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Radix-2 Division Algorithms with an
Over-Redundant Digit Set
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Abstract—This paper presents a derivation of four radix-2 division algorithms by digit recurrence. Each division algorithm selects a
quotient digit from the over-redundant digit set {—2, —1, 0, 1, 2}, and the selection of each quotient digit depends only on the two
most-significant digits of the partial remainder in a redundant representation. Two algorithms use a two’s complement representation
for the partial remainder and carry-save additions, and the other two algorithms use a binary signed-digit representation for the partial
remainder and carry-free additions. Three algorithms are novel. The fourth algorithm has been presented before. Results from the
synthesized netlists show that two of our fastest algorithms achieve an improvement of 10 percent in latency per iteration over a
standard radix-2 SRT algorithm at the cost of 36 percent more power and 50 percent more area.

Index Terms—Signed-digit arithmetic, two’s complement arithmetic, carry-save division, carry-free division

1 INTRODUCTION

DIVISION is one of the most complex and the slowest
arithmetic operations performed in microprocessors.
Although division occurs less frequently than other arith-
metic operations, having an efficient divider is necessary for
a good system performance [1]. There are several division
algorithms available to implement in hardware. The digit-
recurrence SRT division algorithm is the most frequently
implemented algorithm in general purpose processors. A
standard radix-2 SRT algorithm retires a quotient digit from
the set {—1, 0, 1}. Typically, the selection of a quotient digit
relies on the four most significant bits of the partial remain-
der in a redundant representation. The logic that selects a
quotient digit is called the quotient selection logic and it
usually appears in the critical path of a divider design.
Therefore, simplifying the quotient selection logic poten-
tially leads to a faster divider design which is the main moti-
vation for this work.

1.1 Division Preliminaries

A division algorithm must compute an approximation to
@ = R/D, where () is the quotient, D is the divisor and
R is the dividend and the initial partial-remainder. We
assume that

R,D € [1,2). 1)

For binary representations of R and D, performing the
appropriate shift operations before the start of a division
algorithm can satisfy these assumptions.
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In general, digit-recurrence division algorithms can be
described by a recurrence relation

T+l = 2% 7, — Gn * D7 (2)

where, n represents the iteration index and r,, is the remain-
der after the nth iteration with initially ry = R/2, and g, is
the nth quotient digit selected from the set {—1,0,1}. In
each iteration, the algorithm doubles the remainder, then
selects a quotient digit ¢,, and subtracts ¢, * D from r,.
Alternatively, if we start with a different initialization
ro = R, then we can use the recurrence relation

Tyl = 2% (r, — q x D). 3)

Here, each repetition step starts with selecting a quotient
digit g,, then subtracting ¢, * D, and finally doubling the
result. The rest of this paper assumes the latter recurrence
relation (3) for describing all the algorithms.

Additionally, we require that the error interval of the
computed quotient be less than one unit of least precision
(ulp), where ulp = 2~L for some L > 0. In other words, if ¢ is
the computed quotient and the error, ¢, is given by
€ = ¢ — R/D, then we require that € € (—ulp/2,ulp/2). Alter-
natively, the error interval may include one of the bounds,
but not both bounds. For IEEE single-precision format,
L = 23, and for IEEE double-precision format, L = 52.

2 RELATED WORK

The idea of using an over-redundant quotient-digit set,
{—2, -1, 0, 1, 2}, to simplify the quotient selection logic
was first presented for a radix-4 SRT algorithm in [2]. In
[3], the authors develop a radix-2 SRT algorithm using a
signed-digit representation for the partial remainder and
an over-redundant quotient-digit set. The quotient selec-
tion logic in [3] inspects only the two most-significant
digits of the partial remainder in a signed-digit represen-
tation to determine an appropriate quotient digit. In [4],
Burgess presents a radix-2 Svoboda division algorithm
that also inspects only the two most-significant digits of
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the partial remainder in a signed-digit representation to
retire a quotient digit. This algorithm, however, requires
pre-scaling of both divisor and dividend for divisors in
the range [1.5,2).

We derive four radix-2 division algorithms that use an
over-redundant quotient-digit set. We denote the four algo-
rithms as Al, A2, Bl and B2. The three algorithms, A1, A2
and B2, are novel and the fourth algorithm, B1, is the same
as the one presented in [3]. All four algorithms inspect only
the two most-significant bits of the partial remainder to
select a quotient digit. Two algorithms use a two’s comple-
ment representation for the partial-remainder and carry-
save additions. The other two algorithms use a signed-digit
representation for the partial-remainder and -carry-free
additions. The major difference between our algorithms
and the SRT algorithms in [3], [5], [6] and [7] is the range
invariant for the partial remainder. We also use an alterna-
tive method to analyze the algorithms presented in this
paper and in [3], [5], [6] and [7] by using invariants and
highlighting the differences between the algorithms. The
analysis method used in this paper is similar to the one
described in [8]. This paper extends the algorithm of [8] in
several ways: we present three new algorithms and we com-
pare synchronous implementations for all the algorithms
discussed in this paper in terms of latency, power, and area.
In [9], the authors focus on an asynchronous implementa-
tion of the algorithm in [8].

2.1 An Alternative Analysis Method

A conventional method for analyzing a digit-recurrence
division algorithm uses a Robertson diagram or a P-D dia-
gram [5], [6]. Both these diagrams show a non-redundant
value for the partial remainder, 7, even when 7 is in a redun-
dant form. In an SRT algorithm, r, can be represented in a
two’s complement carry-save form such that » = r, 4+ r, or
in a signed-digit carry-free form such that » = r. — r;, where
r is called the sum or the parity bits and r. is called the
carry or the majority bits. While the properties of division
algorithms can be analyzed at the digit-level [10], when we
seek a hardware implementation, the actual encoding of the
bits determine the complexity of the circuit. Therefore, we
believe that a diagram that clearly shows the redundant
representation of the partial remainder will help us design
an efficient quotient selection logic. In this paper we present
one such diagram and use this diagram to derive and ana-
lyze our division algorithms. For clarity, we also show the
P-D diagrams for our algorithms.

2.2 An Alternative Range Invariant for the Partial
Remainder

The range invariant for the partial remainder depends on

the choice of a recurrence relationship and a division algo-

rithm. The SRT algorithms that use the recurrence relation

in (2) and a two’s complement representation for the partial

remainder, have a range invariant of

r=rs+r.€[=D,D). 4

The SRT algorithms that use the recurrence relation in (3)
and a two’s complement representation for the partial
remainder, have a range invariant of
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r=rs+r. €[-2D,2D). 5)

When we use a signed-digit representation for the partial
remainder, the range invariant for the partial remainder
excludes the lower bound, that is, » € (—D, D) for recur-
rence relation in (2) and r € (—2D, 2D) for recurrence rela-
tion in (3). Because we use the recurrence relation in (3) for
the algorithms presented in this paper, we consider invari-
ant (5) for SRT algorithms.

Our algorithms, Al, A2, Bl and B2, have a different
range invariant. The algorithms that use a two’s comple-
ment carry-save representation for the partial remainder,
r =rs + ., have a range invariant of

rs,Te € [—2,2) and r =1+ r. € [—4,4). (6)

The algorithms that use a signed-digit carry-free repre-
sentation for the partial remainder, » = r. — r; have a range
invariant of

rs,7e €10,4) and r=r.—rs € (—4,4). ()

In Section 4, we prove the correctness of our algorithms
that use range invariants (6) and (7). In Section 7, we show
that algorithms, A1 and B1, also maintain the range invari-
ant (5) for the partial remainder in addition to maintaining
invariant (6) or (7).

3 RADIX-2 SRT ALGORITHM

A standard radix-2 SRT algorithm uses a two’s comple-
ment representation for the partial remainder, r, and carry-
save additions (subtractions). The result of a carry-save
addition is two numbers, r, and r. whose sum is the
actual value. Therefore, r = r; + ., where r, represents the
sum or parity bits and r. represents the carry or majority
bits. The standard SRT algorithm has four non-fractional
bits and carry-save addition is done modulo 2*. More
information on SRT algorithms can be found in [5], [6] and
[7]. The selection of the quotient digit is based on the val-
ues of the four most-significant digits of the remainder in
carry-save form 7y, 7. Let cpad(r;,7.) denote the result of a
carry-propagate addition of only the four most significant
digits of 7, and r.. The algorithm selects a quotient digit g,
according to the following conditions

qn = 0 if CPGA(TS?TC) =-1
gn = +1 if cpad(ry,r.) > —1
qn = —1 lf Cpa4(r,s7TC) < -1

Figs. 1a and 1b show the quotient selection function in a
conventional P-D diagram and in the r,,r. plane respec-
tively. In Fig. 1a, the x-axis represents the value of the divi-
sor and the y-axis represents the value of the partial
remainder. In Fig. 1b, the x-axis represents the value of the
sum bits and is labeled with both the absolute value of r,
(top) as well as the four non-fractional bits of the two’s com-
plement representation (bottom). The y-axis represents the
value of the carry bits and is labeled with both the absolute
value of 7. (right) as well as the four non-fractional bits of
the two’s complement representation (left). A point in this
figure has coordinates (75, 7).
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(a) P-D plot for the standard radix-2 SRT
algorithm.

rg+re=-2D
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(b) Standard radix-2 SRT algorithm in (r,7.) plane

Fig. 1. Standard radix-2 SRT algorithm: Figure (a) shows the P-D plot for a standard radix-2 SRT algorithm. The z-axis represents the value of the
divisor and y-axis represents the value of the partial remainder. Figure (b) illustrates the quotient selection areas for a standard radix-2 SRT division
in the (r,, ) plane using only the four most-significant bits. In the (r,,r.) plane, each point has coordinates (r;,r.). Each diagonal line r; +r. =r
modulo 2* represents a set of points with different r, and r. values but the same remainder value. Addition is modulo 2, so diagonal bands wrap
around the square. For radix-2 SRT division, the remainder r,; + r. remains within the range [—2D, 2D). In the figure D,,,, = 2 — ulp.

Each diagonal line r; + 7. = r modulo 2* represents a set
of points with the same remainder value. The area labeled
2X is the area where cpad(r,r.) = —1. For every remainder
in this area, the SRT algorithm selects the quotient digit 0
and performs a doubling. The area labeled SUB1&2X is the
area where cpad(rs,r.) > —1. For every remainder in this
area, the SRT algorithm selects quotient digit 1 and per-
forms a subtraction with D followed by a doubling. The
area labeled ADD1&2X is the area where cpad(rs,r.) < —1.
For every remainder in this area, the SRT algorithm selects
quotient digit -1 and performs an addition with D followed
by a doubling. Because addition is calculated modulo 2%,
the diagonal bands wrap around the square.

Because the SRT algorithm satisfies the invariant
rs+r. € [-2D,2D), only the shaded areas are accessible.
There are large inaccessible areas. In fact, at least half the
area is inaccessible. These large inaccessible areas suggest
that there may be more efficient quotient selections that uti-
lize fewer digits. In the following sections we derive such
quotient selection algorithms.

4 THE INVARIANTS AND TERMINATION

We use recurrence relations and invariants to prove the cor-
rectness of our division algorithms and calculate the error
in the computed quotient. In this section we make explicit
which invariants we use.

The formula

Q+xD=R (8)
expresses the desired relation between @, D, and R, where
@ is the exact quotient. In our algorithms, we use lower-
case variables g and r, where ¢ represents the quotient calcu-
lated ‘thus far,” and r represents the remainder calculated
‘thus far.” The invariant for all the variables is as follows:

q*D+2"xr=R. 9)

In this invariant, n is the iteration index and ¢, * 2" is added
to ¢ in the nth iteration, where ¢, is the quotient digit
selected in nth iteration.

We look for a number of program statements for the pro-
gram variables ¢, r, and c that establish or maintain invari-
ant (9). Once we have these program statements, we can
then combine the statements in various ways to obtain a
division algorithm.

The initialization g=0; r=R; n=0 establishes invariant
(9). Any quotient digit from an over-redundant digit-set
{=2,-1,0,1,2} and the recurrence equation (3) will main-
tain the invariant (9). The challenge is to choose a quotient
digit that will maintain the range invariant (6) if the partial
remainder is in a two’s complement representation or the
range invariant (7) if the partial remainder is in a signed-
digit representation.

TABLE 1
Labels to Denote the Choice of a Quotient Digit and the
Statements Executed

Label Quotient Statements executed
DIgItlQn
ADD2 & 2X -2 r=2x(r+2D);
gq=9q—2*2"; n=n+1

ADDI1 & 2X -1 r=2x%(r+D);q=q—1%2";
n=n+1

2X 0 r=2%r;q=q—0%2";
n=n+1

SUBI & 2X +1 r=2x%(r—D);q=q+1x2";
n=n+1

SUB2 & 2X +2 r=2x(r—2D);

gq=q9q+2*2"; n=n+1
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Fig. 2. The area for partial remainders (ry,7.) where the value of the
remainder r is given by » = r, + r.. The partial remainders r, and r. are
in a two’s complement representation. The points (r,,7.) on a diagonal
line, like r, + r. = 3, can have different values for r, and r. but have the
same remainder value. The center square, QOUQ1UQ2UQS, satisfies
range invariant (6).

We use labels to denote the choice of a quotient digit and
the statements executed to update the partial remainder
(according to (3)), quotient, and the iteration index. Table 1
lists the labels corresponding to the choice of a quotient
digit and the statements executed.

Now we need to make sure that the error in the com-
puted quotient is small enough. Using invariant (9) we can
express the error, ¢, in the computed quotient as

e=R/D—q=2"xr/D. (10)
Consequently, by requiring that 27" « /D € [—ulp/2,ulp/2),
we require that the computed quotient ¢ has an error inter-
val of length less than ulp. For a given ulp, the condition
27" xr/D € [—ulp/2,ulp/2) translates into a condition
which determines the value of n, and a condition for the
range of the remainder r, which determines the value of
r/D.

For example, if we consider the range invariant (5), the
condition 27"« /D € [—ulp/2,ulp/2) translates into the
condition 27" % 2 < ulp/2, where ulp = 27, Thus, the termi-
nation condition becomes n > L + 2. The range invariant
may also exclude the lower bound, that is, (—2D,2D)
instead of [-2D,2D)

If we consider the range invariants (6) or (7), the termina-
tion condition 27" xr/D € [—ulp/2,ulp/2) translates into
the condition 27" * (4/D) < ulp/2, where ulp =2~ and
D € [1,2). In this case the termination condition becomes
n > L + 3. Consequently a division algorithm using the
range invariants (6) or (7) requires one more iteration to
obtain the same accuracy than a division algorithm using
the range invariant (5).

5 Two’s COMPLEMENT IMPLEMENTATION AND
CARRY-SAVE ADDITION

For the derivation of our first set of algorithms we analyze
what happens with doublings and additions in the (r,7.)
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Fig. 3. The effect of doubling all points in Q1 or Q3.

plane, when numbers are represented in two’s complement
and additions are implemented by means of carry-save
additions. For clarity, we also provide the P-D diagrams for
our algorithms. A two’s complement representation of m
non-fractional bits can represent numbers in the range
[-2m~1 2m=1) Note that the lower bound is inclusive while
the upper bound is exclusive. Adding and subtracting num-
bers in two’s complement arithmetic can be done by means
of carry-save addition modulo 2™.

We observe that in order to represent the initial value of
D € [1,2) and partial remainders 7, and r, in the range
[-2,2) we only need two non-fractional bits rather than
four in the SRT algorithm of Fig. 1b. Let us look at the
effect of the addition and doubling operations on all points
that satisfy range invariant (6). This is the bold center-
square, (QOUQ1UQ2UQ3), in Fig. 2. To illustrate the effect
of an addition and a doubling operation we use the (r,7.)
plane and consider three non-fractional bits. An addition
or a doubling operation can yield a point inside the center
square or outside the center square. For the points that are
outside the center square we introduce an extra operation
that returns the point to the center square while maintain-
ing invariant (9).

5.1 Doublings and Translations

Fig. 3 illustrates the effect of doubling any point in the small
square Q1. A doubling expands the smaller square Q1 into
the larger square C1. Notice that in square C1, r € [-4,4)
but r, € [-4,0) and 7. € [0,4) which violates invariant (6).
To maintain invariant (6), we need to bring back the points
in the square C1 to the center square. To bring back the
points in the square C1 to the center square, we perform a
translation over (2, —2), as illustrated in Fig. 4. Translation
over (2, —2) is implemented by adding 2 to 7 and subtract-
ing 2 from r.. Note that the translation keeps the value of
rs + 7. unchanged. In fact, any translation of a point (r;,7.)
over distance (¢, —t) for any number ¢ maintains the value
of r, + r.. Note that because translations involve addition
and subtraction with a constant, the translations can be
implemented by a simple recoding of r; and ..
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Fig. 4. The effect of translating C1 over (2, —2).

Any doubling of square Q1 followed by a translation
over (2,—2) in effect expands the square QI to the center
square. Similarly, doubling of square Q3 followed by a
translation over (—2,2) expands the square Q3 to the center
square. In both cases, the doubling followed by the transla-
tion maintain invariant (9) and range invariant (6).

How do we implement these doublings and transla-
tions? Doublings can be implemented by left shifting the
partial remainders r, and r. by one position. The transla-
tions over (2,—2) and (—2,2) can be implemented by a
simple recoding of the most-significant bits of 7, and 7
as follows.

10 — 11
11 — 00
01 — 00
00 — 11

Notice that the second-most significant bit in each case
changes and the most significant bit is a copy of the second-
most significant bit.

If all operations start and end in the center square, we
can apply some simplifications to the doubling and
translation implementations. First, because the two most-
significant bits of 7y and r. are always the same in the
center square, we may omit the most significant bit.
Second, if we omit the most significant bit, a doubling
followed by a translation of a point (rs,r.) in the center
square simply becomes a left shift by one followed by an
inversion of the most significant bit of both 7, and r..
Because of the extra inversion of the most significant bit,
we refer to a doubling followed by a translation as a 2X*
operation.

Here is an example of a doubling followed by a transla-
tion operation (2X*). Consider a point (rs,7.) with three
non-fractional bits (000.u,110.v), where v and v are some
bit-sequences. Doubling the point (000.u,110.v) yields a
point (007.«/,107.2"), where v’ and v' are u and v left shifted
by 1 position respectively, and 7 represents a bit value of
either 1 or 0 corresponding to the most-significant bit of u or
v. Translation of the point (007.%/,107.¢) yields a point
(117.4/,117.0) in square Q2 of Fig. 2.
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Fig. 5. The effects of carry-save additions and subtractions with D. The
division algorithms can perform carry-save additions or subtractions in
the shaded squares.

5.2 Carry-Save Addition

Let us look at what happens to a point in the center square
when a subtraction with D occurs. We assume that r, rep-
resents the sum bits and r, represents the carry bits after a
carry-save addition. Fig. 5 shows the (ry,r.) plane, where
we have partitioned the center square in small squares.
What happens when we subtract D from a point (r,,r.) in
each of the small squares? Here is the calculation for a
point in square S1 where we consider only the three most
significant bits of each number. In two’s complement
representation D = 001.z, for some bit vector z, thus —D is
represented by the bit-wise complement of D plus ulp, i.e.,
—D = 110.y + ulp, where y is the bit-wise complement of z.
For square S1 we get the following calculation. Note that
we shift the majority bits one position to the left to corre-
spond with ‘carrying’ this bit to the next more significant
bit position,

re 111

r. 001
—D 110.y +ulp

sum 000

carry 117

For square S2 we get the following calculation:

rs 000

r. 001
—D 110.y +ulp
sum
carry

Consequently, subtracting D from a point in square S1
yields a point in squares S10US14. Subtracting D from a
point in the square S2 yields a point in squares S1US5.
Because carry-save addition is symmetrical in r; and r, sub-
tracting D from a point in square S11 also yields a point in
squares S10US14.
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TABLE 2
The Effect of Subtracting or Adding D

square -D square +D
S0 T2UT3 SO TOUT1
S1 S10US14 S4 S1US5
S2 S1US5 S5 TOUT1
S3 TOUT1 S8 S10uUS14
S5 T2UT3 S9 S11US15
S6 S0uUS4 S10 TOUT1
S7 S1US5 S12 T2UT3
S10 T2UT3 S13 S10uUS14
S11 S10US14 S14 S1US5
515 T2UT3 S15 TOUT1

Similarly, addition of D to a point in square 54 yields a
point in squares S1US5, and addition of D to any point in
square S8 or 513 yields a point in squares S10US14.

Table 2 gives a summary of adding and subtracting D
from most small squares. Observe that a subtraction of D
from points in the squares 51, S2, S6, S7, and S11 always ends
in the squares Q1 or Q3 of Fig. 2. This means that any such
point can subsequently undergo a doubling and a translation
(i.e., a 2X* operation) and land in the center square.

Square S3 is different. Subtraction of D from points in
square S3 yields a point in squares TOUT1. Translating a
point in TOUTT1 yields a point in S2US6, where a point must
undergo another subtraction before a doubling. Instead, let
us calculate what happens when we subtract 2D, instead of
D, from any point in S3. First, recall that in a two’s comple-
ment representation with 3 non-fractional bits D = 001.bz
for some bit b and bit vector x. Thus 2D = 01b.20, and —2D
is represented by the bit-wise complement of 2D plus ulp,
that is, —2D = 10d.y + ulp, where d is the bit complement of
b and y is the bit-wise complement of z0,

re 001

r. 001
—2D 110.y +ulp

sum 107

carry 017

As a consequence, subtracting 2D from any point in
square S3 yields a point in square T4 of Fig. 5.

We can translate each pointin T4 over (2, —2) and the final
result lands in square Q1 of Fig. 2. Subsequently, for each
point in Q1 we can perform a doubling and translation (ie a
2X* operation) and obtain a point in the center square again.

Similar remarks can be made for the additions of D or 2D
to points in squares 5S4, S8, S9, 512, S13 and S14 of Fig. 5.
Addition of D to points in squares S4, S8, S9, S13, and S14
always yields a point inside squares Q1 or Q3 of Fig. 2. This
means that any such point can undergo a doubling and a
translation and again land in the center square.

Addition of D to any point in square S12 yields a point in
square T2UT3. Translating a point in square T2UT3 yields a
point in S9US13 where a point must undergo another addi-
tion before a doubling. Adding 2D, however, to any point
in square S12 yields a point in square T5. Furthermore, T5
can be translated over (—2,2) to obtain square Q3 in the
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center square of Fig. 2. Each point in Q3 can be doubled and
translated to obtain a point in the center square again.

In summary, for each small square in the center square
we have found a sequence of operations that maintain
invariants (9) and (6). Each sequence of operations ends
with a doubling and a translation, which may be preceded
by a subtraction or addition of D or 2D. For example, for a
point in small square S12, the operations are an addition of
2D, followed by a translation, then a doubling and a transla-
tion. Some squares even have two possible sequences of
operations that maintain invariant (9) and (6) (keeps a point
in the center square of Fig. 2). For example, for points in
square 54 the sequence of operations may be a doubling fol-
lowed by a translation (2X*) or an addition of D followed by
a doubling and a translation. Squares S1, S11, and S14 also
have two possible sequences of operations.

If we confine ourselves to the points in the center square,
each of these operations is easy to implement. Because we
deal with the points only in the center square, we can omit
the most-significant bit and consider the remaining two
non-fractional bits. The operations are implemented as
follows.

e Each addition is simply a carry-save addition in

two’s complement arithmetic.

e Each doubling is a left shift of both r and . by one

position.

e Each translation is an inversion of the most-signifi-

cant bit for r, and r..

Note that a translation followed by a doubling and then
another translation is the same as a doubling followed by a
translation, because each doubling throws away the most
significant bit.

6 PUTTING IT ALL TOGETHER

With the analysis of the previous section, we can put
together various division algorithms. For each division
algorithm we specify what sequence of operations must be
performed on the points (r,,r.) in each of the small squares,
S0 to S15, in Fig. 5. There are five sequences of operations to
choose from which are described as follows:

e 2X* A doubling followed by a translation. The
selected quotient digit is 0.

e SUB1&2X*: A subtraction of D followed by a dou-
bling and then a translation. The selected quotient
digit is +1.

e SUB2&2X*: A subtraction of 2D followed by a dou-
bling and then a translation. The selected quotient
digit is +2.

e ADDI1&2X* An addition of D followed by a dou-
bling and then a translation. The selected quotient
digit is -1.

e ADD2&2X*: An addition of 2D followed by a dou-
bling and then a translation. The selected quotient
digit is —2.

Recall that a translation (over (2, —2) or (-2, 2)) is imple-

mented by an inversion of the most-significant bit.

Fig. 6 illustrates two possible choices for a division algo-

rithm. Other algorithms can be derived by making different
choices for the squares S1, 54, S11, and S14. Algorithms Al
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Fig. 6. Algorithms A1 and A2: Figures (a) and (c) show the quotient selection function for algorithms A1 and A2 in the (r,, r.) plane respectively. Fig-

ures (a) and (b) show P-D plots for algorithms A1 and A2 respectively.

and A2, however, are the most symmetric choices. The
selection of a quotient digit relies on only the two most-sig-
nificant bits of r; and r.. Algorithm A2 has a simpler selec-
tion logic than Algorithm A1, which can lead to a faster
divider implementation.

Thus far, we have shown that Algorithms Al and A2
maintain the range invariant (6) for the partial remainder.
In the next section, we show that Algorithm Al also main-
tains the range invariant (5) for the partial remainder. As
discussed in Section 4, because algorithm Al maintains the
range invariant (6), algorithm A1l must execute at least
L + 3 iterations. Because algorithm A2 maintains the range
invariant (5), algorithm A2 must execute at least L + 2
iterations.

7 A DIFFERENT RANGE INVARIANT

In this section, we prove that Algorithm A1l maintains the
range invariant (5):

rs+ 1. € [—2D,2D).

This means that Algorithm Al needs one fewer iteration
than Algorithm A2 to satisfy the accuracy requirement for
the computed quotient.

First, we observe that the range invariant (5) holds after
initialization r; = R;r. = 0 for R, D € [1,2).

Second, we observe that each of the operations
ADD2&2X*, ADD1&2X*, SUB1&2X*, and SUB2&2X* main-
tains range invariant (5). Here is a proof for the sequence of
operations SUB1&2X* and SUB2&2X*. Assume that the
invariant (5) holds before each of those sequences of opera-
tions. Hence, in the regions of Fig. 6a where Algorithm Al
executes the sequence of operations SUB1&2X* we have

rs+r. €[0,2D).

After subtracting D from 7 + 7. and doubling r, and 7., we
have

rs+ 1. € [-2D,2D),

which is our range invariant (5).
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line, like r. — r, = —3, represent the same remainder value. The bottom-
left square consisting of Q0, Q1, Q2, and Q3 squares satisfies the range
invariant (7).

In the regions of Fig. 6a where Algorithm A1l executes the
operations SUB2&2X*, we have before the operations

rs+ 7. € [2,2D).

After subtracting 2D from r + . and doubling r; and r., we
have

rs + 1. €[2(2—-2D),0).

Furthermore, we have 2(2 — 2D) = (4 —2D) — 2D > —2D,
because 4 — 2D > 0 for D € [1,2). Consequently, after the
operations SUB2&2X*, we have r; + . € [-2D, 2D).

In a similar way, we can prove that the operations
ADD1&2X* and ADD2&2X* maintain invariant (5). Finally
we prove that also the operations 2X* maintain invariant
(5). Observe that if Algorithm A1 executes the operation 2X*
then 7, 7. are in one of the diagonal squares, which means
that r; +r. € [-1,1). Because D € [1,2), we have r, + 7. €
[-D, D). Consequently, after the doubling operation we
have r; + r. € [-2D, 2D), our range invariant (5).

8 BSD REPRESENTATIONS AND CARRY-FREE
ADDITIONS

Instead of using a two’s complement representation for the
partial remainder, we can use a binary signed digit (BSD)
representation. In a BSD representation, the partial remain-
der 7 is represented by a vector of signed bits from the set
{—1,0,1}. Instead of using a single vector of signed bits, we
use two vectors of unsigned bits r; and 7. such that
r =1, — 5. Please see [6] for more details on BSD represen-
tation and carry-free addition.

For the BSD representation of the remainder, we use the
range invariant (7) The partial remainder r =r. — 7, is in
the range (—4,4). This range is similar to the range [—4,4)
for the remainder r when using a two’s complement
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representation. For the BSD representation, however, both
bounds are excluded.

The bottom-left bold square, QOUQ1UQ2UQ3, in Fig. 7
consists of all numbers (r;, r.) satisfying range invariant (7).

We call vector 7. the carry and vector r; the sum, where
the sum vector has a negative weight.

To see what happens when we perform doublings and
additions on points satisfying range invariant (7), we first
look at a larger square in Fig. 7, where each binary vector is
represented with one extra digit at the most-significant posi-
tion. We are interested in a series of operations that takes a
point in the bottom-left bold square and returns a point in
the bottom-left bold square. As with the two’s complement
representations, the operations must end with a doubling
and may be preceded by an addition or subtraction. Each
sequence of operations must maintain invariant (9).

8.1 Doublings and Translations

The effects of a doubling is straightforward. Doubling a
point in square QO of Fig. 7 returns a point in the bottom-
left square, QOUQ1UQ2UQ3. Doubling of a point in square
Q2 returns a point in the top-right square Q5. Each point in
Q5 can be translated back to the bottom-left square by a
translation over (—4, —4), as illustrated in Fig. 8. Any trans-
lation over (—t, —t) leaves the value of r = r. — ry invariant
and thus each translation maintains invariant (9)). Further-
more, a translation over (—4, —4) for any point in Q5 is easy
to implement by inverting the most-significant bit (bit posi-
tion with weight 2°).

8.2 Additions
Squares Q1 and Q3 in Fig. 7 require more operations than
just doublings and translations. We analyze the effect of
additions to the points in each of the small squares, S0 to
S15, in Fig. 9.

We implement the addition r+z of a remainder
r=r.—rsand a choice z € {—2D, —D, D,2D} by means of
a carry-free addition [6]. As shown in [6], we have
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in the shaded squares.

re — s+ 2z = BSDcarry — BSDsum,

where BSDcarry and BSDsum are the result of a carry-save
addition of —r,, 7., and z, with an inversion of the parity
result:

BSDcarry = 2 x majority(—rs, re, 2),
BSDsum = —parity(—rs, re, 2).

The majority and parity functions, forming the carry-free
addition, can be done modulo 2™ if there are m non-frac-
tional bits. In our case, m = 3. This implementation of carry-
free addition applies only if we take a two’s complement
representation for z [6]. Thus —D and —2D can be repre-
sented by —D = 110.y + ulp and —2D = 10b.y + ulp respec-
tively, for some bit vector y and bit b.

For example, for subtracting D from a point in square S1
we get the following carry-free addition:

rs 001

r. 011
—D 110.y +ulp

100

107

sum
carry

These values for BSDsum and BSDcarry correspond to a
point (r,, ) in squares T7 or T10. For adding D to a point in
square S13 we get the following carry-free addition:

rs 001
r. 000

+D 001.y
BSDsum 000
BSDcarry 007

These values for BSDsum and BSDcarry correspond to a
point in squares S8 or S512.

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

TABLE 3
The Effect of Adding or Subtracting D

square —-D square +D
S0 TOuUT4 S3 S10US14
S1 T7UT10 S6 S10US14
S2 T3UT6 S7 S8US12
S3 TIUT12 S9 S10US14
S4 T7UT10 S10 S2US6
S5 T8UT10 S11 S3US7
S6 TouUT12 S12 S1US5
S8 T3UT6 S13 S8US12
59 TIUT12 S14 S3US7
S12 TouT12 S15 S10uUS14

Table 3 shows the results of carry-free addition in squares
S0 to S15 in Fig. 9. All subtractions of D from squares S1, S2,
54, S5, and S8 yield points in small squares T3, T6, T7, T8,
T10, or T11 which can be translated, doubled, and translated
again to return a point in one of the SO to S15 squares.

Subtracting D from any point in square S0 yields a point in
square TO or T4. Translating a point in the squares TO or T4
yields a point in squares S1 or S5 where the point must
undergo another subtraction. Therefore, instead of subtracting
D, we subtract 2D from a point in SO using carry-free addition

rs 000
rc 011

—2D 107.y +ulp
BSDsum 117
BSDcarry 117

The resulting values for BSDsum and BSDcarry correspond a
point in squares T1, T3, T5, or T6. Points in these squares
can be translated, doubled and translated again to return a
point in one of the S squares.

All additions of D to points in squares S7, 510, S11, S13,
and S14 yield points in small squares S2, S3, S6, S7, S8, or
S12. Points in these squares can all be doubled and trans-
lated to return a point in one of the S0 to 515 squares.

Adding D to a point in square S15 yields a point in
squares S10 or S14 where the point must undergo another
addition rather than a doubling. Adding 2D, however, to
any point in square S15 returns a point in squares S8, S9,
5§12, or S13, which can be doubled and translated to remain
in one of the SO to 515 squares.

With the analysis of the doublings, translations, and
additions, we can put together a number of division
algorithms based on the BSD representation for the par-
tial remainder and carry-free additions.

Before giving the five possible choices for sequences of
operations, we consider a few simplifications. Because each
set of operations in our division algorithm takes a point in one
of the SO to 515 squares and returns a point in one of the S0 to
S15 squares, we omit the most-significant bit, which is always
0, and use only two non-fractional bits. The omission of the
most-significant bit simplifies the implementation of the
translation to an operation that is implemented automatically.

The five choices for the sequences of operations are:
2X, SUB1&2X, SUB2&2X, ADD1&2X and ADD2&2X. The
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(d) P-D Plot for Algorithm B2.

Fig. 10. Two division algorithms, B1 and B2, based on BSD representations and carry-free additions. Figures (a) and (c) illustrate the quotient selec-
tion function of algorithms B1 and B2 in (r,, r.) plane. Figures (b) and (d) show the quotient selection function of algorithm B1 and B2 using P-D plots

respectively. Algorithm B1 is the same algorithm as presented in [3].

quotient digit selected and the statements executed for
each of these operation is listed in Table 1. Furthermore,
each of these operations maintain invariant (9) and range
invariant (7).

We can compose a division algorithm by choosing one
sequence of operations for each small square SO through S15.
For the squares S2, S7, S8, and S13 there are two choices for
selecting a quotient digit. For the squares S2 and S8 the two
choices are as follows: selecting a quotient digit 0 and per-
forming a 2X operation or selecting a 1 and performing a
SUB1&2X operation on the partial remainder. For the squares
57 and S13 the two choices are as follows: selecting a quotient
digit 0 and performing a 2X operation or selecting a —1 and
performing a ADD1&2X operation on the partial remainder.
For all other squares there is only one choice for selecting a
quotient digit. The two most symmetric algorithms appear in
Fig. 10. We characterize each algorithm by the choice of
sequence of operations that is performed for each point in a
small square. The operations are similar to the operations for
a two’s complement representation and carry-save additions.

Algorithms B1 and B2 in Fig. 10 satisfy the range invari-
ant (7). Algorithm B1, also satisfies the range invariant
r=r1.—1s € (—2D,2D). The proof that Algorithm B1 satis-
fies the range invariant r € (—2D,2D) is essentially the
same as in Section 7. Therefore, algorithms Bl and B2
require at least L 4+ 2 and L + 3 iterations, respectively, to
terminate with an error € € (—ulp/2, ulp/2).

Algorithm B1 in Fig. 10a is the same algorithm as pre-
sented in [3]. Note that in [3], the authors use the recurrence
relation in (2) and hence the authors use the range invariant
r € (—D, D) for the partial remainder. Because we have con-
sidered the recurrence relation in (3) throughout this paper,
the range invariant for the partial remainder in [3] translates
tor € (—2D,2D).

9 IMPLEMENTATION RESULTS

In this section we compare the radix-2 division algorithms
presented in this paper for latency per iteration, power and
area. While the implementation of an algorithm can be
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TABLE 4
Comparison of the Five Radix-2 Algorithms Discussed in This Paper

Algori Partial remainder Partial Type of Quotient Latency Avg. power . )

gorithm representation remainder Adder digit set ) per per iteration Areain um

range iteration in ps in mW

SRT Two’s Complement r € [-2D,2D) Carry-save {—1,0,1} 250 7.60 7,900
Al Two’s Complement r € [-2D,2D) Carry-save {-2,—1,0,1,2} 240 10.08 11,376
A2 Two’s Complement re[—4,4) Carry-save {-2,—1,0,1,2} 225 10.35 11,676
B1 Signed-Digit re (-2D,2D) Carry-free {-2,—-1,0,1,2} 240 10.08 11376
B2 Signed-Digit re(—4,4) Carry-free  {-2,—-1,0,1,2} 225 10.35 11,676
further optimized for low-latency or low-power [11], [12] 11 CONCLUDING REMARKS

and [13], we focus on comparing the algorithms in the same
design environment. For comparison, we synthesized the
behavioral verilog code for all the algorithms using Syn-
opsys Design Compiler and a production quality TSMC
40 nm standard cell library. To estimate the latency per iter-
ation and area, we used Synopsys Design Compiler’s static
timing analysis engine and for power estimates we used an
internal proprietary tool. Note that the latency per iteration
determines the clock period for the divider. We assumed
53-bit division for all the algorithms. Table 4 shows the com-
parison. From Table 4, Algorithms A1l and B1 offer a very
small improvement of 4 percent in latency per iteration
compared to a standard radix-2 SRT algorithm at the cost of
32 percent more power and 44 percent more area.
Algorithms A2 and B2 offer an improvement of 10 percent
in latency per iteration compared to the SRT algorithm at
the cost of 36 percent more power and almost 50 percent
more area. Algorithms Al, A2, Bl and B2 consume more
power and area than the standard radix-2 SRT algorithm
because of the following reasons: First, algorithms A1, A2,
B1 and B2 must perform one of five alternatives every itera-
tion. In comparison, the SRT algorithm must perform one of
three alternatives every iteration. More alternatives directly
translates to additional hardware required to update the
partial remainder and quotient, which results in more
power and area consumption. Second, on-the-fly conversion
of a quotient digit from the set {-2,-1, 0, 1, 2} to {0, 1} is more
complex than on-the-fly conversion of a quotient digit from
the set {—1, 0, 1} to {0, 1}.

10 DIFFERENCES

The division algorithms for the two’s complement represen-
tation and the division algorithms for the BSD representa-
tions look very similar, but there are some important
differences between the two. The first difference is that the
range invariants for the algorithms are different. For the
two’s complement implementation, one range invariant for
the remainder is r € [-2D, 2D). The other range invariant is
rs € [-2,2) and 7. € [-2,2), implying r =r, + 1. € [-4,4).
For the BSD implementation, one range invariant for the
remainder is r € (—2D,2D). The other range invariant is
rs €[0,4) and r.€0,4), implying r=r,—r, € (—4,4).
Note the exclusion of both bounds in the last interval. For
rounding purposes and for determining whether the com-
puted quotient is exact, a range invariant for r that excludes
both bounds is much preferable. A range that excludes the
bounds can potentially save an extra clock cycle [14].

In this paper we presented the derivation of four division
algorithms, three of which are new. All four algorithms
choose a quotient digit from the set {—2, —1, 0, 1, 2} and the
selection of a quotient digit relies on only the two most-
significant bits of the partial-remainder in a redundant
representation. We also presented an alternative analysis
method that looks at the effects of doubling and carry-save
or carry-free additions in the (ry,7.) plane and uses invari-
ants to prove the correctness of the division algorithms. Our
method, along with the P-D diagrams, can be applied to
derive higher-radix division algorithms with efficient quo-
tient-selection functions. Because the quotient selection
function for higher-radix division algorithms depend on the
value of the divisor [6], we expect that there will be several
(rs,7c) planes, each describing the quotient selection func-
tion for a particular range of the divisor.

From Table 4, the algorithms derived in this paper offer
an improvement of at most 10 percent in latency per itera-
tion which could help achieve a faster timing-closure for
speed-oriented designs. The 10 percent improvement in
speed comes at the cost of 50 percent more area and 36 per-
cent more power compared to the SRT algorithm. Because a
division instruction is a less frequently executed instruction,
we believe that the speed of a divider has more impact on
the overall system-performance than a divider’s power or
area consumption on the overall system’s power or area.
Therefore, the 10 percent improvement in speed may be
worth paying for extra power and area.

Finally, the conversion of a quotient digit from a redun-
dant digit set {-2,—1,0,1,2,} to the non-redundant digit set
{0,1} can be done by means of various on-the-fly conversions
[5], [6] and [3].
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