signals pred[sw] and succ[sw] are the state wires.
The GasP circuit produces a brief pulse on the f ire signal. The f ire signal is usually con-
nected to the registers in the data path. A pulse on the f ire signal does three things: copies
the data from the input of the register to the output, drives the pred[sw] LO and succ[sw]
HI. A HI on the state wire is a request to process the data along with an indication of the
validity of the data in the data path. A 6-4 GasP module has forward and reverse latencies of
six and four gate delays, respectively.

CHAPTER 6. DESIGN IMPLEMENTATIONS 104

cycle time

reverse latencyforward latency

fire

pred[sw]

succ[sw]

= 1 gate delay

Fig. 6.2.3: Timing diagram of the signals in the 6-4 GasP module in Figure 6.2.2. A 6-4 GasP
module has forward and reverse latencies of six and four gate delays respectively, and a cycle
time of ten gate delays.

CHAPTER 6. DESIGN IMPLEMENTATIONS 105

6.2.2 Control Path Modules

Figure 6.2.4 shows the circuit for the Rx module. The figure omits the state wire keep-

ers. The Rx module produces a pulse on the f ireRx signal when both receive[sw]

and done[sw] state wires are HI and both load[sw] and start[sw] state wires are

LO. The start[sw] state wire connects to the Capture module and the load[sw]

state wire connects to the counter module. A HI on the load[sw] state wire initializes

the count value to L+4, where L=52 for double-precision and 23 for single-precision.

receive[sw]

done[sw]

load[sw]

start[sw]

fireRx

Fig. 6.2.4: The Rx module produces a pulse on the f ireRx signal when both receive[sw]
and done[sw] state wires are HI, and both start[sw] and load[sw] state wires are LO.

Figure 6.2.5 shows the circuit for the Tx module. The Tx module produces a

pulse on the f ireTx signal when fetch[sw] state wire is HI and both send[sw]

and done[sw] state wires are LO. The input state wire, fetch[sw], comes from the

Capture module. The output state wires, send[sw] and done[sw], connect to a

stage in FIFO-B and the Rx module respectively.

CHAPTER 6. DESIGN IMPLEMENTATIONS 106

fetch[sw]
done[sw]

fireTx

send[sw]

Fig. 6.2.5: The Tx module produces a pulse on the f ireTx signal when fetch[sw] is HI and
send[sw] and done[sw] are LO.

Figure 6.2.6 shows the circuit for the Capture module. The Capture module

has five input state wires, four output state wires and two bits of data input. The

five input state wires are: pred[add][sw], pred[shift][sw], pred[start][sw],

not_empty[sw] and empty[sw]. The pred[start][sw] input comes from the Rx

module. A HI on pred[start][sw] indicates the beginning of the new division op-

eration. The pred[add][sw] and pred[shift][sw] indicate if the current iteration

is an add or a shift-only operation. The three state wires, pred[start, shift,

add][sw], are mutually exclusive.

The state wires, not_empty[sw] and empty[sw], come from the counter module

and are also mutually exclusive. The counter design is based on the design described

in [11]. The design details of the counter are in Appendix D. A HI on not_empty[sw]

denotes a non-zero value in the counter, indicating that the control path has yet to

complete L+4 iterations. A HI on empty[sw] denotes that the counter’s value is

zero, indicating the completion of L+4 iterations. Thus, the gates in the upper part

CHAPTER 6. DESIGN IMPLEMENTATIONS 107

of the schematic (Fig.6.2.6) are active for L+4 iterations performing the following four

actions:

• Generates a f ire pulse to copy the data from the input of the RecReg register

to the output of the register in the data path.

• Captures the two data bits, data[add] and data[shift] from the data path

to appropriately set the state of the output state wires succ[add][sw] and

succ[shift][sw].

• Sets the output state wire req_dn1[sw] HI to request the counter to decrement

by 1.

• Drives the four input state wires connected to the upper part LO. The output

state wires succ[add][sw] and succ[shift][sw] connect to the Timing

module.

For the one iteration the empty[sw] state-wire is HI, the Capture module simply

requests the Tx stage to fetch the result by setting the fetch[sw] state-wire HI.

Figure 6.2.7 shows the circuit for the Timing module. The input state wires,

pred[add][sw] and pred[shift][sw], come from the output of the Capture mod-

ule. The output state wires, succ[add][sw] and succ[shift][sw], connect to the

input of the Capture module. The cell with label delay implements the additional

delay required to capture the result from an add operation in the data path. A string

of buffers can implement this delay cell.

It is important to note that for correct operation, there must be at least two latches

or a flip-flop in a loop. The recurrence loop in the data path has a flipflop. In the

control path, we can think of a state wire connection between two GasP modules as

a simple latch. The Capture and Timing modules together form two latches, and

Capture and kc modules together also form two latches.

CHAPTER 6. DESIGN IMPLEMENTATIONS 108

da
ta
[sh
ift
]

da
ta
[a
dd
]

su
cc
[a
dd
][s
w]

su
cc
[sh
ift
][s
w]

re
q_
dn
1[
sw
]

fir
eR
ec fir
eR
ec

em
pt
y[s
w]

pr
ed
[st
ar
t][
sw
]

pr
ed
[a
dd
][s
w]

pr
ed
[sh
ift
][s
w]

no
t_
em
pt
y[s
w]

fe
tc
h[
sw
]

fir
eR
ec
A

Fig. 6.2.6: The Capture module captures the data[add] and data[shift] signals from
the datapath accordingly sets the state wires succ[add][sw] or succ[shift][sw] HI.
State wires succ[add][sw] and succ[shift][sw] are mutually exclusive. Similarly, pred-
[add][sw], pred[succ][sw] and pred[start][sw] are also mutually exclusive.

CHAPTER 6. DESIGN IMPLEMENTATIONS 109

delay

pred[add][sw]

pred[shift][sw]

succ[add][sw]

succ[shift][sw]

Fig. 6.2.7: The Timing module generates the necessary timing delay for the add period. The
add period is the shift period plus some delay. A chain of buffers implements the delay
module.

6.3 Timing Constraints

The control path must satisfy a set of timing constraints to ensure correct operation of

the circuit. There are two sets of timing constraints. The first set of timing constraints

ensure that there are no drive conflicts at the state wires and the second set of con-

straints satisfy setup and hold times in the data path. Drive conflicts lasting for longer

duration of time at the state wire can potentially result in the creation of an invalid

request or erroneously acknowledging an existing token causing incorrect behavior.

Setup and hold time violations cause functional failure.

First consider the set of timing constraints to avoid drive conflicts on the state

wires. In the divider control path, the important state wires to consider are succ-

CHAPTER 6. DESIGN IMPLEMENTATIONS 110

[start,shift,add][sw], pred[add,shift][sw] and fetch[sw]. Consider Fig-

ure 6.3.1 to derive timing constraints to avoid drive conflict on succ[start][sw].

The succ[start][sw] connects to Rx and Capture modules. The figure omits the

state-wire keepers and the gates in the Capture module that drive other state wires.

In general, the GasP circuits have two loops, predecessor and successor loops. A

loop with minimum delay sets the pulse width of the f ire signals. In Figure 6.3.1, the

green and red lines show the predecessor and successor loops of the Rx module,

and the blue line shows the predecessor loop of the Capture module. The drive con-

flict on succ[start][sw] occurs when f ireRx signal drives succ[start][sw] HI

and f ireRec signal drives succ[start][sw] LO. We have to consider the following

two cases to derive constraints to avoid the drive conflicts: source and sink limited

cases. In a source limited case the Capture module waits for succ[start][sw] to

go HI and in a sink limited case the Rx module waits for succ[start][sw] to go LO.

Following are the constraints:

• In the source limited case, the pulse width of the f ireRx signal driving a state

wire HI should be less than or equal to the delay of the predecessor loop that

drives the state wires LO. Consequently,

MIN(dpredRx, dsuccRx)  dpredB, (6.3.1)

where dpredRx and dsuccRx are the delays of the predRx and succRx loops of the

Rx module, and dpredB is the delay of the predB loop of the Capture module.

• In the sink limited case, the pulse width of the f ireRec signal driving a state

wire LO should be less than or equal to the delay of the successor loop that

drives the state wire HI. Consequently,

MIN(dpredB, dsucc)  dsuccRx, (6.3.2)

where dsucc is the delay of the successor loop of the Capture module.

CHAPTER 6. DESIGN IMPLEMENTATIONS 111

In the divider implementation, the sink limited case never occurs because the AND

gate at the input of the Rx module blocks the new request to progress until the cur-

rent division operation is completed. We can guarantee that by the time the division

operation is complete, the Capture module will have drained the succ[start][sw]

state wire. Nevertheless, the condition in Equation (6.3.3) satisfies the constraints in

Equations (6.3.1) and (6.3.2).

MIN(dpredRx, dsuccRx) = MIN(dpredB, dsucc). (6.3.3)

If all the gates in the Rx and Capture modules are sized to have equal delays, then

MIN(dpredRx, dsuccRx) = MIN(dpredCapture, dsuccCapture) = 7 gate delays.

fireRx fireRec
Rx Capture

succ[start][sw]

predRx
loop

succRx
 loop

predB
loop

Fig. 6.3.1: The drive conflict on succ[start][sw] wire occurs when both f ireRx and
f ireRec signal drive the state wire to opposite states. To avoid the drive conflict, the mini-
mum delays of the predRx and succRx loops of the Rx module must be less than or equal to
the delay of the predB loop of the Capture module.

Similarly, considering Figures 6.3.2 and 6.3.3 we can derive constraints to avoid

drive fights on state wires succ[add][sw], succ[shift][sw], pred[add][sw],

pred[shift][sw] and fetch[sw]. Equations (6.3.4), (6.3.5) and (6.3.6) give the

CHAPTER 6. DESIGN IMPLEMENTATIONS 112

constraints. In Equations (6.3.4) and (6.3.5), dpredA, dpredB, dsucc are the delays of

the predA, predB and succ loops of the Capture module respectively, and dpred_add,

dpred_shi f t, dsucc_add, and dsucc_shi f t are the delays of pred_add, pred_shift, succ_add

and succ_shift loops in the Timing module. In Equation (6.3.6), dpred_empty and

dpredTx are the delays of the pred_empty and predTx loop in Capture and Tx mod-

ules respectively.

• For pred[add][sw] and succ[add][sw] state wires,

MIN(dpredA, dpredB, dsucc) = MIN(dpred_add, dsucc_add). (6.3.4)

• For pred[shift][sw] and succ[shift][sw] state wires,

MIN(dpredA, dpredB, dsucc) = MIN(dpred_shi f t, dsucc_shi f t). (6.3.5)

• For the fetch[sw] state wire,

dpred_empty  dpredTx. (6.3.6)

If the gates in the Capture, Timing and Tx modules are sized to have equal

delays then the control path satisfies the constraints to avoid drive conflicts. In the

actual design there may be drive conflicts that may last for a few picoseconds. This is

acceptable as long as the correct driver wins the conflict.

CHAPTER 6. DESIGN IMPLEMENTATIONS 113

delay

fireRec
Capture

Timing

predA
loop

succ
loop

pred_add
loop

pred_shift
loop

succ_add
loop

succ_shift
loop

su
cc
[a
dd
][s
w
]

su
cc
[s
hi
ft
][s
w
]

not_empty[sw]

pr
ed
[a
dd
][s
w
]

pr
ed
[s
hi
ft
][s
w
]

predB
loop

Fig. 6.3.2: To avoid the drive conflicts on succ[add][sw], succ[shift][sw],
pred[add][sw] and pred[shift][sw] state wires, the minimum delay of the three loops
in the Capture module should be equal to the minimum delay of the two loops in the Timing
module for the corresponding state wire as described in Equations (6.3.4) and (6.3.5).

CHAPTER 6. DESIGN IMPLEMENTATIONS 114

fetch[sw]
empty[sw]

done[sw]
send[sw]

pred_empty
loop

predTx
loop

succTx
loop

fireTx
TxCapture

Fig. 6.3.3: To avoid drive conflicts on fetch[sw] state wire, the delay of the pred_empty
loop in the Capture module should be less than or equal to the delay of the predTx loop in
the Tx module.

Now let us consider the timing constraints to match the delays in the data path,

which in turn translate to constraints to satisfy the setup and hold times for the regis-

ters. It is important to note that the registers in the data path are flip-flop based rather

than latches. The setup and hold time violations result in functional failure. The Equa-

tions (6.3.7) to (6.3.14) give the constraints to satisfy the setup and hold times. In the

equations, " and # denote a rising and falling transitions respectively, the function d()

denotes the time separation between two signal transitions, i is the iteration index, d

with subscript denotes the delay of the module in the subscript and dsetup is the setup

time of the flip-flop.

The Equations (6.3.7) to (6.3.10) give the constraints for the paths that are launched

and captured by f ire pulses. The delay of a register is the delay from the clock-to-q

delay.

d(f ireRx ", f ireRec ") � dRxReg + dinit + d
3:1Mux + dsetup. (6.3.7)

CHAPTER 6. DESIGN IMPLEMENTATIONS 115

d(f ireReci ", f ireReci+1

") � dRecReg + dshi f t�path + d
3:1Mux + dsetup. (6.3.8)

d(f ireReci ", f ireReci+1

") � dRecReg + dadd�path + d
3:1Mux + dsetup. (6.3.9)

d(f ireRec ", f ireTx ") � dRecReg + damp + dsetup. (6.3.10)

The three state wires, succ[start,add,shift][sw], drive the select input of

the 3:1 multiplexers. If the select inputs arrive last, then we have to consider the

paths that are launched by the state wires and captured by the f ireRec pulse and the

equations in (6.3.11) give the constraints for such paths.

d(succ[start][sw] ", f ireRec ") � d
3:1Mux + dsetup.

d(succ[add][sw] ", f ireRec ") � d
3:1Mux + dsetup.

d(succ[shi f t][sw] ", f ireRec ") � d
3:1Mux + dsetup.

(6.3.11)

Every path in the data path must go through at least a 3:1 multiplexer or an am-

plification stage. As long as the sum of the delays of a flip-flop and 3:1 multiplexer or

sum of the delays of a flip-flop and amplification stage is greater than the hold time of

a flip-flop, we can guarantee the absence of hold time violations.

The Equations (6.3.12), (6.3.13), and (6.3.14) ensures that the Capture module in

the control path captures the valid data bits, data[add,shift], from the data path.

We can think of the constraints in Equations (6.3.12) and (6.3.13) as a setup time

constraint to capture the data bits. The constraints in Equations (6.3.12) and (6.3.13)

are conservative because for the Capture module to capture the data bits, the valid

data bits must arrive before the falling edge of the f ireRecA pulse rather than the

rising edge. The constraint in Equation (6.3.14) is a hold time constraint to ensure

that the data bits hold their valid values for the entire duration of the f ireRec pulse.

CHAPTER 6. DESIGN IMPLEMENTATIONS 116

d(f ireReci ", f ireRecAi+1

") � dRecReg + (dadd�path or dshi f t�path)

+ d
3:1Mux + damp.

(6.3.12)

d(succ[start][sw] ", f ireRecA ") � d
3:1Mux + damp.

d(succ[add][sw] ", f ireRecA ") � d
3:1Mux + damp.

d(succ[shi f t][sw] ", f ireRecA ") � d
3:1Mux + damp.

(6.3.13)

d(succ[start][sw] #, f ireRecA #)  d
3:1Mux + damp.

d(succ[add][sw] #, f ireRecA #)  d
3:1Mux + damp.

d(succ[shi f t][sw] #, f ireRecA #)  d
3:1Mux + damp.

(6.3.14)

In addition to the timing constraints discussed thus far, the states of the internal

state-wires before the start of the division operation and after completion of the di-

vision operation must be the same for the correct operation of successive requests.

Table 6.3.1 lists the states of the state wires before the beginning of a division opera-

tion and after the completion of the division operation. The state wires receive[sw]

and send[sw] connect to other FIFOs and can be considered as external state wires.

CHAPTER 6. DESIGN IMPLEMENTATIONS 117

Table 6.3.1: States of the state wires before the start of the division and after completion of
the division.

State wire Before Initialization After Completion

receive[sw] HI HI or LO

done[sw] HI HI

load[sw] LO LO

succ[start][sw] LO LO

succ[shift][sw] LO LO

succ[add][sw] LO LO

not_empty[sw] LO LO

empty[sw] LO LO

pred[add][sw] LO LO

pred[shift][sw] LO LO

fetch[sw][sw] LO LO

send[sw] HI or LO HI

CHAPTER 7. DESIGN COMPARISONS 118

7

Design Comparisons

This chapter presents a comparison of the synchronous and self-timed divider de-

signs for latency per division, average energy per division, and area. Furthermore,

the results of this research are compared with the results of other works.

Variations in process parameters result in variations in device length, threshold

voltage, gate oxide thickness etc. These variations change device behavior causing

yield loss. Process variation is prominent in technology nodes less than 65nm. This

chapter also analyzes the response of synchronous and self-timed dividers to process

variation.

7.1 Physical Design

Figures 7.1.1 and 7.1.2 show the physical design of the synchronous divider and

the data path for the self-timed divider respectively. Both the dividers implement the

glissando optimization technique and the figures show the cells in different phase

groups in different colors. Figure 7.1.3 shows the physical design of the self-timed

divider with the control path. The synchronous design and the data path for the self-

timed design use cells from Oracle’s 40nm standard-cell library. The control path for

CHAPTER 7. DESIGN COMPARISONS 119

the self-timed design uses custom cells to satisfy the timing constraints described

in Section 6.3. I verified that all the timing constraints were satisfied using SPICE

simulations.

group Ø1 group Ø2 group Ø3 group Ø4

Fig. 7.1.1: Physical design of the synchronous divider. Different colors in the figure denote
different phase groups.

group Ø1 group Ø2 group Ø3
group Ø4

Fig. 7.1.2: Physical design of the data path for the self-timed divider. Different colors in the
figure denote different phase groups.

Figures 7.1.4a and 7.1.4b show the phase-difference in the clocks and the f ireRec

signals, respectively, in different phase groups. Figure 7.1.4b also shows the self-

CHAPTER 7. DESIGN COMPARISONS 120

Fig. 7.1.3: Physical design of the self-timed divider along with the control path.

timed design modulating the period of the f ireRec signal according to an addition or

a shift-only operation. Figures 7.1.5a and 7.1.5b show the arrival of select signals for

multiplexers in different phase groups for synchronous and self-timed dividers.

I verified the functionality of the circuit by comparing the result of the SPICE sim-

ulation with the result of the verilog simulation for both synchronous and self-timed

designs.

CHAPTER 7. DESIGN COMPARISONS 121

printed Sat Apr 4 2015 01:34:48 by njamadag on tristana Synopsys, Inc. (c) 2000-2009

waveview 1

2n

2n

2.1n

2.1n

2.2n

2.2n

2.3n

2.3n

2.4n

2.4n

2.5n

2.5n

2.6n

2.6n

2.7n

2.7n

TIME(sec) (lin)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(clk_g

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

group Ø1

group Ø2

group Ø3

group Ø4

For Both
Add and Shift-only

Operations

(a) Waveform showing the phase-difference of the clock in different phase groups.

printed Sat Apr 4 2015 01:04:37 by njamadag on tristana Synopsys, Inc. (c) 2000-2009

waveview 1

2.1n

2.1n

2.2n

2.2n

2.3n

2.3n

2.4n

2.4n

2.5n

2.5n

2.6n

2.6n

2.7n

2.7n

TIME(sec) (lin)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(fire_g1b2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(rec_engi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(rec_engi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(fire_g1b7

group Ø1

group Ø2

group Ø3

group Ø4

An Add
Operations

Shift-only
Operation

(b) Waveform showing the phase-difference of the f ireRec signal in different phase
groups.

Fig. 7.1.4: Waveforms showing: (a) clocks in different phase groups and (b) f ireRec signals
in different phase groups. The self-timed design modulates the period of the f ireRec signal
according to an addition or a shift-only operation.

CHAPTER 7. DESIGN COMPARISONS 122

printed Sat Apr 4 2015 01:33:06 by njamadag on tristana Synopsys, Inc. (c) 2000-2009

waveview 1

5n

5n

6n

6n

7n

7n

8n

8n

9n

9n

TIME(sec) (lin)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xmantissadiv.v(recdp

group Ø1

group Ø2

group Ø3

group Ø1

(a) For synchronous design.

printed Sat Apr 4 2015 01:18:47 by njamadag on tristana Synopsys, Inc. (c) 2000-2009

waveview 1

5n

5n

5.5n

5.5n

6n

6n

6.5n

6.5n

TIME(sec) (lin)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

v(add[sw]) testDes5.t

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(rec_engi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(rec_engi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(li
n)

xdatapath.v(rec_engi

group Ø1

group Ø2

group Ø3

group Ø1

(b) For self-timed design.

Fig. 7.1.5: Waveforms showing the arrival of the select-signals for the multiplexers in different
phase groups.

CHAPTER 7. DESIGN COMPARISONS 123

7.2 Comparison of Divider Designs

This section compares the synchronous and self-timed divider designs for the follow-

ing three figures of merit: latency per division, average energy per division and area.

For the self-timed design we have to consider the average-case latency per division.

For the synchronous design, the latency per division is

Ldiv = ((L + 4) + 2) ⇤ Diter, (7.2.1)

Where, L + 4 is the number of quotient digits to accumulate, Diter is the delay per

iteration or the clock-period, and plus 2 is the two clock cycles, one each to receive

the new operands and send to result for further post processing. The clock period of

the synchronous design is Diter = 245ps.

For the self-timed design, the average latency per division is the delay from the ris-

ing transition of the f ireRx signal to the rising transition of the f ireTx signal. There-

fore,

Ldiv-avg =d(f ireRx ", f ireRec
1

") +
L+5

Â
i=2

davg(f ireReci ", f ireReci+1

")

+ d(f ireRecL+6

", f ireTx ")
(7.2.2)

In the above equation, the first and last terms on the right hand side of the equation

are the delays associated with receiving the new operands and sending the result of

division for post processing. The delay davg(f ireReci ", f ireReci+1

) is the weighted

average of the add and shift periods.

The average energy per division is the product of latency per division and average

power consumption per division. Table 7.2.1 compares the three figures of merit for

synchronous and self-timed designs. From the table it is clear that the self-timed

design offers improvement in all three figures of merit. On average, the self-timed

divider is approximately 10% faster, consumes 42% less energy and 20% less area

CHAPTER 7. DESIGN COMPARISONS 124

compared to the synchronous design. The clock period and delays of the f ire signals

in the table include a 20ps margin to account for the uncertainty in the arrival of

the clock and f ire pulses. It is interesting to note that the 10% difference in speed

between synchronous and self-timed designs persisted throughout various stages of

design implementation, that is right from the logical effort calculations to the SPICE

simulation of the extracted netlists.

Table 7.2.1: Comparison of synchronous and self-timed designs.

Design
Latency per Division,

Ldiv, in ns
Average Energy per
Division, Ediv in pJ

Area in
mm2

Synchronous 13.9 26 0.10

Self-Timed 12.5 15 0.08

To make a fair comparison of the divider designs developed in this research with

other published designs, I do the following:

• Delay per quotient bit is used as a figure of merit for speed, so that a radix-

2 design can be compared with a radix-4 design. Comparisons with higher-

radix designs is limited to radix-4. To calculate the delay per quotient bit, I

omit the delays associated with receiving the new operands and sending the

result for post-processing, and the 20ps of margin. Furthermore, the delays are

normalized to a technology-independent metric of fanout-of-4 or FO4 delays.

• For energy comparisons, the power or energy numbers are normalized to a 1V

supply process.

• Additionally, some works report data from a fabricated chip and post-layout

simulations but others report data from pre-layout simulations and logical effort

calculations. To make fair comparison, I segregate the results from a chip and

CHAPTER 7. DESIGN COMPARISONS 125

post-layout simulations from pre-layout and logical effort calculations. The de-

signs that report delays in arbitrary units of gate delays are omitted from the

comparison.

For the 40nm process technology used in the simulations, 1FO4 ⇡ 22ps at typical-

typical, low-voltage and high temperature corner. Tables 7.2.2 and 7.2.3 compare the

two divider designs developed in this research with other works. In the tables, a cell

with label N.R denotes “Not Reported”.

Table 7.2.2 compares the results of the two divider designs developed in this re-

search with other designs. From Table 7.2.2 we can make the following observations.

Williams and Horowitz’s divider design in [40] remains one of the faster designs. There

are two reasons for this: first, the divider design uses dual-rail domino circuits and self-

timed control path. Domino circuits are approximately 1.5-1.7x faster than the static

CMOS circuits. Second, the divider design in [40] uses a ring of five stages to hide the

sequencing overhead. Sequencing overhead is the delay in the flip-flops or latches.

The works presented [29] and [20] are extension of Williams and Horowitz’s divider

design. Renaudin et al., in [29] used Low-power Differential Cascode Voltage Switch

Logic (LDCVSL) circuits and a ring of three stages. Matsubara et al., in [20] used a

ring of four stages and used DCVSL circuits only in the critical path to reduce both

cycle time and power consumption. However, usage of dynamic circuits in data path

is highly discouraged in process nodes less than 90nm because of the high power

and leakage issues associated with the dynamic circuits.

The divider designs developed in this research compares favorably with other di-

vider designs that use static CMOS circuits in terms of delay per quotient digit and

energy per division. Prabhu and Zyner’s divider in [27] uses three radix-2 stages to

build a radix-8 divider. Prabhu and Zyner overlapped some of the computation in one

stage with other stages to reduce the cycle time of an iteration. Moreover, cascad-

ing three stages averages the sequencing overhead over the three stages, effectively

CHAPTER 7. DESIGN COMPARISONS 126

reducing the delay per quotient digit. The synchronous divider presented in this re-

search offers an 8% improvement in delay per quotient digit over the divider design in

[27]. The self-timed divider offers an improvement of 13% in delay per quotient digit

compared to the design in [27].

The delay per quotient digit for the dividers in [26] and [31] is suspiciously high.

Here is how I obtained the numbers for the delay per quotient digit. The authors in [26]

and [31] reported a cycle time of 1.89ns and 1.85ns for a radix-4 divider in a 65nm

process technology. Both the authors fail to report FO4 for the technology. According

to [1], for 65nm process technology 1FO4 ⇡ 13ps in typical-typical process corner

at 1.2V and room temperature (27�C). Additionally, Rust and Noll in [31] do report

that they used a standard cell library characterized at worst case, that is, slow-slow

process corner at low voltage and high temperature. Therefore, for the designs in [26]

and [31], I assumed a conservative estimate of 1FO4 ⇡ 30ps. Using 1FO4 ⇡ 30ps

for the designs in [26] and [31], we get the numbers reported in Table 7.2.2. I advise

the reader to take these numbers “with a grain of salt”.

In terms of improvements in energy per division, the synchronous divider of this

research offers an improvement of approximately 87% and 27% over the designs in

[29] and [20] respectively. The self-timed design of this research offers an improve-

ment of 92% and 60% in energy per division compared to the designs in [29] and [20]

respectively.

In Table 7.2.2, the area numbers reported are the die areas for the designs in this

research and the designs in [40] and [29]. For the designs in [26] and [31] the area

reported is only the standard-cell area. Moreover, the area for the designs in this

research include the area of the input and output registers.

Table 7.2.3 compares the pre-layout divider designs of this research with the pre-

layout divider designs in [15, 18] and [19]. In [15], Harris, Oberman and Horowitz

compared various SRT implementation schemes for delay per quotient digit and area

CHAPTER 7. DESIGN COMPARISONS 127

Table 7.2.2: Post-Layout comparison of various divider implementations for delay, energy and
area.

Design Delay per quotient
digit in FO4

Energy per
Division in pJ

Area in
mm2

Circuit Style Radix

Williams and Horowitz
[40] 5.6 - 6.7 N.R 7 Dynamic 2

Prabhu and Zyner [27] 11.1 N.R N.R Static CMOS 8

Renaudin et al., [29] 16 279 0.7 DCVSL 2

Matsubara and Ide [20] 7.5 49 N.R Static CMOS +
Dynamic 2

Pham and
Swartzlander [26] 31.5 201 0.02 Static CMOS

with low-vt cells 4

Rust and Noll [31] 30.8 112 0.01 Static CMOS,
low power cells 4

This work,
synchronous 10.2 36 0.1 Static CMOS 2

This work, self-timed 8.9 20 0.08 Static CMOS 2

per bit per cycle. The non-overlapped implementation in [15] is similar in architecture

and circuit family to the designs presented in this research. The delay per quotient

digit in Table 7.2.3 for [15] includes the delay of sequencing overhead of 4.4 FO4

delays. Liu and Nannarelli in [18] presented two radix-4 implementations, one using

only the high-speed cells and the other using a combination of high-speed and low-

power cells. In [19], Liu and Nannarelli presented another radix-4 implementation that

takes advantage of the clock-skew in the critical path to reduce the cycle time of an

iteration.

The synchronous divider of this research offers an improvement of 38%, 46% and

10% in delay per quotient digit compared to the divider implementations in [15, 18]

and [19]. In terms of energy comparisons, the synchronous divider of this research

consumes approximately 87% and 44% less energy consumption per division com-

pared to the dividers in [18] (low-power) and [19].

CHAPTER 7. DESIGN COMPARISONS 128

The self-timed divider of this research offers an improvement of 47%, 54% and

22% in delay per quotient digit compared to the designs in [15, 18] and [19], and 94%

and 73% in energy per division compared to the designs in [18] (low-power) and [19].

The standard cell area of the divider designs presented in this research is in the

same range as the designs in [18] and [19], and about fifteen times smaller than the

design in [15]. The designs in [18] and [19] used a 90nm technology and the design

in [15] used a 1µm technology.

Table 7.2.3: Pre-Layout comparison of various divider implementations for delay, energy and
area.

Design
Delay per quotient

digit in FO4

Energy per
Division in

pJ

Area in
mm2

Radix

Harris et al., [15] 13.9 N.R 0.46 4

Liu and Nannarelli [18] 16
402 and 261
(Low Power)

0.02 4

Liu and Nannarelli [19] 9.5 57 0.04 4

This work,
synchronous
(pre-layout)

8.6 32 0.03 2

This work, self-timed
(pre-layout)

7.4 15 0.02 2

7.3 Process Variation

In this section, I will discuss how the synchronous and self-timed dividers imple-

mented in this research respond to variations in process and environment. The two

sources of environmental variations are supply voltage and temperature. The sup-

CHAPTER 7. DESIGN COMPARISONS 129

ply voltage variations result in variations in transistor current causing delay variations.

The temperature variations affect the threshold voltage of a transistor also resulting in

delay variations.

At die-level the process variations can be classified into two: inter-die and intra-die

variations. In inter-die variations a transistor in one die behaves differently in another

die. Inter-die variations are also called Die-to-Die (D2D), process-shift, and global

variations. In intra-die variations every transistor within a die can behave differently.

Intra-die variations are also called Within-Die (WID), mismatch, and local variations.

Designers typically use SPICE-level monte carlo simulations to estimate the ef-

fects of process variation on circuit performance and functionality. The number of

monte carlo runs required depends on the type of variation to analyze and number of

process parameters for a given technology. For example, if we want to estimate the

effect of global variation on the circuit’s behavior then

of runs =
(# of global parameters + 2) ⇤ (# of global parameters + 1)

2

(7.3.1)

and for local variation it is,

of runs = (# of transistors) ⇤ (# of local parameters) (7.3.2)

The 40nm process technology used in this research has about twenty-four global

parameters and three local parameters. Estimating the local variation for a circuit

with approximately fifty-thousand transistors is very time consuming because each

simulation takes about five to six hours. Therefore, only global or inter-die variation is

considered. To further reduce the number of simulation runs required, I developed a

2-factorial design-of-experiments (DOE).

Figure 7.3.1 shows the scatter plot of NMOS and PMOS currents for different

monte carlo simulation runs. The x-axis is the NMOS current and the y-axis is the

PMOS current. The blue, green and red ellipses are the 1s, 2s and 3s density el-

lipses, respectively. The gray data-points are from 1024 monte carlo runs and denote

CHAPTER 7. DESIGN COMPARISONS 130

the total variation space for an NMOS and PMOS transistor. The red data-points

denote the NMOS and PMOS transistor configurations that I considered for the 2-

factorial DOE simulations. The 2-factorial DOE simulations allow us apply the same

parameter-value configurations to both synchronous and self-timed designs. In Fig-

ure 7.3.1, the two-letter label denotes a process corner. For example, the label FF

denotes fast-NMOS and fast-PMOS corner.
Bivariate Fit of IdsP By IdsN

1.3e-4

1.4e-4

1.5e-4

1.6e-4

1.7e-4

1.8e-4

1.9e-4

2e-4

Id
sP

 in
 A

m
ps

1.4e-4 1.5e-4 1.6e-4 1.7e-4 1.8e-4 1.9e-4 2e-4 2.1e-4 2.2e-4 2.3e-4
IdsN in Amps

Bivariate Normal Ellipse P=0.997
Bivariate Normal Ellipse P=0.950
Bivariate Normal Ellipse P=0.680

TT

FS

SS

FF

SF

Fig. 7.3.1: Scatter plot of NMOS and PMOS currents under process variation. The x-axis is
the NMOS current and the y-axis is the PMOS current. The gray data-points are from 1024
monte carlo runs and denote the total variation space for an NMOS and PMOS transistor. The
red data-points denote the NMOS and PMOS transistor configurations that I considered for
the 2-factorial DOE simulations.

Table 7.3.1 lists the number of samples collected at different process corners. In

addition to process corner, I also considered the following two environmental corners:

CHAPTER 7. DESIGN COMPARISONS 131

low-voltage with high-temperature, and high-voltage with low-temperature. Labels LH

and HL denote low-voltage with high-temperature corner and high-voltage with low-

temperature corner, respectively. Table 7.3.2 lists the values for supply voltage and

temperature for the two environmental corners. In summary, with 2-factorial DOE

simulations we have 26 samples of process-variation at two different environment

corners for synchronous and self-timed divider designs.

Table 7.3.1: Number of samples collected at different process corners.

Process Corner Number of Samples

FF 8

FS 5

SF 5

SS 8

Total 26

Table 7.3.2: The two environmental corners considered in this research.

Environmental Corner Voltage in volts Temperature in �C

LH 0.85 105

HL 1.20 0

Table 7.3.3 summarizes the functional yield for the synchronous and self-timed

divider designs. In the table, “pass” means that the result of the division matched

the expected value and “fail” means that the result of the division differed from the

expected value. The functional yield is the ratio of the number of “pass” to the sum

of the number of “pass” and “fail”. The synchronous design has a functional yield of

77%, including both the environmental corners. The self-timed design has a func-

tional yield of 60%, including both the environmental corners. It is interesting that the

synchronous and self-timed designs fail in different environmental corners.

CHAPTER 7. DESIGN COMPARISONS 132

Table 7.3.3: Functional Yield for self-timed and synchronous divider designs at all corners

Sample Number
LH HL

Self-Timed Synchronous Self-Timed Synchronous

FF,1 pass pass fail pass

FF,2 pass pass fail pass

FF,3 pass pass fail pass

FF,4 pass pass fail pass

FF,5 pass pass fail pass

FF,6 pass pass fail pass

FF,7 pass pass fail pass

FF,8 pass pass fail pass

FS,1 pass pass pass pass

FS,2 pass pass pass pass

FS,3 pass fail pass pass

FS,4 pass pass pass pass

FS,5 pass pass pass pass

SF,1 pass fail fail pass

SF,2 pass pass fail pass

SF,3 pass fail fail pass

SF,4 pass pass fail pass

SF,5 pass fail fail pass

SS,1 pass fail fail pass

SS,2 pass fail fail pass

SS,3 pass fail fail pass

SS,4 pass fail fail pass

SS,5 pass fail fail pass

SS,6 pass fail fail pass

SS,7 pass fail fail pass

SS,8 pass fail fail pass

Functional Yield 100% 46% 19% 100%

CHAPTER 7. DESIGN COMPARISONS 133

The fails are interesting in terms of understanding the behavior of two different

design styles. First let us consider consider the synchronous design. For the syn-

chronous design simulations, the clock signal came from an ideal source and the

clock-period remained fixed even in presence of variations. Therefore, in the slow

corners at low-voltage and high-temperature, the data path is slower than the clock

period resulting in setup-time violations.

For the self-timed design, the f ire signals came from the control path and the

period of the f ire signals changed according to the process variation. In the FFHL

and SSHL corners, the fails were because of the setup-time violations. This suggests

that the control path ran at a slightly higher-speed than the data path.

Figures 7.3.2 and 7.3.3 show the cumulative distribution function of slacks for the

synchronous and self-timed designs respectively. Slack is the difference between the

arrival times of the data and the clock or f ire signals. A positive slack denotes that

the data arrived before the clock and a negative clock denotes that the clock arrived

before the data. A setup time of a flip-flop is the minimum slack required to correctly

capture the data.

Figures 7.3.2a and 7.3.2b show the cumulative distribution function (CDF) plots of

the slacks for a passing and failing instances of a synchronous divider, respectively.

The blue line indicates the setup time or the minimum slack required for that instance.

The failing instance in Figure 7.3.2b has a heavier tail compared to the passing in-

stance in Figure 7.3.2a. Figures 7.3.3a and 7.3.3b show the CDF plots of the slacks

for a passing and failing instances of a self-timed divider, respectively.

Tables 7.3.4 and 7.3.5 lists the minimum slack required and the measured mini-

mum slack from SPICE simulations for both the divider designs at LH and HL envi-

ronmental corners respectively.

CHAPTER 7. DESIGN COMPARISONS 134

Table 7.3.4: Minimum slack required and the measured slack from simulations in various
process corners at low voltage and high temperature (LH).

Sample Number Minimum Slack Required in ps
Measured Slack from Simulations in ps

Self-Timed Synchronous

FF,1 9 20 38

FF,2 10 20 38

FF,3 8 19 40

FF,4 9 18 40

FF,5 8 20 28

FF,6 9 27 28

FF,7 7 20 34

FF,8 7 26 35

FS,1 5 20 17

FS,2 4 20 30

FS,3 6 30 -68

FS,4 6 27 16

FS,5 5 20 27

SF,1 8 14 -63

SF,2 7 19 10

SF,3 8 25 -100

SF,4 8 18 30

SF,5 8 18 -26

SS,1 12 30 -120

SS,2 14 25 -97

SS,3 10 30 -80

SS,4 10 34 -90

SS,5 12 40 -120

SS,6 12 40 -120

SS,7 8 38 -110

SS,8 8 40 -120

CHAPTER 7. DESIGN COMPARISONS 135

Table 7.3.5: Minimum slack required and the measured slack from simulations in various
process corners at high voltage and low temperature (HL).

Sample Number Minimum Slack Required in ps
Measured Slack from Simulations in ps

Self-Timed Synchronous

FF,1 10 7 116

FF,2 10 2 116

FF,3 12 5 120

FF,4 9 6 119

FF,5 9 8 110

FF,6 9 9 110

FF,7 8 7 110

FF,8 8 8 110

FS,1 7 8 108

FS,2 7 8 110

FS,3 9 11 100

FS,4 8 9 109

FS,5 6 7 110

SF,1 8 10 109

SF,2 8 9 109

SF,3 9 1 100

SF,4 8 -2 110

SF,5 8 9 110

SS,1 14 10 100

SS,2 14 10 100

SS,3 12 9 100

SS,4 12 10 100

SS,5 12 11 100

SS,6 12 12 99

SS,7 12 11 100

SS,8 12 11 100

CHAPTER 7. DESIGN COMPARISONS 136

(a)

(b)

Fig. 7.3.2: Cumulative distribution function (CDF) of slacks for the synchronous divider design:
(a) for a passing sample in an FFLH corner and (b) for a failing sample in a SSLH corner. The
blue line indicates the setup time or the minimum slack required for that instance.

CHAPTER 7. DESIGN COMPARISONS 137

(a)

(b)

Fig. 7.3.3: CDF of slacks for the self-timed divider design: (a) for a passing sample in a FFLH
corner and (b) for a failing sample in a SSHL corner. The blue line indicates the setup time or
the minimum slack required for that instance.

CHAPTER 7. DESIGN COMPARISONS 138

The fails in the FSHL corner for the self-timed systems is because of two reasons.

First, there were some bits with setup time violations. Second, on some occasions,

the flip-flops failed to capture the data bits even when the valid data-bit arrived at the

input of the flip-flops, long before the f ire signal arrived.

Consider Figure 7.3.4 to understand the cause of the second problem. The figure

shows a differential flip-flop circuit similar to the one used in the divider design. The

sense amplifier is the key component of the differential flip-flop in 7.3.4. The sense

amplifier responds to small differential input voltages. When the f ire input is LO, the

nodes x and y pre-charge to some threshold value. When the f ire input is HI, the

data input pulls either x or y node to LO and the cross-coupled PMOS transistors act

as a keeper for the other node. In the FS process corner, the input PMOS transistors,

P1 and P2, are slow to pre-charge the nodes x and y. In the HL configuration, the

period of the f ire signal is shorter than in the LH configuration giving less time for

P1 and P2 transistors to act. Therefore, in the FSHL corner, the flip-flops fail to pre-

charge nodes x and y to the correct value and thus failing to capture the correct data.

This problem occurs only during the shift cycles, because the shift-period is less than

the add-period. Figure 7.3.5 shows the waveform illustrating the failure of a flip-flop

to capture the data even when the data is setup long before the f ire signal arrived.

The second time, however, the flip-flop captures the input because the nodes x and

y are pre-charged to their appropriate values. We can see in the waveform that after

the first fail the data input failed to pull the nodes x and y all the way to 0 which

makes it easier for the P1 and P2 PMOS transistors to pre-charge the nodes x and

y to appropriate values. We can think of the problem of pre-charge as a duty-cycle

constraint where the time to pre-charge limits the minimum OFF duration in the clock

or f ire signals.

CHAPTER 7. DESIGN COMPARISONS 139

q[T] q[F]

fire fire

d[T] d[F]

x y

P1 P2

Fig. 7.3.4: A typical Differential Flop-Flop circuit [39].

Flip-Flop Timing Diagram

67
printed Sun Mar 15 2015 23:08:07 by njamadag on tristana Synopsys, Inc. (c) 2000-2009

waveview 1

100p

100p

150p

150p

200p

200p

250p

250p

300p

300p

TIME(sec) (lin)

0
0.2
0.4
0.6
0.8
1

1.2

(li
n)

v(d) testFF.tr0

0
0.2
0.4
0.6
0.8
1

1.2

(li
n)

v(fire) testFF.tr0

0
0.2
0.4
0.6
0.8
1

1.2

(li
n)

v(q) testFF.tr0

0
0.2
0.4
0.6
0.8
1

1.2

(li
n)

xcut.v(left) testF

0
0.2
0.4
0.6
0.8
1

1.2

(li
n)

xcut.v(right) test

d[t]

fire

q[t]

x

y

fail

pass

Fig. 7.3.5: Waveform illustrating the failure of the flip-flop circuit in Fig.7.3.4 to capture the
data in FSHL corner.

CHAPTER 7. DESIGN COMPARISONS 140

7.3.1 Predicting Yield-Loss

Running SPICE-level Monte-Carlo simulations to estimate the yield of a large design

is time-consuming. It would be beneficial if a designer can predict the yield-loss at an

earlier stage in the design flow and thereby decrease the overall design-cycle time.

An obvious stage in the design flow to predict yield-loss is after the physical-design

stage and by looking at the slack estimates from the STA tool.

Figures 7.3.6a and 7.3.6b show the slack distributions obtained from the SPICE

simulation and a static-timing analysis tool for the synchronous divider design in the

TTLH corner. The colored dots denote the slack of the bits in the TTLH corner that

violated the setup-time constraint in other corners.

In Figures 7.3.6a and 7.3.6b, we can observe that the bit indicated by the red-

dot appears in the tail of the slack distribution measured from the SPICE simulation,

but appears in the middle of the slack distribution estimated from an STA tool which

indicates a weak correlation between the measured and estimated slack for the failing

bits.. For a bit denoted by the red-dot, the measured slack from the SPICE simulation

is approximately 9ps but the estimated slack from an STA tool is approximately 22ps.

This shows that an STA tool overestimates the slack for a failing data-bit (red-dot).

Fails or yield-loss for the bits that an STA tool overestimates the slack are harder to

predict by just looking at the slack estimates from an STA tool.

Figures 7.3.7a and 7.3.7b show the slack distributions obtained from the SPICE

simulation and a static-timing analysis tool for the self-timed divider design in the

TTLH corner. The colored dots denote the slack of the bits in the TTLH corner that

violated the setup-time constraint in other corners.

For the self-timed divider we can observe that the failing bits that appear in the tail

of the slack distribution measured from the SPICE simulation also appear in the tail of

the slack distribution estimated from an STA tool which indicates a strong correlation

CHAPTER 7. DESIGN COMPARISONS 141

(a) Synchronous divider: Slack distribution from SPICE simulation.

(b) Synchronous divider: Slack distribution from STA tool.

Fig. 7.3.6: Slack distribution of the synchronous divider: (a) from a SPICE simulation and (b)
from an STA tool.

between the measured and estimated slack for the failing bits. The strong correlation

of the failing bits suggests that we can potentially predict the failing bits and therefore

yield-loss by looking at the slack estimates from an static-timing analysis tool.

One possible reason for the strong correlation of the failing bits in the self-timed

design is that the self-timed design uses the data-path topology that has fewer logic

gates than the data-path topology that the synchronous divider uses. Fewer logic

gates typically implies fewer paths for the STA tool to get confused with. Hence more

accurate slack estimates for a data path with fewer gates.

CHAPTER 7. DESIGN COMPARISONS 142

(a) Self-timed divider: Slack distribution from SPICE simulation.

(b) Self-timed divider: Slack distribution from STA tool.

Fig. 7.3.7: Slack distribution of a self-timed divider: (a) from a SPICE simulation and (b) from
an STA tool.

CHAPTER 8. CONCLUSION AND FUTURE OPPORTUNITIES 143

8

Conclusion and Future Opportunities

In this research, I presented a methodology to evaluate data-path topologies that

implement a conditional statement for an average-case performance that is better

than the worst-case performance. I used a division algorithm as an example of a

conditional statement. Contrary to conventional wisdom, the proposed methodology

shows that a less-speculative data path yields a better average-case performance

compared to a fully-speculative data path. This research explored the various stages

of a design cycle, from algorithms to manufacturing.

The four new radix-2 division algorithms developed during this research offer a

simpler quotient selection logic compared to the radix-2 division algorithms in [34, 25,

13] and [10]. Evaluating the algorithms for the frequency of hard and easy compu-

tations allows a designer to make a decision about pursuing a self-timed design or

synchronous design early in the design cycle.

The glissando optimization technique developed in this research exploits a simple

idea that the non-critical bits can arrive at the input of the registers later than the

critical bits to reduce the delay of the data paths. The glissando technique enables

the delay of the data paths to be independent of the word size which is very useful

when designing a divider circuit for 1024-bit or 2048-bit RSA crypto-systems.

CHAPTER 8. CONCLUSION AND FUTURE OPPORTUNITIES 144

The results from the SPICE simulation of the extracted netlists show that com-

pared to the synchronous divider, the self-timed divider is 10% faster on average,

consumes 42% less energy per division on average and 20% less area. The improve-

ment in all three figures of merit for self-timed divider is a consequence of choosing

a less-speculative data path and designing a control path to take advantage of the

faster shift-only operation.

Analyzing the response of the divider designs to variations in process and envi-

ronment shows that the synchronous design offers a parametric yield of 77% and the

self-timed divider design offers a parametric yield of 60%. In the synchronous design,

the the setup-time violations caused yield-loss. By the increasing the clock period or

the supply voltage we can potentially decrease the yield-loss. In the self-timed de-

sign, the the setup-time and duty-cycle violations caused yield-loss. The duty-cycle

constraint was previously unknown and shows that a designer must consider the in-

ternal structure of a flip-flop or latch when designing a control path for the self-timed

designs. To reduce the yield-loss in the self-timed design requires redesigning the

control path which increases the design cycle time. Alternatively, we can gradually

reduce the supply voltage to decrease the yield-loss because of the 100% yield at the

low-voltage and high-temperature corner.

A simple regression analysis of the slack estimates from a static-timing analysis

tool and the simulated slacks from SPICE simulation show that we can predict an

yield-loss at an earlier stage in the design cycle for a less-speculative data path. For

a fully-speculative data path yield-loss prediction is unlikely.

8.1 Future Opportunities

The following are the opportunities to further extend this research.

Modern microprocessors implement a radix-4 or radix-16 divider. A radix-16 di-

CHAPTER 8. CONCLUSION AND FUTURE OPPORTUNITIES 145

viders use two radix-4 stages [22] and therefore extending the algorithms A1b and

B1b to radix-4 will be useful. Alternatively, an analysis of radix-2 variable-iteration

division algorithms will also be useful. A radix-2 variable-iteration division algorithm

retires at least one quotient digit per iteration and occasionally can retire two or three

quotient digits per iteration. Because the variable-iteration algorithm can retire multi-

ple quotient-digits per iteration, the number of iterations per division varies depending

on the values of the input operand. Self-timed designs can take advantage of the

occasional fewer-iterations per division in addition to faster shift-only operations.

From the point-of-view of manufacturing, the self-timed designs need a knob to

control the speed of the control path after manufacturing to reduce yield loss because

of setup-time and duty-cycle violations. Depending on the level of granularity required,

a knob could be as simple as providing a different supplies to control and data paths

or as complex as inserting programmable delay modules between the stages of a

pipeline.

This research analyzed the response of the two designs considering only the

global variation. Analyzing the response of synchronous and self-timed divider de-

signs for local variation may reveal additional constraints that can affect the yield. The

control path in this research use a string of inverters to increase the period of the syn-

chronization pulse for an addition operation. Replacing the string of inverters with the

same kind of gates that appear in the add path of the data path may produced better

parametric yield. The hypothesis is that the gates with the same transistor topology

behave the same way in presence of manufacturing variations.

Lack of EDA tools for self-timed design continue to hinder the design of complex

circuits. Using two different flows to design complex self-timed circuits is cumbersome

and error-prone. A tool that integrates the design of both data path and self-timed

control path will be highly invaluable.

REFERENCES 146

References

[1] http://cpudb.stanford.edu/. [cited at p. 126]

[2] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli. Digit-Recurrence Dividers

with Reduced Logical Depth. Computers, IEEE Transactions on, 54(7):837 –851,

july 2005. [cited at p. 11, 12]

[3] Peter A Beerel, Recep O Ozdag, and Marcos Ferretti. A Designer’s Guide to

Asynchronous VLSI. Cambridge University Press, 2010. [cited at p. 12]

[4] Peter A Beerel and Aiguo Xie. Performance Analysis of Asynchronous Circuits

using Markov Chains. In Concurrency and Hardware Design, pages 313–343.

Springer, 2002. [cited at p. 14]

[5] N. Burgess. A Fast Division Algorithm for VLSI. In Computer Design: VLSI in

Computers and Processors, 1991. ICCD ’91. Proceedings, 1991 IEEE Interna-

tional Conference on, pages 560 –563, oct 1991. [cited at p. 10]

[6] N. Burgess. Retiming the ARM VFP-11 Divide and Square Root Macrocell. In

Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of

the Forty-First Asilomar Conference on, pages 363–366, 2007. [cited at p. 11, 69]

[7] James Coke, Harikrishna Baliga, Niranjan Cooray, Edward Gamsaragan, Peter

Smith, Ki Yoon, James Abel, and Antonio Valles. Improvements in the Intel Core

REFERENCES 147

2 Penryn Processor Family Architecture and Microarchitecture. Intel Technology

Journal, 12(3):179–193, 2008. [cited at p. 10]

[8] J. Cortadella and T. Lang. High-Radix Division and Square-Root with Specula-

tion. Computers, IEEE Transactions on, 43(8):919–931, 1994. [cited at p. 10]

[9] J. Ebergen and R. Berks. Response-Time Properties of Linear Asynchronous

Pipelines. Proceedings of the IEEE, 87(2):308–318, 1999. [cited at p. 14]

[10] J. Ebergen, I. Sutherland, and A. Chakraborty. New Division Algorithms by Digit

Recurrence. In Signals, Systems and Computers, 2004. Conference Record of

the Thirty-Eighth Asilomar Conference on, volume 2, pages 1849 – 1855 Vol.2,

nov. 2004. [cited at p. xiv, 4, 5, 6, 11, 16, 19, 37, 40, 143]

[11] J.C. Ebergen and A. Megacz. Asynchronous loadable down counter, Septem-

ber 27 2011. US Patent 8,027,425. [cited at p. 106]

[12] M.D. Ercegovac and T. Lang. On-the-fly Rounding for Division and Square Root.

In Computer Arithmetic, 1989., Proceedings of 9th Symposium on, pages 169–

173, 1989. [cited at p. 41]

[13] M.D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2003.

[cited at p. 17, 22, 41, 143, 152, 155, 156]

[14] G. Gill, V. Gupta, and M. Singh. Performance Estimation and Slack Matching for

Pipelined Asynchronous Architectures with Choice. In Computer-Aided Design,

2008. ICCAD 2008. IEEE/ACM International Conference on, pages 449–456,

2008. [cited at p. 14]

[15] D.L. Harris, S.F. Oberman, and M.A. Horowitz. SRT Division Architectures and

Implementations. In Computer Arithmetic, 1997. Proceedings., 13th IEEE Sym-

posium on, pages 18 –25, jul 1997. [cited at p. 9, 10, 11, 69, 126, 127, 128]

REFERENCES 148

[16] N. Jamadagni and J. Ebergen. An Asynchronous Divider Implementation. In

Asynchronous Circuits and Systems (ASYNC), 2012 18th IEEE International

Symposium on, pages 97 –104, may 2012. [cited at p. 211]

[17] P. Kornerup. Digit Selection for SRT Division and Square Root. Computers, IEEE

Transactions on, 54(3):294 – 303, march 2005. [cited at p. 22]

[18] Wei Liu and A. Nannarelli. Power Dissipation in Division. In Signals, Systems

and Computers, 2008 42nd Asilomar Conference on, pages 1790 –1794, oct.

2008. [cited at p. 10, 69, 126, 127, 128]

[19] Wei Liu and A. Nannarelli. Power Efficient Division and Square Root Unit. Com-

puters, IEEE Transactions on, 61(8):1059–1070, August 2012. [cited at p. 10, 11, 69,

126, 127, 128]

[20] G. Matsubara and N. Ide. A Low Power Zero-Overhead Self-Timed Division and

Square Root Unit combining a Single-Rail Static Circuit with a Dual-Rail Dynamic

Circuit. In Advanced Research in Asynchronous Circuits and Systems, 1997.

Proceedings., Third International Symposium on, pages 198 –209, apr 1997.

[cited at p. 14, 15, 125, 126, 127]

[21] P. Montuschi and L. Ciminiera. Over-Redundant Digit Sets and the Design of

Digit-by-Digit Division Units. Computers, IEEE Transactions on, 43(3):269 –277,

mar 1994. [cited at p. 11]

[22] A. Nannarelli. Radix-16 Combined Division and Square Root Unit. In Computer

Arithmetic (ARITH), 2011 20th IEEE Symposium on, pages 169–176, 2011.

[cited at p. 145]

[23] S.M. Nowick, K.Y. Yun, P.A. Beerel, and A.E. Dooply. Speculative Completion for

the Design of High-Performance Asynchronous Dynamic Adders. In Advanced

REFERENCES 149

Research in Asynchronous Circuits and Systems, 1997. Proceedings., Third In-

ternational Symposium on, pages 210–223, 1997. [cited at p. 12, 15]

[24] S.F. Oberman and M.J. Flynn. Design Issues in Division and Other Floating-

Point Operations. Computers, IEEE Transactions on, 46(2):154 –161, feb 1997.

[cited at p. 5]

[25] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford

university press, 2000. [cited at p. 17, 22, 41, 143]

[26] Tung N. Pham and Earl E. Jr. Swartzlander. Design of Radix-4 SRT Dividers in 65

Nanometer CMOS Technology. In Application-specific Systems, Architectures

and Processors, 2006. ASAP ’06. International Conference on, pages 105 –108,

sept. 2006. [cited at p. 126, 127]

[27] J.A. Prabhu and G.B. Zyner. 167 MHz Radix-8 Divide and Square Root using

Overlapped Radix-2 Stages. In Computer Arithmetic, 1995., Proceedings of the

12th Symposium on, pages 155 –162, jul 1995. [cited at p. 10, 125, 126, 127]

[28] Md Mijanur Rahman, Tushar Kanti Saha, and Md Al-Amin Bhuiyan. Implemen-

tation of RSA Algorithm for Speech Data Encryption and Decryption. Interna-

tional Journal of Computer Science and Network Security, 12(3):74–82, 2012.

[cited at p. 72]

[29] M. Renaudin, B.E. Hassan, and A. Guyot. A New Asynchronous Pipeline

Scheme: Application to the Design of a Self-timed Ring Divider. Solid-State

Circuits, IEEE Journal of, 31(7):1001 –1013, jul 1996. [cited at p. 15, 125, 126, 127]

[30] James E. Robertson. A New Class of Digital Division Methods. Electronic Com-

puters, IRE Transactions on, EC-7(3):218 –222, sept. 1958. [cited at p. 9]

REFERENCES 150

[31] I. Rust and T.G. Noll. A Radix-4 Single-Precision Floating Point Divider based

on Digit Set Interleaving. In Circuits and Systems (ISCAS), Proceedings of

2010 IEEE International Symposium on, pages 709 –712, 30 2010-june 2 2010.

[cited at p. 126, 127]

[32] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks, M. Greenberg,

G. Levinsky, M. Luttrell, C. Olson, Z. Samoail, M. Smittle, and T. Ziaja. Sparc

T4: A Dynamically Threaded Server-on-a-Chip. Micro, IEEE, 32(2):8–19, 2012.

[cited at p. 6]

[33] Hosahalli Rajarao Srinivas. High Speed Computer Arithmetic Architectures. PhD

thesis, University of Minnesota, Minneapolis, MN, USA, 1994. UMI Order No.

GAX95-08963. [cited at p. 11, 40]

[34] H.R. Srinivas, K.K. Parhi, and L.A. Montalvo. Radix 2 Division with Over-

Redundant Quotient Selection. Computers, IEEE Transactions on, 46(1):85 –92,

jan 1997. [cited at p. 4, 5, 6, 11, 16, 143, 161, 162]

[35] I. Sutherland and S. Fairbanks. GasP: A Minimal FIFO Control. In Asynchronus

Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium

on, pages 46–53, 2001. [cited at p. 101]

[36] I.E. Sutherland and J.K. Lexau. Designing Fast Asynchronous Circuits. In Asyn-

chronus Circuits and Systems, 2001. ASYNC 2001. Seventh International Sym-

posium on, pages 184 –193, 2001. [cited at p. 102]

[37] I.E. Sutherland, R.F. Sproull, and D.F. Harris. Logical Effort: Designing Fast

CMOS Circuits. Morgan Kaufmann, 1999. [cited at p. ix, 45, 47, 48, 68]

[38] K. D. Tocher. Techniques of Multiplication and Division for Automatic Binary

Computers. The Quarterly Journal of Mechanics and Applied Mathematics,

11(3):364–384, 1958. [cited at p. 9]

REFERENCES 151

[39] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems

Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[cited at p. xix, 45, 139]

[40] T.E. Williams and M.A. Horowitz. A Zero-Overhead Self-Timed 160-ns 54-b

CMOS Divider. Solid-State Circuits, IEEE Journal of, 26(11):1651 –1661, nov

1991. [cited at p. 14, 15, 125, 126, 127]

APPENDIX A. ALGORITHMS B1, B1B AND B1C 152

Appendix A

Algorithms B1, B1b and B1c

This appendix presents the derivation of the algorithms B1, B1b and B1c.

Instead of using a two’s complement representation for the partial remainder, we

can use a binary signed digit (BSD) representation. In a BSD representation, a vector

of signed bits from the set {�1, 0, 1} represents the partial remainder r. Instead of

using a single vector of signed bits, we use two vectors of unsigned bits rs and rc,

such that r = rc � rs where, rs is the partial sum and rc is the partial carry. In BSD

representation partial sum, rs, carries a negative weight. Please see [13] for more

details on BSD representation and carry-free addition.

As mentioned in Equation (3.3.8), the range invariant for the partial remainder, r =

rc � rs, is (�4, 4) when we use BSD representation for the partial remainder. Note

that for the BSD representation, both bounds are excluded. The left bold-diamond, S0

to S15, in Figure A.1 consists of all numbers (rs, rc) satisfying range invariant (3.3.8).

To analyze what happens when we perform doublings and additions on points

satisfying range invariant (3.3.8), consider a larger diamond in Figure A.1, where

each binary vector is represented with one extra digit at the most-significant position.

We are interested in a series of operations that takes a point in the bottom-left bold

APPENDIX A. ALGORITHMS B1, B1B AND B1C 153

diamond and returns a point in the bottom-left bold diamond. As with the two’s com-

plement representations, the operations must end with a doubling and an addition or

subtraction may preceded the doubling. Each sequence of operations must maintain

invariant (3.3.2).

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4

A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

Q2

Q3

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

Fig. A.1: The area for the partial remainders (rs, rc), where the value of the partial remainder
r is given by r = rc � rs. The left bold-diamond consisting of S0 to S15 diamonds satisfies
the range invariant (3.3.8)

Doublings and Translations

Let us consider Figure A.2. Doubling a point in S6 and S9 yields a point in R3 and R1

respectively. As illustrated in Figure A.5, we can bring each point, (rs, rc), in R3 and

R1 back to left bold-square by a translation over (�2,�2).

Let us now consider Figure A.4. Doubling a point in S0[S1[S4[S5 yields a

point in the left bold-diamond, S0 to S15. Doubling a point in S10[S11[S14[S15

APPENDIX A. ALGORITHMS B1, B1B AND B1C 154

yields a point in Q2 of Figure A.4. We can bring a point in Q2 back to left bold-

diamond by a translation over (�4,�4), as illustrated in Figure A.5. Any translation

over (�t,�t) leaves the value of r = rc � rs invariant and thus each translation

maintains invariant (3.3.2)).

Translation

A simple recoding implements a translation over (�2,�2) for a point in R1 and R3

as follows:

01 ! 00

00 ! 11

11 ! 10

10 ! 01

Notice that the second most-significant bit changes. The most-significant bit is a copy

of the second most-significant bit if the original value of the most-significant bit is 0

otherwise the most-significant bit is an inverse of the second most-significant bit.

An inversion of the most-significant bit (bit position with weight 2

2) implements a

translation over (�4,�4) for any point in Q2.

Note that if we omit the most-significant bit, then the translation over (�2,�2) can

be implemented by inverting the bit at position 2

1 and the translation over (�4,�4)

requires no operation. I use * to denote the extra inversion required for the translation

over (�2,�2). Therefore, the 2X* operation denotes doubling followed by translation

over (�2,�2).

Additions

Let us analyze what happens if we subtract D from a point in left bold-diamond in

Figure A.6.

APPENDIX A. ALGORITHMS B1, B1B AND B1C 155

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

Q2

Q3

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

R3

R1

Fig. A.2: Effect of doubling a point in S6 and S9. Doubling a point (rs, rc) in S6 and S9 yields
a point in R3 and R1 respectively.

When the partial remainder is in a binary signed-digit representation, we imple-

ment the addition r+ z of a remainder r = rc � rs and a choice z 2 {�2D,�D, D, 2D}

by means of a carry-free addition [13]. As shown in [13], we have

BSDcarry � BSDsum = rc � rs + z, (A.0.1)

where BSDcarry and BSDsum are the result of a carry-save addition of rs, rc, and

z, with an inversion of the parity result:

BSDcarry = 2 ⇤ majority(rs, rc, z), (A.0.2)

BSDsum = parity(rs, rc, z). (A.0.3)

With m non-fractional bits, the majority and parity functions forming the carry-

free addition can be done modulo 2

m. For the radix-2 division algorithms, m = 3.

APPENDIX A. ALGORITHMS B1, B1B AND B1C 156

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4

A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

Q2

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

R3

R1

Q3

Fig. A.3: Translating a point in R1 and R3 back to the left bold-diamond. Translation is
implemented by subtracting 2 from rs and rc. Note that translation keeps the value of the
remainder, r = rc � rs, unchanged.

This implementation of carry-free addition applies only if we take a two’s complement

representation for z [13]. Thus �D and �2D can be represented by �D = 110.y +

ulp and �2D = 10b.y + ulp respectively, for some bit vector y and bit b.

Following is the calculation for subtracting D from a point in S1

rs 000.
rc 001.

-D 110.y + ulp

BSDsum 111.
BSDcarry 11?.

These values for BSDsum and BSDcarry correspond to a point (rs, rc) in squares

T14 or T15.

APPENDIX A. ALGORITHMS B1, B1B AND B1C 157

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4

A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

Q2

Q3

Fig. A.4: Effect of doubling a point in S10[S11[S14[S15.

Following is the calculation for adding D to a point in square S4

rs 001.
rc 000.
D 001.x

BSDsum 000.
BSDcarry 00?.

These values for BSDsum and BSDcarry correspond to a point in S0 or S1.

Table A.1 shows the results of carry-free addition in small diamonds. For subtrac-

tion, consider the diamonds where the value of the partial remainder r is greater than

0. For addition, consider the diamonds where the value of the partial remainder r is

less than 0.

All subtractions of D from diamonds S1, S2, S4, S5, and S8 yield points in small

diamonds T3, T6, T7, T8, T10, or T11 of Figure A.6 which can be translated, doubled,

APPENDIX A. ALGORITHMS B1, B1B AND B1C 158

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4

A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

Q2

Q3

Fig. A.5: Translating a point in Q2 back to the left bold-diamond. Translation is implemented
by subtracting 4 from rs and rc. Note that translation keeps the value of the remainder, r =
rc � rs, unchanged.

Table A.1: The effect of adding or subtracting D

Origin
Destination after

subtracting D Origin
Destination after

adding D

S1 T14[T15 S4 S0[S1

S2 T0[T1 S8 S14[S15

S3 T6[T7 S9 S10[S11

S6 T4[T5 S12 S8[S9

S7 T0[T1 S13 S14[S15

S11 T14[T15 S14 S0[S1

APPENDIX A. ALGORITHMS B1, B1B AND B1C 159

r
s , parity/sum

r c
, m

aj
or

ity
/c

ar
ry

r = 4

r = -4

A
ct

ua
l V

al
ue

 o
f

th
e

R
em

ai
nd

er
,

r
=

 r
c

-
r s

Q1

S3

S2 S7

S6S1 S11

S0 S5 S10 S15

S4

S8

S9 S14

S13

S12

11
1.

11
0.

10
1.

10
0.

01
1.

01
0.

00
1.

00
0.

000.

001.

010.

011.

100.

101.

110.

111.

0

2

4

6

8

8

6

4

2

0

Q2

Q3

T3

T2 T7

T6T1 T11

T0 T5 T10 T15

T4

T8

T9 T14

T13

T12

Fig. A.6: The effect of carry-free additions and subtractions with D or 2D. The division
algorithms can perform carry-free additions or subtraction in the shaded squares.

and translated again to return a point in one of the S0 to S15 diamonds.

Subtracting D from any point in S0 yields a point in T0 or T4. Translating a point

in the T0 or T4 yields a point in S1 or S5 where the point must undergo another

subtraction. Therefore, instead of subtracting D, we subtract 2D from a point in S0

using carry-free addition

APPENDIX A. ALGORITHMS B1, B1B AND B1C 160

rs 000.
rc 011.

-2D 10?.y + ulp

BSDsum 11?.
BSDcarry 11?.

The resulting values for BSDsum and BSDcarry correspond a point in T1, T3,

T5, or T6. Points in these diamonds can be translated, doubled and translated again

to return a point in one of the smaller diamonds in the left bold-diamond.

All additions of D to points in S7, S10, S11, S13, and S14 yield points in S2, S3,

S6, S7, S8, or S12. Points in these diamonds can all be doubled and translated to

return a point in one of the S0 to S15 diamonds.

Addition of D to a point in S15 yields a point in S10 or S14 where the point must

undergo another addition rather than a doubling. Adding 2D, however, to any point in

S15 returns a point in S8, S9, S12, or S13, which can be doubled and translated to

remain in one of the S0 to S15 diamonds.

With the analysis of the doublings, translations, and additions, we can put together

a number of division algorithms based on the BSD representation for the partial re-

mainder and carry-free additions.

Before giving the five possible choices for sequences of operations, we can make

a few simplifications. Because each set of operations in our division algorithm takes

a point in one of the S0 to S15 diamonds and returns a point in one of the S0 to

S15 diamonds, we can omit the most-significant bit, which is always 0, and use only

the two non-fractional bits. The omission of the most-significant bit simplifies the

implementation of the translation over (-4, -4) to an operation that is implemented

automatically.

The five choices for the sequences of operations are: 2X, 2X*, SUB1&2X, SUB2&2X,

ADD1&2X and ADD2&2X. The quotient digit selected and the statements executed for

APPENDIX A. ALGORITHMS B1, B1B AND B1C 161

each of these operation is listed in Table 3.3.1. Furthermore, each of these operations

maintain invariant (3.3.2) and range invariant (3.3.8).

We can compose a division algorithm by choosing one sequence of operations for

each small diamond S0 through S15. For S2, S7, S8, and S13 there are two choices

for selecting a quotient digit. For S2 and S8 the two choices are as follows: selecting

a quotient digit 0 and performing a 2X operation or selecting a quotient digit 1 and

performing a SUB1&2X operation on the partial remainder. For S7 and S13 the two

choices are as follows: selecting a quotient digit 0 and performing a 2X operation

or selecting a quotient digit -1 and performing a ADD1&2X operation on the partial

remainder. For all other squares there is only one choice for selecting a quotient digit.

The three most symmetric algorithms appear in Figures A.7, A.8 and A.9.

Algorithms B1, B1b and B1c in Figures A.7 , A.8 and A.9 satisfy the range invariant

(3.3.8). Algorithm B1, also satisfies the range invariant r = rc � rs 2 (�2D, 2D).

The proof that Algorithm B1 satisfies the range invariant r 2 (�2D, 2D) is essentially

the same as the proof for algorithm A1. Therefore, algorithms B1 requires at least L+

3 iteration and algorithms B1b and B1c require at least L + 4 iterations to terminate

with an error e 2 (�ulp/2, ulp/2).

Algorithm B1 in Figure A.7 is the same algorithm as presented in [34]. Note that in

[34], the authors use the recurrence relation in (3.2.2) and hence the authors use the

range invariant r 2 (�D, D) for the partial remainder. Because we have considered

the recurrence relation in (3.2.3) throughout this paper, the range invariant for the

partial remainder in [34] translates to r 2 (�2D, 2D).

APPENDIX A. ALGORITHMS B1, B1B AND B1C 162

r
c, m

aj
or

ity
/c

ar
ry

r s
, p

ar
ity

/s
um

Actual Value of the Remainder,
r = rc - rs

SU
B2

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

2
X

2
X

2
X

2
X

A
D

D
1

&

 2
X

A
D

D
1

&

 2
X

A
D

D
1

&

 2
X

A
D

D
1

&

 2
X

A
D

D
1

&

 2
X

A
D

D
2

&

 2
X

11
.

10
.

01
.

00
.

00
.

01
.

10
.

11
.

4

2

0

4

2

0

r
=

 2

r
=

 -
2

(a
)D

ia
m

on
d

D
ia

gr
am

fo
rA

lg
or

ith
m

B
1.

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)P

-D
P

lo
tf

or
A

lg
or

ith
m

B
1.

Fi
g.

A
.7

:
A

lg
or

ith
m

B
1:

Fi
gu

re
s

(A
.7

a)
an

d
(A

.7
b)

ill
us

tra
te

th
e

qu
ot

ie
nt

se
le

ct
io

n
fu

nc
tio

n
of

al
go

rit
hm

s
B

1
in

D
ia

m
on

d
D

ia
gr

am
an

d
P

-D
di

ag
ra

m
.A

lg
or

ith
m

B
1

is
th

e
sa

m
e

al
go

rit
hm

as
pr

es
en

te
d

in
[3

4]
.

APPENDIX A. ALGORITHMS B1, B1B AND B1C 163

r
=

 2

r
=

 -
2

r
c, m

aj
or

ity
/c

ar
ry

r s
, p

ar
ity

/s
um

Actual Value of the Remainder,
r = rc - rs

SU
B2

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

2
X

2
X

2
X

2
X

2
X

2
X

2
X

A
D

D
1

&

 2
X

A
D

D
1

&

 2
X

2
X

A
D

D
1

&

 2
X

A
D

D
2

&

 2
X

11
.

10
.

01
.

00
.

00
.

01
.

10
.

11
.

4

2

0

4

2

0

(a
)D

ia
m

on
d

D
ia

gr
am

fo
rA

lg
or

ith
m

B
1b

.

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)P

-D
P

lo
tf

or
A

lg
or

ith
m

B
1b

.

Fi
g.

A
.8

:
A

lg
or

ith
m

B
1b

:
Fi

gu
re

s
(A

.8
a)

an
d

(A
.8

b)
ill

us
tra

te
th

e
qu

ot
ie

nt
se

le
ct

io
n

fu
nc

tio
n

of
al

go
rit

hm
s

B
1b

in
D

ia
m

on
d

D
ia

gr
am

an
d

P
-D

di
ag

ra
m

.

APPENDIX A. ALGORITHMS B1, B1B AND B1C 164

r
=

 2

r
=

 -
2

r
c, m

aj
or

ity
/c

ar
ry

r s
, p

ar
ity

/s
um

Actual Value of the Remainder,
r = rc - rs

SU
B2

&

 2
X

SU
B1

&

 2
X

SU
B1

&

 2
X

2
X
*

2
X

2
X

2
X

2
X

2
X

2
X

2
X

A
D

D
1

&

 2
X

2
X
*

2
X

A
D

D
1

&

 2
X

A
D

D
2

&

 2
X

11
.

10
.

01
.

00
.

00
.

01
.

10
.

11
.

4

2

0

4

2

0

(a
)D

ia
m

on
d

D
ia

gr
am

fo
rA

lg
or

ith
m

B
1c

.

1234

r n

D

1
0

q n
=0

q n
=1

q n
=2

2

r n
=D

r n
=2

D

-1 -2 -3 -4

q n
=-

1
q n

=-
2

r n
=-

D

r n
=-

2D

(b
)P

-D
P

lo
tf

or
A

lg
or

ith
m

B
1c

.

Fi
g.

A
.9

:
A

lg
or

ith
m

B
1c

:
Fi

gu
re

s
(A

.9
a)

an
d

(A
.9

b)
ill

us
tra

te
th

e
qu

ot
ie

nt
se

le
ct

io
n

fu
nc

tio
n

of
al

go
rit

hm
s

B
1b

in
D

ia
m

on
d

D
ia

gr
am

an
d

P
-D

di
ag

ra
m

.

APPENDIX B. ON-THE-FLY CONVERSION 165

Appendix B

On-the-Fly Conversion

The division algorithms in Chapter 3 select a quotient digit from the redundant set {-1,

0, 1} or {-2, -1, 0, 1, 2}. With slight modification, a division algorithm can be used to

compute square-root of a number. Hence, the square-root and division operations of-

ten share the same hardware. Square-root algorithms operation execute operations

such as r = r-2 ⇤ q + c. Here, q is the quotient “thus far” and c = 2

�i�1 de-

notes the unit of least-significant position of q and i is the iteration index. Note that

in square-root algorithms, quotient denotes the root. If both r and q are in a redun-

dant representation then the carry-save additions and subtractions require a 4:2 (four-

input) rather than 3:2 (three-input) carry-save adders. A 4:2 carry-save adder takes

more time than 3:2 carry-save adder. A 3:2 carry-save adder suffices if r is in a redun-

dant representation and q is in a unique representation. Because the digit-recurrence

algorithms compute one-digit per iteration, we can calculate a unique representation

of the quotient on-the-fly without requiring expensive carry-propagate additions.

APPENDIX B. ON-THE-FLY CONVERSION 166

B.1 On-the-Fly Conversion

Division and square-root algorithms update the quotient according to the expression

in Equation (B.1.1), where qj is the quotient digit from the set {-1, 0, 1} or {-2, -1, 0, 1,

2}.

q = q � qi ⇤ c; c =
c
2

(B.1.1)

Consider on-the-fly conversion from the set {-1, 0, 1} to {0, 1}. Let Q denote the

unique binary representation of q. The least-significant bit position of Q is 2

-i. With

c = 2

-i-1, 2 ⇤ c denotes the least-significant bit position of Q. Consequently, we can

compute the unique representation of q by postfixing Q with 1 when the algorithm

reties a quotient digit 1 and postfixing Q with -1 when the algorithm retires a quotient

digit -1, and so on. To avoid a carry-propagate addition when postfixing Q with -1,

consider the invariant in Equation (B.1.2)

Q
0

is the unique representation of q

Q-1

is the unique representation of q-2 ⇤ c
(B.1.2)

If the invariant in Equation (B.1.2) holds initially, then the following statements

maintain the invariant in Equation (B.1.2).

For qi = -1:

q = q-c; c =
c
2

; Q
0

= Q-1

1; Q-1

= Q-1

0

For qi = 0:

q = q; c =
c
2

; Q
0

= Q
0

0; Q-1

= Q-1

1

For qi = 1:

q = q + c; c =
c
2

; Q
0

= Q
0

1; Q-1

= Q
0

0

APPENDIX B. ON-THE-FLY CONVERSION 167

Here are two examples to show that the above statements maintain the invariants

in Equation (B.1.2): First consider the case for qi = -1.

q = q � c; c =
c
2

Q
0

= q = q � c = q � 2c + c = Q-1

+ c = Q-1

1

Q-1

= q � 2c = (q � c)� c = q � 2c = Q-1

0

(B.1.3)

Now consider the case for qi = 1.

q = q + c; c =
c
2

Q
0

= q = q + c = Q
0

+ c = Q
0

1

Q-1

= q � 2c = (q + c)� c = q = Q
0

0

(B.1.4)

For on-the-fly conversion from the set {-2, -1, 0, 1, 2} to {0, 1}, consider the invari-

ant in Equation (B.1.5)

Q
1

is the unique representation of q+2 ⇤ c

Q
0

is the unique representation of q

Q-1

is the unique representation of q-2 ⇤ c

Q-2

is the unique representation of q-4 ⇤ c

(B.1.5)

The following statements maintain the invariant in Equation (B.1.5).

For qi = �2 :

q = q-2 ⇤ c; c =
c
2

; Q+1

= Q-1

1; Q
0

= Q-1

0; Q-1

= Q-2

1; Q-2

= Q-2

0;

For qi = �1 :

q = q-c; c =
c
2

; Q+1

= Q
0

0; Q
0

= Q-1

1; Q-1

= Q-1

0; Q-2

= Q-2

1;

For qi = 0 :

q = q; c =
c
2

; Q+1

= Q
0

1; Q
0

= Q
0

0; Q-1

= Q-1

1; Q-1

= Q-1

0;

APPENDIX B. ON-THE-FLY CONVERSION 168

For qi = 1 :

q = q + c; c =
c
2

; Q + 1

= Q+1

0; Q
0

= Q
0

1; Q-1

= Q
0

0; Q-2

= Q-1

1;

For qi = 2 :

q = q + 2⇤ c; c =
c
2

; Q+1

= Q+11

; Q
0

= Q+1

0; Q-1

= Q
0

1; Q-2

= Q
0

0;

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 169

Appendix C

Delay Estimates for the Data Path

Topologies

This appendix gives the delay estimates for the remaining thirteen data path topolo-

gies using the method of logical effort.

C.1 Topology 1

C.1.1 Data Path T1D2

Figure C.1 shows the T1D2 data path. For the data path T1D2 consider the following

paths to estimate the delay:

• Select Path: remainder-reg ! QSLC ! 2:1 Mux ! 2:1 Mux !

remainder-reg

• Add Path: remainder-reg ! QSLC ! 4:1 Mux ! 2:1 Mux ! 2:1 Mux

! remainder-reg

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 170

• Shift Path: remainder-reg ! 2X* ! 2:1 Mux ! 2:1 Mux !

remainder-reg

Table C.1 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.2 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.1 and B in Table C.2, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 10.8 FO4,

Dasync = 10.0 FO4.

(C.1.1)

Table C.1: Data Path T1D2: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

4:1 Mux 2.7 6 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 11.3 4 2 10 4 2

G 72 170 7

P 14 20 10

N 7 9 5

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 171

R1

R2

R3

QSLC

ADD2
& 2X*

ADD1
& 2X*

SUB1
& 2X*

SUB2
& 2X*

2X*

4:
1

Mu
x

2:
1

Mu
x

4:
1

Mu
x

2:
1

Mu
x

Qu
ot

ie
nt

 u
pd

at
e

2D

D

-D

-2D

rs[i],
rc[i]

rs[i+1],
rc[i+1]

2x54

2x54

2x54

2x54

2x54

2x54

2x54

2x54

4x56

4x56

4x56

4x56

4x56

4x56

4x56

56

56

56

56

q0[i]

qp1[i]

qm1[i]

qm2[i]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

2x2 MSBs 2

4 select path

add path

shift
path

remainder
data-path

quotient
data-path

Fig. C.1: Data Path T1D2

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 172

Table C.2: Data Path T1D2: Branching effort.

Node Select Path Add Path Shift Path

R0 2 2 2

R1 1.3 2.7

R2 332

R3 332

B 664 863 6

C.1.2 Data Path T1D3

Figure C.2 shows the T1D3 data path. For the data path T1D3 consider the following

paths to estimate the delay:

• Select Path: remainder-reg ! QSLC ! 3:1 Mux ! 2:1 Mux !

remainder-reg

• Add Path: remainder-reg ! 2:1 Mux ! 3:1 Mux ! 2:1 Mux !

remainder-reg

• Shift Path: remainder-reg ! 2X* ! 3:1 Mux ! 2:1 Mux !

remainder-reg

Table C.3 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.4 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.3 and B in Table C.4, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 10.5 FO4,

Dasync = 10.0 FO4.

(C.1.2)

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 173

2x54

2x54

2x54

2x2 MSBs
3

2

R1

R2

2:
1

Mu
x

2

R3

QSLC

ADD2
& 2X*

ADD1
& 2X*

SUB1
& 2X*

SUB2
& 2X*

2X*

2:
1

Mu
x

3:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

2x54

2x54

2x54

2x54

Qu
ot

ie
nt

 u
pd

at
e

4x56

4x56

4x56

4x56

4x56

4x56

4x56

2D

D

-D

-2D

56

56

56

56

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

rs[i+1],
rc[i+1]

2x54

rs[i],
rc[i]

2x54

select path

add path

add path

shift path

remainder
data-path

quotient
data-path

Fig. C.2: Data Path T1D3

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 174

Table C.3: Data Path T1D3: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

2:1 Mux 1.8 4 2

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 7.3 4 1 6 4 1

G 70 102 10

P 15 19 11

N 6 8 5

Table C.4: Data Path T1D3: Branching effort.

Node Select Path Add Path Shift Path

R0 2 2 2

R1 1.5 5.5

R2 332

R3 332

B 664 996 11

C.1.3 Data Path T1D4

Figure C.3 shows the T1D4 data path. For the data path T1D4 consider the following

paths to estimate the delay:

• Select Path: remainder-reg ! QSLC ! 3:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: remainder-reg ! QSLC ! 2:1 Mux !

ADD&2X* or SUB&2X* ! 3:1 Mux ! 2:1 Mux ! remainder-reg

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 175

• Add2 Path: remainder-reg ! amp ! 2:1 Mux ! 3:1 Mux !

2:1 Mux ! quotient-reg

• Shift Path: remainder-reg ! 2X* ! QSLC ! 3:1 Mux !

2:1 Mux ! remainder-reg

Tables C.5 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.9 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.5 and B in Table C.6, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 11.8 FO4,

Dasync = 10.6 FO4.

(C.1.3)

Table C.5: Data Path T1D4: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add1 Path Add2 Path Shift Path

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2

CSA 10 6 1

2:1 Mux 1.8 4 2 1.8 4 2

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 7.3 4 1 6 4 1 6 4 1

G 70 1016 102 10

P 15 25 21 11

N 6 9 10 5

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 176

2x54

2x2
MSBs

3
2

R1

R2

2:
1

Mu
x

2

R3

QSLC

ADD &
2X*

SUB &
2X*

2X*

2:
1

Mu
x

3:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

2x54

2x54

Qu
ot

ie
nt

 u
pd

at
e

4x56

4x56

4x56

4x56

4x56

4x56

4x56

2D

D

-D

-2D

56

56

56

56

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

rs[i+1],
rc[i+1]

2x54

rs[i],
rc[i]
2x54

R4

select path

add1 path

add1 path

add2 path

add2 path

shift path

remainder
data-path

quotient
data-path

Fig. C.3: Data Path T1D4

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 177

Table C.6: Data Path T1D4: Branching effort.

Node Select Path Add1 Path Add2 Path Shift Path

R0 2 2 2 2

R1 1.3 1.3 8

R2 60 11

R3 224

R4 332

B 664 156 6290 16

C.1.4 Data Path T1D5

Figure C.4 shows the T1D5 data path. For the data path T1D5 consider the following

paths to estimate the delay:

• Select1 Path: remainder-reg ! QSLC ! 2:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: remainder-reg ! QSLC ! 4:1 Mux ! CSA&2X* ! 2:1 Mux

! 2:1 Mux ! remainder-reg

• Add2 Path: remainder-reg ! amp ! 4:1 Mux ! 2:1 Mux ! 2:1 Mux

! quotient-reg

• Shift Path: remainder-reg ! 2X* ! 2:1 Mux ! 2:1 Mux !

remainder-reg

Tables C.7 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.8 lists the

branching effort at various nodes in the respective paths.

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 178

Using the values of G, P and N in Table C.7 and B in Table C.8, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 12.2 FO4,

Dasync = 10.6 FO4.

(C.1.4)

Table C.7: Data Path T1D5: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add1 Path Add2 Path Shift Path

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2

CSA 10 6 1

4:1 Mux 2.7 6 2 2.7 6 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 11.3 4 1 10 4 2 10 4 2

G 72 1692 170 7

P 14 24 22 10

N 6 10 11 5

Table C.8: Data Path T1D5: Branching effort.

Node Select Path Add1 Path Add2 Path Shift Path

R0 2 2 2 2

R1 1.2 1.2 81

R2 60 12

R3 224

R4 332

B 664 144 6451 162

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 179

R1

R2

R3

QSLC

2X*

4:
1

Mu
x

2:
1

Mu
x

4:
1

Mu
x

2:
1

Mu
x

Qu
ot

ie
nt

 u
pd

at
e

2D

D

-D

-2Drs[i],
rc[i]

rs[i+1],
rc[i+1]

2x54

54

54

54

54

2x54

2x54

2x54

4x56

4x56

4x56

4x56

4x56

4x56

4x56

56

56

56

56

q0[i]

qp1[i]

qm1[i]

qm2[i]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

2x2
MSBs

2

4

CSA &
2X*

2x54

R4

select path

add1 path

add2 path

shift path

remainder
data-path

quotient
data-path

Fig. C.4: Data Path T1D5

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 180

C.2 Topology 2

C.2.1 Data Path T2D1

Figure C.1 shows the T2D1 data path. For the data path T2D1 consider the following

paths to estimate the delay:

• Select Path: qslc-reg ! amp ! 5:1 Mux ! 2:1 Mux ! qslc-reg

• Add Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! QSLC ! 5:1 Mux ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! QSLC ! 5:1 Mux ! 2:1 Mux !

qslc-reg

Table C.1 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.2 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.1 and B in Table C.2, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 10.3 FO4,

Dasync = 9.2 FO4.

(C.2.1)

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 181

R3

5:
1

Mu
x

QSLC

QSLC

QSLC

QSLC

QSLC

5:
1

Mu
x

ADD2
& 2X*

ADD1
& 2X*

SUB1
& 2X*

SUB2
& 2X*

2X*

5:
1

Mu
x

2x2
MSBs

2x2
MSBs

2x2
MSBs

2x2
MSBs

2x2
MSBs

Qu
ot

ie
nt

 u
pd

at
e

q0[i]

qm1[i]

qm2[i]

qp1[i]

56

56

56

56

4x56

4x56

4x56

4x56

4x56

2x54

2x54

2x54

2x54

2x54

5

5

5

5

5

2x54

55

5

2x54

4x56

qslc[i+1]

rs[i],
rc[i]

2D

D

-D

-2D

R2

R2

R2

R2

R2

R1

qslc[i+2]

rs[i+1],
rc[i+1]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

select path

add
path

add
path

add
path

shift
path

add
path

amp

Quotient
data path

Remainder
data path

Fig. C.1: Data Path T2D1

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 182

Table C.1: Data Path T2D1: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2

CSA 10 6 1

5:1 Mux 3.3 7 2 3.3 7 2 3.3 7 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2 10 4 2

G 12 1186 119

P 15 23 17

N 7 8 7

Table C.2: Data Path t2D1: Branching effort.

Node Select Path Add Path Shift Path

R0 2 2 2

R1 4.4 28.4

R2 2.6

R3 338

B 676 23 57

C.2.2 Data Path T2D2

Figure C.2 shows the T2D2 data path. For the data path T2D2 consider the following

paths to estimate the delay:

• Select Path: qslc-reg ! 2:1 Mux ! 2:1 Mux !

qslc-reg

• Add1 Path: qslc-reg ! amp ! amp ! 4:1 Mux ! 2:1 Mux ! 2:1

Mux ! qslc-reg

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 183

• Add2 Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! QSLC ! 4:1 Mux ! 2:1 Mux ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! QSLC ! 2:1 Mux ! 2:1 Mux !

qslc-reg

Table C.3 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.4 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.3 and B in Table C.4, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 11.2 FO4,

Dasync = 9.0 FO4.

(C.2.2)

Table C.3: Data Path T2D2: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add1 Path Add2 Path Shift Path

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1

4:1 Mux 2.7 6 2 2.7 6 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2 10 4 2

G 7 17 1692 64

P 12 20 26 14

N 7 11 10 7

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 184

4
qslc[i+1]

2D

D

-D

-2D

qslc[i+2]

q0[i+1],
qp1[i+1,
qm1[i+1],
qm2[i+1]

q0[i]

qp1[i]

qm1[i]

qm2[i]

2

4

2

56

R1

R3

R4

R2

R2

R2

R2

QSLC

QSLC

QSLC

QSLC

4:
1
Mu
x

2:
1

Mu
x

QSLC

6

6

6

6

6

6

4:
1

Mu
x

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

2:
1

Mu
x

2x54

2x54

2x54

2x54

2x54

2x54

2x2
MSBs

2x2
MSBs

2x2
MSBs

2x2 MSBs

2x2 MSBs

4:
1

Mu
x

2:
1

Mu
x

4x56

Qu
ot

ie
nt

 u
pd

at
e

4x56

4x56

4x56

4x56

4x56

56

56

56

4x56

2x54

2x54

6

rs[i],
rc[i]

rs[i+1],
rc[i+1]

select path

add1
path

shift1
path

add2
path

amp amp

amp

Quotient
data path

Remainder
data path

add3
path

Fig. C.2: Data Path T2D2

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 185

Table C.4: Data Path T2D2: Branching effort.

Node Select Path Add1 Path Add2 Path Shift Path

R0 2 2 2 2

R1 6.4 7

R2 2.6

R3 338

R4 338

B 676 676 33 14

C.2.3 Data Path T2D3

Figure C.3 shows the T2D3 data path. For the data path T2D3 consider the following

paths to estimate the delay:

• Select Path: qslc-reg ! amp ! 3:1 Mux ! 2:1 Mux ! qslc-reg

• Add1 Path: qslc-reg ! amp ! amp ! 2:1 Mux ! 3:1 Mux ! 2:1

Mux ! qslc-reg

• Add2 Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! QSLC ! 2:1 Mux ! 3:1 Mux ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! QSLC ! 3:1 Mux ! 2:1 Mux !

qslc-reg

Table C.5 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.6 lists the

branching effort at various nodes in the respective paths.

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 186

Using the values of G, P and N in Table C.5 and B in Table C.6, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 10.6 FO4,

Dasync = 9.1 FO4.

(C.2.3)

Table C.5: Data Path T2D3: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select Path Add1 Path Add2 Path Shift Path

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1

2:1 Mux 1.8 4 2 1.8 4 2

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1 6 4 1

G 10 17 1016 58

P 13 19 25 15

N 7 11 9 6

Table C.6: Data Path T2D3: Branching effort.

Node Select Path Add1 Path Add2 Path Shift Path

R0 2 2 2 2

R1 7.3 3.7

R2 1.7

R3 338

R4 338

B 676 676 25 7

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 187

R1

2D

D

-D

-2D

2x54

R2

R2

R2

R2

R3

R4

QSLC

QSLC

QSLC

QSLC

QSLC

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

2x54

2x54

2x54

4x56

4x56

4x56

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

Qu
ot

ie
nt

 u
pd

at
e

4x56

4x56

4x56

4x56

2x54

2x54

2x54

2x54

2x2 MSBs

2x2 MSBs

2x2 MSBs

2x2
MSBs

2x2
MSBs

qslc[i+1]

qslc[i+2]

q0[i+1],
qp1[i+1,
qm1[i+1],
qm2[i+1]

q0[i]

qp1[i]

qm1[i]

qm2[i]

rs[i],
rc[i]

rs[i+1],
rc[i+1]

56

56

56

56

6

6

6

6

6

6

6

6

3

2x2

3

2x2
amp amp

amp

2x54

select path

add1
path

shift1
path

add1
path

add2
path

Quotient
data path

Remainder
data path

add2
path

Fig. C.3: Data Path T2D3

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 188

C.2.4 Data Path T2D4

Figure C.4 shows the T2D4 data path. For the data path T2D4 consider the following

paths to estimate the delay:

• Select Path: qslc-reg ! amp ! 3:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

• Add1 Path: qslc-reg ! 2:1 Mux ! ADD&2X* or SUB&2X* ! QSLC !

3:1 Mux ! 2:1 Mux ! qslc-reg

• Add2 Path: qslc-reg ! amp ! 2:1 Mux ! ADD&2X* or SUB&2X* !

3:1 Mux ! 2:1 Mux ! remainder-reg

• Add3 Path: qslc-reg ! amp ! amp ! 2:1 Mux ! 3:1 Mux ! 2:1

Mux ! quotient-reg

• Shift Path: remainder-reg ! 2X* ! QSLC ! 3:1 Mux ! 2:1 Mux !

qslc-reg

Tables C.7 and C.8 list the logical effort and parasitic delay of the logic gates in the

select and shift paths, and add paths, respectively, along with the number of stages

in each gate. Table C.9 lists the branching effort at various nodes in the respective

paths.

Using the values of G, P and N in Tables C.7 and C.8, and B in Table C.9, the

delays of the data path when used in a synchronous and self-timed environment are

Dsync = 10.6 FO4,

Dasync = 9.0 FO4.

(C.2.4)

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 189

Table C.7: Data Path T2D4: Logical Effort and parasitic delay of the gates in the select and
shift paths.

Gate
Select Path Shift Path

g p n g p n

reg 2 2 1 2 2 1

amp 1 2 2

3:1 Mux 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2

QSLC 6 4 1

G 10 58

P 13 15

N 7 6

Table C.8: Data Path T2D4: Logical Effort and parasitic delay of the gates in the add paths.

Gate
Add1 Path Add2 Path Add3 Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1 10 6 1

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1

G 1016 170 17

P 25 23 19

N 9 10 11

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 190

6

qslc[i+1]

2D

D

-D

-2D

rs[i+1],
rc[i+1]

2x54

2x3 MSBs

qslc[i+2]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

4x56

Qu
ot

ie
nt

 u
pd

at
e

q0[i]

qp1[i]

qm1[i]

qm2[i]

3:
1

Mu
x

3

2x54

6

6

56

2:
1

Mu
x

2:
1

Mu
x

ADD &
2X*

SUB &
2X*

2X*

QSLC

QSLC

QSLC

6

2D

D

-D

-2D

2x2

2x54

2x2

2x2

rs[i],
rc[i]

2x52

2

2x54
R2

R1

R6

R5

R4

52

52

3

3

3

3

3

3

2:
1

Mu
x

2:
1

Mu
x

52

52

ADD &
2X

SUB &
2X

3:
1

Mu
x

52

52

2x54
2X

amp

2:
1

Mu
x

2:
1

Mu
x

4x56

4x56

4x56

4x56

3:
1

Mu
x

4x56

4x56

4x56

amp

56

56

56

R3

select path

add1
path

add1
path

shift
path

add2 path

add2 path

add3 path

add3 path

amp

Quotient
data path

LSB data path

MSB data path

Fig. C.4: Data Path T2D4

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 191

Table C.9: Data Path T2D4: Branching effort.

Node Select Path Add1 Path Add2 Path Add3 Path Shift Path

R0 2 2 2 2 2

R1 4.4 3.4 32.3

R2 10

R3 52

R4 1.7

R5 224

R6 338

B 676 15 354 14470 20

C.3 Topology 3

C.3.1 Data Path T3D1

Figure C.1 shows the T3D1 data path. For the data path T3D1 consider the following

paths to estimate the delay:

• Select1 Path: qslc-reg ! amp ! 5:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

• Select2 Path: qslc-reg ! amp ! 5:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

• Add Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! 5:1 Mux ! QSLC ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! 5:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 192

Table C.1 lists the logical effort and parasitic delay of the logic gates in the select,

add and shift paths along with the number of stages in each gate. Table C.2 lists the

branching effort at various nodes in the respective paths.

Using the values of G, P and N in Table C.1 and B in Table C.2, the delays of the

data path when used in a synchronous and self-timed environment are

Dsync = 10.3 FO4,

Dasync = 9.5 FO4.

(C.3.1)

Table C.1: Data Path T3D1: Logical Effort and parasitic delay of the gates in the select, add
and shift paths.

Gate
Select1 Path Select2 Path Add Path Shift Path

g p n g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1

5:1 Mux 3.3 7 2 3.3 7 2 3.3 7 2 3.3 7 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2 1.8 2 2

QSLC 10 4 2 10 4 2 10 4 2

G 119 12 1186 119

P 19 17 23 17

N 9 9 8 7

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 193

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

5:
1
Mu
x

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

5:
1
Mu
x

Qu
ot

ie
nt

 u
pd

at
e

5:
1

Mu
x

QSLC

2D

D

-D

-2D

2D

D

-D

-2D

5

rs[i+1],
rc[i+1]

2x2

2x2

2x2

2x2

2x2

2x3
rs[i],
rc[i]

qslc[i+2]

qslc[i+1]

2x522x52

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

56

2x54

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

2x52

2x52

2x52

2x52

4x56

4x56

4x56

4x56

4x56

2x54

2x2

5

5
amp

amp

amp

56

56

56

MSB data path

LSB data path

Quotient
path

R1

R2

R4

R3

select path

add path

add path

add path

add path

shift path

Fig. C.1: Data Path T3D1

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 194

Table C.2: Data Path T3D1: Branching effort.

Node Select1 Path Select2 Path Add Path Shift Path

R0 2 2 2 2

R1 4.4 11

R2 16.7 4.2

R3 2.6 2.6 2.6

R4 104

B 87 874 23 57

C.3.2 Data Path T3D2

Figure C.2 shows the T3D2 data path. For the data path T3D2 consider the following

paths to estimate the delay:

• Select1 Path: qslc-reg ! 2:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

• Select2 Path: qslc-reg ! amp ! 2:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: qslc-reg ! amp ! 4:1 Mux ! 2:1 Mux ! QSLC ! 2:1

Mux ! qslc-reg

• Add2 Path: qslc-reg ! amp ! amp ! 4:1 Mux ! 2:1 Mux ! 2:1

Mux ! remainder-reg

• Add3 Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! 4:1 Mux ! 2:1 Mux ! QSLC ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! 2:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 195

Tables C.3 and C.4 list the logical effort and parasitic delay of the logic gates in the

select and shift paths, and add paths, respectively, along with the number of stages

in each gate. Table C.5 lists the branching effort at various nodes in the respective

paths.

Using the values of G, P and N in Tables C.3 and C.4, and B in Table C.5, the

delays of the data path when used in a synchronous and self-timed environment are

Dsync = 11.2 FO4,

Dasync = 9.3 FO4.

(C.3.2)

Table C.3: Data Path T3D2: Logical Effort and parasitic delay of the gates in the select and
shift paths.

Gate
Select1 Path Select2 Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2 10 4 2

G 64 7 64

P 14 12 14

N 7 7 8

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 196

Table C.4: Data Path T3D2: Logical Effort and parasitic delay of the gates in the add paths.

Gate
Add1 Path Add2 Path Add3 Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1

4:1 Mux 2.67 6 2 2.7 6 2 2.7 6 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2 10 4 2

G 170 17 1692

P 22 20 26

N 11 11 10

Table C.5: Data Path T3D2: Branching effort.

Node Select1 Path Select2 Path Add1 Path Add2 Path Add3 Path Shift Path

R0 2 2 2 2 2 2

R1 6.4 2.7

R2 16.5 4.2 17.7 4.1

R3 2.6 2.6 2.6 2.6

R4 104 104

B 86 874 92 853 33 14

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 197

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

Qu
ot

ie
nt

 u
pd

at
e

QSLC

2D

D

-D

-2D

2D

D

-D

-2D

6

rs[i+1],
rc[i+1]

2x2

2x2

2x2

2x2

2x2

2x3

rs[i],
rc[i]

qslc[i+2]

qslc[i+1]

2x522x52

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

56

2x54

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

2x52

2x52

2x52

2x52

4x56

4x56

4x56

4x56

4x56

2x54

2x2

4

4
amp

amp

amp

56

56

56

MSB data path

LSB data path

Quotient
path

4:
1

Mu
x

4:
1

Mu
x

4:
1

Mu
x

2:
1

Mu
x

2

2:
1

Mu
x

2:
1

Mu
x

2

amp

amp

R1

R2

R2

R4

R3

R4

select path

add1 path

add2 path

shift path

Fig. C.2: Data Path T3D2

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 198

C.3.3 Data Path T3D3

Figure C.3 shows the T3D3 data path. For the data path T3D3 consider the following

paths to estimate the delay:

• Select1 Path: qslc-reg ! 3:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

• Select2 Path: qslc-reg ! amp ! 3:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: qslc-reg ! amp ! 2:1 Mux ! 3:1 Mux ! QSLC ! 2:1

Mux ! qslc-reg

• Add2 Path: qslc-reg ! amp ! amp ! 2:1 Mux ! 3:1 Mux ! 2:1

Mux ! remainder-reg

• Add3 Path: remainder-reg ! ADD2&2X* or ADD1&2X* or SUB1&2X* or

SUB2&2X* ! 2:1 Mux ! 3:1 Mux ! QSLC ! 2:1 Mux ! qslc-reg

• Shift Path: remainder-reg ! 2X* ! 3:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

Tables C.6 and C.7 list the logical effort and parasitic delay of the logic gates in the

select and shift paths, and add paths, respectively, along with the number of stages

in each gate. Table C.8 lists the branching effort at various nodes in the respective

paths.

Using the values of G, P and N in Tables C.6 and C.7, and B in Table C.8, the

delays of the data path when used in a synchronous and self-timed environment are

Dsync = 10.6 FO4,

Dasync = 9.1 FO4.

(C.3.3)

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 199

Table C.6: Data Path T3D3: Logical Effort and parasitic delay of the gates in the select and
shift paths.

Gate
Select1 Path Select2 Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1 6 4 1

G 58 10 58

P 15 13 15

N 6 7 9

Table C.7: Data Path T3D3: Logical Effort and parasitic delay of the gates in the add paths.

Gate
Add1 Path Add2 Path Add3 Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1 6 4 1

G 102 17 1016

P 21 19 25

N 10 11 10

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 200

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

ADD2 &
2X*

ADD1 &
2X*

SUB1 &
2X*

SUB2 &
2X*

2X*

Qu
ot

ie
nt

 u
pd

at
e

QSLC

2D

D

-D

-2D

2D

D

-D

-2D

7

rs[i+1],
rc[i+1]

2x2

2x2

2x2

2x2

2x2

2x3

rs[i],
rc[i]

qslc[i+2]

qslc[i+1]

2x522x52

q0[i]

qp1[i]

qm1[i]

qm2[i]

4x56

56

2x54

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

2x52

2x52

2x52

2x52

4x56

4x56

4x56

4x56

4x56

2x54

2x2

2x2

2x2
amp

amp

amp

56

56

56

MSB data path

LSB data path

Quotient path

3:
1

Mu
x

3

3:
1

Mu
x

3:
1

Mu
x

3

amp

amp

R1

R2

R2

R4

R3

R4

2:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

2:
1

Mu
x

select path

add2
path

add2 path

add1
path

add1 path

shift
path

Fig. C.3: Data Path T3D3

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 201

Table C.8: Data Path T3D3: Branching effort.

Node Select1 Path Select2 Path Add1 Path Add2 Path Add3 Path Shift Path

R0 2 2 2 2 2 2

R1 7.6 2.1

R2 12.3 4.7 12.2 4.7

R3 1.7 1.7 1.7 1.7

R4 104 104

B 42 978 42 978 26 7

C.3.4 Data Path T3D4

Figure C.4 shows the T3D4 data path. For the data path T3D4 consider the following

paths to estimate the delay:

• Select1 Path: qslc-reg ! 3:1 Mux ! QSLC ! 2:1 Mux ! qslc-reg

• Select2 Path: qslc-reg ! amp ! 3:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: qslc-reg ! 2:1 Mux ! ADD&2X* or SUB&2X* ! 3:1 Mux

! QSLC ! 2:1 Mux ! qslc-reg

• Add2 Path: qslc-reg ! amp ! 2:1 Mux ! ADD&2X* or SUB&2X* !

3:1 Mux ! 2:1 Mux ! remainder-reg

• Add3 Path: qslc-reg ! amp ! amp ! 2:1 Mux ! 3:1 Mux ! 2:1

Mux ! quotient-reg

• Shift Path: remainder-reg ! 2X* ! 3:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

Tables C.9 and C.10 list the logical effort and parasitic delay of the logic gates

in the select and shift paths, and add paths, respectively, along with the number of

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 202

stages in each gate. Table C.11 lists the branching effort at various nodes in the

respective paths.

Using the values of G, P and N in Tables C.9 and C.10, and B in Table C.11, the

delays of the data path when used in a synchronous and self-timed environment are

Dsync = 10.7 FO4,

Dasync = 9.2 FO4.

(C.3.4)

Table C.9: Data Path T3D4: Logical Effort and parasitic delay of the gates in the select and
shift paths.

Gate
Select1 Path Select2 Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1 6 4 1

G 58 10 58

P 15 13 15

N 6 7 9

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 203

Table C.10: Data Path T3D4: Logical Effort and parasitic delay of the gates in the add paths.

Gate
Add1 Path Add2 Path Add3 Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1 10 6 1

3:1 Mux 2.7 5 2 2.7 5 2 2.7 5 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 6 4 1

G 1016 170 17

P 25 23 19

N 9 10 6

Table C.11: Data Path T3D4: Branching effort.

Node Select1 Path Select2 Path Add1 Path Add2 Path Add3 Path Shift Path

R0 2 2 2 2 2 2

R1 6

R2 5.5 4.1 37.7

R3 12.3 4.7

R4 104 52

R5 224

R6 1.7 1.7 1.7

B 42 978 19 426 16890 20

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 204

MSB
data path

LSB
data path

Quotient
path

R1

2:
1

Mu
x

2:
1

Mu
x

ADD1 &
2X*

SUB1 &
2X*

3:
1
Mu
x

QSLC

2X*

2:
1

Mu
x

2:
1

Mu
x

ADD1 &
2X

SUB1 &
2X

3:
1
Mu
x

2X

2:
1

Mu
x

2:
1

Mu
x

3:
1

Mu
x

ampamp

amp

2D

D

-D

-2D

2D

D

-D

-2D

7

2x54

4x56

4x56

4x56

4x56

4x56

4x56

4x56

4x56

2x2

2x2

2x2

3

3

2x3

3
2x2

Qu
ot

ie
nt

 u
pd

at
e

q0[i]

qp1[i]

qm1[i]

qm2[i]

56

56

56

56

rs[i],
rc[i]

2x522x54

2x52

2x52

2x52

52

52

rs[i+1],
rc[i+1]

qslc[i+2]

qslc[i+1]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

R2

R3

R4

R5

R5

R6

R7

select path

add1
path

add2
path

add3
path

shift path

add1 path

add2
path

add3 path

Fig. C.4: Data Path T3D4

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 205

C.3.5 Data Path T3D5

Figure C.5 shows the T3D5 data path. For the data path T3D5 consider the following

paths to estimate the delay:

• Select1 Path: qslc-reg ! 2:1 Mux ! QSLC ! 2:1 Mux ! qslc-reg

• Select2 Path: qslc-reg ! amp ! 2:1 Mux ! 2:1 Mux !

remainder-reg

• Add1 Path: qslc-reg ! 4:1 Mux ! CSA&2X* ! 2:1 Mux ! QSLC !

2:1 Mux ! qslc-reg

• Add2 Path: qslc-reg ! amp ! 4:1 Mux ! CSA&2X* ! 2:1 Mux !

2:1 Mux ! remainder-reg

• Add3 Path: qslc-reg ! amp ! amp ! 4:1 Mux ! 2:1 Mux ! 2:1

Mux ! quotient-reg

• Shift Path: remainder-reg ! 2X* ! 2:1 Mux ! QSLC ! 2:1 Mux !

qslc-reg

Tables C.12 and C.13 list the logical effort and parasitic delay of the logic gates

in the select and shift paths, and add paths, respectively, along with the number of

stages in each gate. Table C.14 lists the branching effort at various nodes in the

respective paths.

Using the values of G, P and N in Tables C.12 and C.13, and B in Table C.14, the

delays of the data path when used in a synchronous and self-timed environment are

Dsync = 11.2 FO4,

Dasync = 9.3 FO4.

(C.3.5)

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 206

Table C.12: Data Path T3D5: Logical Effort and parasitic delay of the gates in the select and
shift paths.

Gate
Select1 Path Select2 Path Shift Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2 10 4 2

G 64 7 64

P 14 12 14

N 10 7 7

Table C.13: Data Path T3D5: Logical Effort and parasitic delay of the gates in the add paths.

Gate
Add1 Path Add2 Path Add3 Path

g p n g p n g p n

reg 2 2 1 2 2 1 2 2 1

amp 1 2 2 1 2 2

amp 1 2 2

CSA 10 6 1 10 6 1

4:1 Mux 2.7 6 2 2.7 6 2 2.7 6 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

2:1 Mux 1.8 4 2 1.8 4 2 1.8 4 2

QSLC 10 4 2

G 1692 170 17

P 26 24 20

N 10 10 11

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 207

MSB
data path

LSB
data path

Quotient
path

R1

CSA &
2X*

2:
1

Mu
x

QSLC

2X*

CSA &
2X

3:
1

Mu
x

2X

3:
1

Mu
x

ampamp

amp

2D

D

-D

-2D

2D

D

-D

-2D

6

2x54

4x56

4x56

4x56

4x56

4x56

4x56

2x2

2x2

3

2x3

2
4

Qu
ot

ie
nt

 u
pd

at
e

q0[i]

qp1[i]

qm1[i]

qm2[i]

56

56

56

56

rs[i],
rc[i]

2x522x54

2x52

2x52

52

rs[i+1],
rc[i+1]

qslc[i+2]

qslc[i+1]

q0[i+1],
qp1[i+1],
qm1[i+1],
qm2[i+1]

R2

R3

R4

R5

R5

R6

R7

4:
1

Mu
x

4:
1

Mu
x

4:
1

Mu
x

4x56

shift path

add1 path

add2 path

add3 path

select path

Fig. C.5: Data Path T3D5

APPENDIX C. DELAY ESTIMATES FOR THE DATA PATH TOPOLOGIES 208

Table C.14: Data Path T3D5: Branching effort.

Node Select1 Path Select2 Path Add1 Path Add2 Path Add3 Path Shift Path

R0 2 2 2 2 2 2

R1 3.5

R2 6.3 3.1 28.6

R3 16.5 4.2

R4 52

R5 224

R6 2.6 2.6 2.6

R7 104

B 86 874 33 322 12813 18

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 209

Appendix D

Design of a Down Counter that can

Decrement by one or two

D.1 Specification of Down Counters

Down counters can be classified into two types: “test-after-decrement" and “test-

before-decrement" counters. A “test-after-decrement" counter first decrements the

counter and then tests if the value of the counter is zero, whereas a “test-before-

decrement" counter first tests if the value of the counter is zero and, if not, then

decrements the counter. This paper presents the design of a “test-after-decrement"

down-one-two counter using a “test-before-decrement" down-one counter, because

we have found that “test-before-decrement" counters are often easier to design.

The specification of the down-one and down-one-two counters are as follows. A

down counter, upon initialization, loads a user-determined k -digit count value, N. We

denote the initialization request of the counter by LOAD. After initialization, the “test-

after-decrement" down-one-two counter can repeatedly be decremented by one or

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 210

two. The decrement requests are denoted by REQDN1 and REQDN2 respectively. As

long as the count value is non-zero, the counter acknowledges each request with a

“not empty ” response, denoted by NOTEMPTY. When the count value reaches zero,

the counter acknowledges a request with an “empty" response, denoted by EMPTY.

After an “empty” response, the counter can accept the same or a different count value

using a LOAD request. Figure D.1a illustrates the circuit symbol for the down-one-two

counter.

down-
one-two
counter

REQDN1

NOTEMPTY
EMPTY

LOAD

REQDN2
N

k

(a) down-one-two counter

 down-one
counter

REQDN1

ACKDN1
FAIL

LOAD

N
k

(b) down-one counter

Fig. D.1: Symbol of: a) down-one-two counter b) down-one counter

The circuit symbol for a down-one counter that tests the count value before a

decrement appears in Figure D.1b. If the counter value before a decrement is larger

than zero, then the counter acknowledges a successful decrement, denoted by ACKDN1.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 211

If the counter value before a decrement is zero, then the counter acknowledges an

unsuccessful decrement, denoted by FAIL.

The response FAIL means that the down request failed, but can also be inter-

preted as the counter value is zero. Note that a response ACKDN1 simply means that

a decrement has occurred and that the value of the counter can be anything, including

zero. After a FAIL response, the counter can be loaded with a new count value using

a LOAD request.

In Figure D.1 we denote the “test-after-decrement” counter and the “test-before-

decrement” counter with similar circuit symbols, but the outputs have different names

to indicate the difference between the counters.

The “test-before-decrement” counter comes in handy when implementing a while

or for loop. For example, the while repetition below can be implemented as shown

in Figure D.2a.

n:=N;
while n>0 do

S;
n:=n-1;

endwhile

A “test-after-decrement" counter, which can decrement by 1 or 2, comes in handy

when implementing the following do..while.. loop.

n:=N;
do

S;
if B

then begin ...; n:=n-1; ... end
else begin ...; n:=n-2; ... end

endif
while n>0;

An implementation of this repetition appears in Figure D.2b. The division algorithm

presented in [16] has a do..while.. loop as above.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 212

 down 1
 counter

LOAD N

S

REQDN1

FAIL

ACKDN1

START

(a) Repetition with a down-one counter

REQDN1

NOTEMPTY

EMPTY

down 1-2
counter S

REQDN2

LOAD N START

(b) Use of a down-one-two counter

Fig. D.2: Use of down-one counter (a) and down-one-two counter (b).

D.2 Down-one counter

This section presents the design of a “test-before-decrement" down-one counter using

GasP modules.

D.2.1 The Idea for an implementation

To describe our down-one counter implementation, we illustrate the behavior of the

counter by means of an example first. Assume that we load a six-bit counter with the

binary value

100101

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 213

The left-most bit is the most significant bit. Thus, this binary representation denotes

the value 1 ⇤ 2

5 + 0 ⇤ 2

4 + 0 ⇤ 2

3 + 1 ⇤ 2

2 + 0 ⇤ 2

1 + 1 ⇤ 2

0 = 37. Although the

initial count is in a unique binary representation, during operation the counter uses a

redundant representation of the count, by allowing each digit to assume one of three

values 0, 1, and 2. Using this notation, the following are valid representations for 37.

020021

012021

011221

To test if the value of the counter is zero, we must test if all digit values are zero.

To avoid testing all the digit values for 0, we need one more value which indicates that

all more significant digits are 0. We call this value E for “Empty.”

During operation, any digit with a value 0 will attempt to borrow a 1 from its more

significant neighbor. A successful borrow from a more significant neighbor results in

adding 2 to the digit’s own value of 0, which results in a 2. An unsuccessful bor-

row results in changing the digit’s own value from 0 to E. For example, the sequence

..10.. changes to ..02.., the sequence ..20.. changes to ..12.. and the se-

quence ..E0.. changes to ..EE... By default the most-significant digit is always

E. With these definitions, it follows that whenever the least-significant digit’s value is

E, then the counter value is 0. Taking into account the above rules for transition, the

following sequence of representations can occur during operation

E011221
EE11221

-1, successful decrement
EE11220
EE11212

-1, successful decrement
EE11211

-1, successful decrement
EE11210

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 214

EE11202
-1, successful decrement

EE11121
. after several
. successful decrements

EEEEEE1
-1, successful decrement

EEEEEE0
EEEEEEE

-1, unsuccessful decrement
EEEEEEE

We can summarize the transitions of two neighboring digit values, called MSN for

“more-significant neighbor” and LSN for “less-significant neighbor” in table D.1. The

table gives the neighboring digit values before and after the transitions in both digits.

The transitions together are called the “firing.”

D.2.2 Specification of the cells

For a loadable down counter, Kessels uses one cell per digit plus a special end cell.

The communication behavior of each cell with its neighbors can be described with a

finite state machine. The complete counter is then the parallel composition of all finite

state machines.

The end cell communicates with just one neighbor, whereas all other cells com-

municate with two neighbors. We specify the behavior of one such cell as a sequence

of communication actions between the user and the cell on the one hand and be-

tween the cell and the sub-counter on the other hand, as illustrated in Figure D.1.

The communication actions between two neighboring cells appear in Table D.1. We

use these actions as the communication actions between user and cell. We prefix

the actions between the cell and the sub-counter with “s. ” to obtain s.dnU, s.dnS1,

and s.dnS2. Finally we introduce one more communication action representing the

loading of the digit value into the cell: load and s.load.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 215

Table D.1: Table of transitions of neighboring digit values and their associated state transition
names

Before firing After firing Action

MSN LSN MSN LSN Name

E 0 E E dnU

1 0 0 2 dnS1

2 0 1 2 dnS2

Each cell can be in one of five states: L, S0, S1, S2 and FAIL. State L is the

initial state and load state, where the cell performs a load action with the user and

then performs a load on the sub-counter in parallel with going to state S0, if the digit

loaded is 0, or to state S1, if the digit loaded is 1. Note that the load action can

initialize the sub-counter to state S2, if the digit loaded is 2. States S0, S1, and S2

are the states of the cell where the value of the digit stored in the cell is 0, 1, or 2

respectively. In state FAIL the value of the digit stored in the cell is E.

sub-counter cell user

s.load

s.dnS2

s.dnS1

s.dnU

load

dnS2

dnS1

dnU

Fig. D.1: The counter consists of a cell communicating with a sub-counter and a user. Com-
munication actions of the cell are placed at the boundary between the two communicators.

The specification of a cell appears in Figure D.2(a), where bn represents the digit

value for that cell. In state S2, the cell performs a successful down action and goes to

state S1. In state S1, the cell performs a successful down action and goes to state S0.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 216

state L where
 L = (load -> s.load,
 if bn then S1
 else S0)
 S1 = (dnS1 -> S0)
 S2 = (dnS2 -> S1)
 S0 = (s.dnS2 -> S2
 | s.dnS1 -> S2
 | s.dnU -> FAIL)
 FAIL = (dnU -> L)
end

state L where
 L = (load -> FAIL)
 S1 = (dnS1)
 S2 = (dnS2)
 FAIL = (dnU -> L)
end

(a) (b)

Fig. D.2: Specifications of the cells in Kessels’s loadable down counter: (a) Specification of a
cell; (b) Specification of end cell

In state S0 the cell tries to borrow a bit from its sub-counter by performing a down ac-

tion on the sub-counter. If the cell and sub-counter perform a successful down action,

the cell goes to state S2. If the cell and sub-counter perform an unsuccessful down

action, the cell goes to state FAIL. In state FAIL, the cell performs an unsuccessful

down action with the user and then goes to state L, waiting for the next load action.

A specification for the end cell appears in Figure D.2(b). The specification includes

all actions load, dnS1, dnS2, and dnU. The actions dnS1 and dnS2, however, never

occur, because the end cell always alternates between state load and FAIL.

D.2.3 Mapping a finite state machine to a GasP implementation

Mapping a finite-state-machine to a GasP implementation is straightforward: map

every event to a GasP module and map every state to a connection between GasP

modules. Figure D.3(a) shows the implementation of the simple state transition

P = (a -> Q)

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 217

Let us call state P an input state for event a and state Q an output state for event

a. Notice that input state P maps to a connection that is a self-resetting input to

GasP module a, and output state Q maps to a connection that is an output of GasP

module a. Module a implements an occurrence of event a by setting output state Q

and resetting input state P.

a
P
Q

P = (a -> Q)

(a)

aP = (a -> Q
 |b -> R)

P
Q

b
R

(b)

Fig. D.3: Mapping state transitions to GasP modules: (a) a simple state transition; (b) a state
transition with choice

The implementation of the choice

P = (a -> Q
| b -> R)

appears in Figure D.3(b). Here state P is an input state of two state transitions. When

input state P is set, both GasP modules a and b may fire. Because this is a determin-

istic choice, however, either module a or module b fires, and the environment chooses

which one fires. The environment determines which module fires by setting either the

grey input port of module a or the grey input port of module b. The input ports are

in grey, because they are part of a neighbor finite state machine. When module a or

b fires, it resets state P and sets either state Q or R respectively. Notice that when

module a or b resets state P, it prevents the other module from firing.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 218

In the translation we also must decide for each state what the time separation

is between the enter and exit events for that state. The assignment of labels 2 or 4

to a state determines whether the time separation between any entry and exit event

for that state is two or four gate delays. The easiest delay assignment would be to

assign a delay of 2 units to each state. This would yield the fastest implementation.

Unfortunately, such an assignment is not always possible. A delay assignment must

satisfy the condition that each cycle lasts at least six gate delays for 2-4 GasP and

ten gate delays for 4-6 GasP.

Besides being simple, this translation has another attractive property. While one

state can be an input state of multiple events and an output state of multiple events,

the state itself can be implemented by a single wire connection, possibly long and

with multiple forks.

D.2.4 One-hot implementation of the counter

Figure D.4 shows the GasP implementation of the counter cells, using the one-hot

encoding of the previous section. Note that each GasP module is part of two neigh-

boring finite state machines. Thus, a GasP module fires only when both finite state

machines can engage in the state transition implemented by the GasP module.

The complete implementation of the loadable down counter is the parallel com-

position of the cells or simply the superposition, or “AND,” of all finite-state-machine

implementations of the cells. Figure D.5 gives a complete implementation of a 2-bit

loadable down counter using the one-hot state encoding.

D.3 Down-one-two counter

This section describes the design of a “test-after-decrement" down-one-two counter.

The down-one-two counter can be loaded with an initial value of N, where N > 0. We

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 219

state L where
 L = (load -> s.load,
 if bn then S1
 else S0)
 S1 = (dnS1 -> S0)
 S2 = (dnS2 -> S1)
 S0 = (s.dnS2 -> S2
 | s.dnS1 -> S2
 | s.dnU -> FAIL)
 FAIL = (dnU -> L)
end

load
 s.
load

dnS2

dnS1

dnU

S1

S2

FAIL

 s.
dnS2

 s.
dnS1

 s.
dnU

S0

dn

L 0
1

load

dnS2

dnS1

dnU

S1

L

S2

FAIL

state L where
 L = (load -> FAIL)
 S1 = (dnS1)
 S2 = (dnS2)
 FAIL = (dnU -> L)
end

(a) (b)

(c) (d)

Cell

End cell

Fig. D.4: Implementations for Kessels’s loadable down counter: (a) Specification of a cell; (b)
implementation of a cell; (c) specification of end cell; and (d) implementation of end cell

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 220

load

dnS2

dnS1

dnU

S1

S2

FAIL

S0

b0

L 0
1

load

dnS2

dnS1

dnU

S1

S2

FAIL

S0

b1

L 0
1

load

dnS2

dnS1

dnU

S1

L

S2

FAIL

LOAD

REQDN1

ACKDN1

FAIL

Cell 0Cell 1End cell

Fig. D.5: An implementation of a “test-before-decrement” 2-bit loadable down-one counter

first specify the user of the down-one-two counter as a finite state machine, exposing

only the states that are important for the communication behavior: LOAD, REQDN1,

REQDN2, EMPTY, and NOTEMPTY. We represent the value of the down counter by the

variable n.

USER = LOAD where
LOAD = (load(n:=N) -> (REQDN1 | REQDN2))
REQDN1 = (n:=n-1;

if n>0 -> NOTEMPTY
| n<=0 -> EMPTY
endif)

REQDN2 = (n:=n-2;
if n>0 -> NOTEMPTY
| n<=0 -> EMPTY
endif)

EMPTY = (<user actions> -> LOAD)
NOTEMPTY = (<user actions> -> (REQDN1 | REQDN2))

end

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 221

Initially the finite state machine USER starts in state LOAD in which the counter is

being loaded with its initial value N. Then the user goes to state REQDN1 or REQDN2

depending on whether a decrement by one or two is requested respectively. The

counter responds with transitioning the user to state NOTEMPTY or EMPTY, depending

on the value of the counter. In state EMPTY, the user performs some actions and

then may transition to state LOAD again. In state NOTEMPTY, the user performs some

actions and then may transition to state REQDN1 or REQDN2 again.

D.3.1 Implementation of down-one-two counter for N > 0

We can make a “test-after-decrement" down-one-two counter for N > 0 from a sub-

counter and some other cells. The sub-counter is a simple “test-before-decrement"

down-one counter, described in Section D.1. The other cells implement finite state

machines that ensure that the composite behaves as a “test-after-decrement" down-

one-two counter. We use two extra cells, called HEAD0 and HEAD1. Our implementa-

tion is in principle similar to Figure D.5, where the end cell is replaced by the down-

one counter, Cell 1 is replaced by HEAD1, and Cell 0 is replaced by HEAD0. Because

the “test-after-decrement" down-one-two counter is more complicated than a simple

“test-before-decrement" down-one counter, the cell HEAD0 has more states and more

communication actions than Cell 0 from Figure D.5.

In order to implement a down-one-two counter with constant response time, the

HEAD0 cell must always have a count at least 2, unless the sub-counter and HEAD1 are

empty. In our implementation HEAD0 cell has a count value of n0, with 0  n0  4,

and HEAD1 cell has a count value of n1, with 0  n1  2. The value of the complete

counter at any moment is n = 4 ⇤ s + 2 ⇤ n1 + n0, where s is the count of the

sub counter, n1 is the count of HEAD1, and n0 is the count of HEAD0. Thus upon

initialization we have N = 4 ⇤ s + 2 ⇤ n1 + n0.

Cell HEAD0 has 7 states: N4, N3, N2, N1, E2, E1, and E0. The states la-

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 222

beled with E indicate that the sub-counter and HEAD1 are empty. The states labeled

with N indicate that the sub-counter or HEAD1 may have a nonzero count value. Fur-

thermore, the digit value in each state’s name indicates the count value of the HEAD0

cell. Thus, in state N2 the HEAD0 cell stores a count of 2.

We introduce two communication actions between HEAD0 and HEAD1 to represent

a successful decrement and a failed decrement: s.dn1 and s.fail respectively. The

specification of HEAD0 is as follows.

HEAD0 = E0 where
E0 = (load -> (N4 | N3 | E2 | E1))
N4 = (dn1 -> N3

| dn2 -> N2)
N3 = (dn1 -> N2

| dn2 -> N1)
N2 = (s.dn1 -> N4

| s.fail -> E2)
N1 = (s.dn1 -> N3

| s.fail -> E1)
E2 = (dn1 -> E1

| dn2 -> E0)
E1 = (dn1 -> E0

| dn2 -> E0)
end

Cell HEAD1 communicates between cell HEAD0 and a down-one sub-counter. Spec-

ification of cell HEAD1 is as follows. The communication actions s.dn1 and s.fail

represent communication actions between HEAD0 and HEAD1. The communication

actions t.dn1 and t.dnU represent communication actions between HEAD1 and the

down-one counter, where t.dn1 is a successful decrement and t.dnU is an unsuc-

cessful decrement.

HEAD1 = LOAD where
LOAD = (s.load -> (S1 | S0)
S2 = (s.dn1 -> S1)
S1 = (s.dn1 -> S0

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 223

S0 = (t.dn1 -> S2
| t.dnU -> FAIL)

FAIL = (s.fail -> LOAD)
end

Each state name indicates the current count value of cell HEAD1: S2 represents

count value 2, S1 represents count value 1, S0 and FAIL represent count value 0.

State FAIL also indicates that the sub-counter is empty. Note that state S0 corre-

sponds to state REQDN1 for the down-one counter, which either responds with a tran-

sition to state FAIL after an unsuccessful decrement t.dnU or a transition to state

ACKDN1 after a successful decrement t.dn1. State ACKDN1 for the down-1 counter is

state S2 for HEAD1.

Figure D.1 shows the complete implementation using cells HEAD0 and HEAD1.

Each communication action s.dn1 and s.fail between HEAD0 and HEAD1 occurs if

and only if both HEAD0 and HEAD1 agree on the next action. For example, when HEAD0

is in state N2 and HEAD1 is in state S1, the only action that can occur is s.dn1S1N2,

where s.dn1S1N2 denotes the action s.dn1 in state S1 for cell HEAD1 and state N2

for cell HEAD0.

APPENDIX D. DESIGN OF A DOWN COUNTER THAT CAN DECREMENT BY ONE OR
TWO 224

load

dn2
E2

dn1
N4

dn2
N4

dn1
N3

dn2
N3

dn1
E2

dn1
E1

dn2
E1

s.dn1
S2N2

s.dn1
S1N2

s.fail
N2

s.dn1
S2N1

s.dn1
S1N1

s.fail
N1

s.load

 down-one
counter

N4

N3

E2

E1

S0 =
REQDN1

FAIL

N2

N1

REQDN1

REQDN2

EMPTY

NOTEMPTY

LOAD

to initial
states

LOAD

LOAD

to initial
states

S2 =
ACKDN1

S1

USERHEAD0HEAD1

E0

s

n1

n0

Fig. D.1: Implementation of a down-one-two counter using cells HEAD0 and HEAD1

