
Distinguished Lecture

Venue: Executive

Seminar Room

(S2.2-B2-53)

19 February 2016 10:30 am

Understanding Understanding Understanding Understanding

SelfSelfSelfSelf----timed Circuitstimed Circuitstimed Circuitstimed Circuits

DrsDrsDrsDrs Ivan Sutherland & Marly RonckenIvan Sutherland & Marly RonckenIvan Sutherland & Marly RonckenIvan Sutherland & Marly Roncken
Turing Laureate Turing Laureate Turing Laureate Turing Laureate Kyoto Kyoto Kyoto Kyoto Laureate Laureate Laureate Laureate

Nearly all modern digital computers march to the beat of a
“clock.” The computer clock divides each second into a few
billion “clock periods” just as a school bell divides each day into
fixed-length class periods. A 55-minute class period is so useful
for scheduling students and classrooms that educators rarely ask if
it is best for learning. In reality, 55 minutes is either too short or
too long.

We are one of a few research groups who study how to replace the
rigid clock with more flexible “self-timed” regimes. Self-timed
systems allow each small task to take its own natural time just as
“self-paced” learning allows each student to learn at his or her
own natural pace. Easy tasks finish quickly and take little energy.
Difficult tasks require more time and energy.

In operation, a self-timed system is as orderly as a kindergarten
playground at recess. Marly and Ivan will show how the parts of
such a system interact, and how they can be tested.

Great insights from Great insights from Great insights from Great insights from

The The The The

‘Asynchronous Duo’:‘Asynchronous Duo’:‘Asynchronous Duo’:‘Asynchronous Duo’:

Pioneers of Pioneers of Pioneers of Pioneers of

SelfSelfSelfSelf----Timed LogicTimed LogicTimed LogicTimed Logic

Friday

19 February, 2016

10:30 am – 12:30 pm

Refreshments

Provided

Organized by

ViRTUS - IC Design Centre of Excellence

RSVP to
virtus@pmail.ntu.edu.sg

by

10 February, 2016

(Computer Science ‘Nobel Prize’)

Understanding
Self-Timed Circuits

Talk Series Outline

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science

Portland State University

January-February 2016

slide 1 of 2

slide 2 of 2Understanding Self-Timed Circuits — Outline of joint talk series by Marly Roncken and Ivan Sutherland

PART I

TUESDAY afternoon, 16 Feb 2016

1. Introduction (Marly)

2. Self-Timed Circuits (Ivan)

3. Building Blocks and Protocols (Marly)

4. Measuring Performance (Ivan)

PART II

WEDNESDAY morning, 17 Feb 2016

5. Timing Validation (Marly)

6. Arbitration: Who wins? (Ivan)

7. Initialization, Test, and Debug (Marly)

8. The Weaver (Ivan)

Understanding Self-Timed Circuits

1

Understanding
Self-Timed Circuits

1. What and where is the ARC?

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 of 12

Title: TECOTOSH
TEnsion + COmpression + TOrsion + SHear

Location: Maseeh College
Installed: March 2006.
Dimensions: 130' x 40' x 40'.

Materials: Stainless steel truss,
laminated dichroic glass, stainless

steel cables and hardware.
Aluminum light housings.

Engineers:
Bob Grummel and Grant Davis.
Project Manager: Oanh Tran. slide 2 of 12

Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University slide 3 of 12

Asynchronous Research Center (ARC)

Asynchronous Research Center, Portland State University, 1900 SW 4th Ave, FAB 105, Portland, OR 97201, USA

slide 4 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Asynchronous Research Center (ARC)

Marly Roncken

Director

CS Department

Ivan Sutherland

ECE Department

Willem Mallon

(2010-2012)

ARCwelder compiler

Click circuits

ARC Faculty ARC Students

Navaneeth Jamadagni

PhD (2015)

Datapath topologies

Hoon Park

PhD (2015)

ARCtimer timing verification

Swetha Mettala Gilla

MSc (2010): STA

PhD: Compilation+Test

Chris Cowan, MD

PhD: Radiation tolerance

Rajesh Nerkar

MSc (2013)

DRAM interfacing

Prachi Padwal

MSc (2012)

Leakage-Power reduction

Collaboration

Prof. Xiaoyu Song

ECE Department

Prof. Rob Daasch

ECE Department

Prof. Warren Hunt

UT Austin

Prof. Anping He

Lanzhou University

China

William Koven

2009, 2011 (Harvey Mudd)

Click circuits, CPU

Jean Simatic

2013 (EP, France)

Designing with ARCwelder

Andrew Yang

2014 high-school student

ARCwelder GUI software

Ben Massey

2015 high-school student

Silicon test software

Visiting Students

External Students

Chao Zhou

2014 Lanzhou University

ARCtimer software

2

slide 5 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Get real!

iv
a
n

c
h
ris

n
a
v

h
o
o
n

s
w

e
th

a
m

a
rl
y

slide 6 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

� Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, Ivan Sutherland

Modular Timing Constraints for Delay-Insensitive Systems

JCST, Springer China, 31(1):77-106, 2016

� Hoon Park, Anping He, Marly Roncken, and Xiaoyu Song

Semi-modular delay model revisited in context of relative timing

IET Electronics Letters, 51(4):332-334, 2015

� Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni,

Chris Cowan, and Ivan Sutherland Naturalized Communication and Testing

ASYNC 2015, pages 77-84, 2015 (presentation on ASYNC 2015 web site)

� Poster by Hoon on Timing Validation (see ASYNC 2015 web site)

� Poster by Swetha on Testing with MrGO (see ASYNC 2015 web site)

� Ivan Sutherland GasP Circuits that Work

ECE 507 Seminar, Fall 2010, Asynchronous Research Center.

http://arc.cecs.pdx.edu/fall10

A sample about our work

slide 7 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Where on earth are we? (1/2)

Equirectangular (plate carrée) projection of the world [Wikipedia]

Portland, Oregon

slide 8 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Where on earth are we? (2/2)
Portland, the largest city in Oregon

and seat of Multnomah County, is
located in the northwest part of the
state on the Willamette River.

Over1,700 high-tech companies

are located in the metropolitan area.

Portland is one of the fastest growing

tech sectors in the country, and home
to major industrial players in
• Microelectronics

• Energy and power
• Manufacturing

• Transportation and other
infrastructure technology.

Portland boasts a thriving creative,
recreation and culinary culture.

the state of OREGON

Portland

3

slide 9 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Regional industry

slide 10 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Maseeh College at a glance

94 faculty members with 86 teaching faculty

5 departments:

� Civil and Environmental Engineering
� Electrical and Computer Engineering

� Mechanical and Materials Engineering
� Computer Science
� Engineering and Technology Management

(MS and PhD only)

2270 undergrads*

539 grad students*

~20% international students

* Totals on 19 August 2015.

slide 11 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Portland State University: GO Vikings!

slide 12 of 12Understanding Self-Timed Circuits — 1. The ARC at the Maseeh College of Portland State University

Living in Portland

c
a
n

o
e
in

g
 o

n
 t

h
e
 W

ill
a
m

e
tt

e

e
xc

e
lle

n
t

c
u

is
in

e
 f

ro
m

 f
re

s
h

 p
ro

d
u

c
e

s
k
iin

g
 a

n
d
 s

n
o
w

b
o

a
rd

in
g
 o

n
 M

o
u

n
t

H
o
o
d

P
o
w

e
ll'

s
 b

o
o
k
 s

to
re

 -
a
 c

ity
 b

lo
c
k
 o

f
b
o
o
k
s

3/14/2016

Fleet, Infinity & Marina 1

Understanding
Self-Timed Circuits

2. Self-Timed Circuits

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 February, 2016 Slide 2

Asynchronous Research CenterSelf-Timed Circuits

Outline
• Kinetic Learning Activity (KLA)

• Pipelines

• Protocols
> Bundled Data
> Globally Asynchronous Locally

Synchronous (GALS)

February, 2016 Slide 3

Asynchronous Research CenterSelf-Timed Circuits

KLA rules

• Predecessor and successor

• Use only one hand

• Pred has object AND you don’t

• Do: TAKE from predecessor

• Never: PUT to successor

February, 2016 Slide 4

Asynchronous Research CenterSelf-Timed Circuits

Pipeline action

• Conditions for action
> predecessor proffers data
> successor proffers space

• Three part atomic action:
> copy data
> make successor FULL
> make predecessor EMPTY

3/14/2016

Fleet, Infinity & Marina 2

February, 2016 Slide 5

Asynchronous Research CenterSelf-Timed Circuits

Pipeline essentials

• One AND function
> pred FULL and succ EMPTY

• Data captured in latches or flip flops

• Some relative timing assumptions

• Compare with source clocking

February, 2016 Slide 6

Asynchronous Research CenterSelf-Timed Circuits

Pipeline is:
• Logic stage “L”

• Wires “w”

w L w L w L w L w L w L w

• Wires may hold data or not:
can be “full” or “empty”

February, 2016 Slide 7

Asynchronous Research CenterSelf-Timed Circuits

Bundled Data

February, 2016 Slide 8

Asynchronous Research CenterSelf-Timed Circuits

A Data “bundle” is
• N data wires (the message)

plus

• Two-way handshake
> Validity signal – aka “request”

> Acknowledge – ok to send next

with delay constraint

• Sender and receiver alternate

3/14/2016

Fleet, Infinity & Marina 3

February, 2016 Slide 9

Asynchronous Research CenterSelf-Timed Circuits

Control protocols
• Two wires – four phase

> request HI = data valid = FULL
> acknowledge HI = no meaning
> request LO = no meaning
> acknowledge LO = data accepted = EMPTY

• Two wires – two phase NRZ
> request change = data valid = FULL
> like double data rate (DDR) source clock
> acknowledge change = EMPTY

February, 2016 Slide 10

Asynchronous Research CenterSelf-Timed Circuits

Source clocking

• Source clocking
> source clock moves data forward

> Double Data Rate (DDR) = on each edge

February, 2016 Slide 11

Asynchronous Research CenterSelf-Timed Circuits

Source and sink clocking

• Source clocking
> source clock moves data forward

> Double Data Rate (DDR) = on each edge

• Sink clocking
> sink clock moves space backward

> DDR = on each edge

February, 2016 Slide 12

Asynchronous Research CenterSelf-Timed Circuits

Data Protocol
• Normally transparent

> Data flows forward unimpeded
• changes may cost energy and cause noise

> Control locks space behind data
> Like rods in grocery store

• Normally opaque (I favor)
> Control paves the way
> Like a snow plow
> Data captured at each stage

3/14/2016

Fleet, Infinity & Marina 4

February, 2016 Slide 13

Asynchronous Research CenterSelf-Timed Circuits

Micropipeline (1988)
• Normally transparent

• Two wires: request & acknowledge
> FULL when they differ

February, 2016 Slide 14

Asynchronous Research CenterSelf-Timed Circuits

Micropipeline KLA rules

• Predecessor and successor

• IF (predecessor ≠ successor)

• THEN copy predecessor

• ELSE hold value

February, 2016 Slide 15

Asynchronous Research CenterSelf-Timed Circuits

Charlie box (2000)
• Two wires between stages

>differ = FULL
>bundled data
>acknowledge after capture

• Fast in forward direction
> forward = 2 via one latch
> reverse = 4 via XOR + latch

• Normally transparent data latches

February, 2016 Slide 16

Asynchronous Research CenterSelf-Timed Circuits

Charlie box circuit diagram

3/14/2016

Fleet, Infinity & Marina 5

February, 2016 Slide 17

Asynchronous Research CenterSelf-Timed Circuits

Mousetrap (2001)
• Normally transparent

• Two wires: request & acknowledge
> FULL when they differ

> Latch opaque when FULL

February, 2016 Slide 18

Asynchronous Research CenterSelf-Timed Circuits

GasP (2002)

• One state wire
> sender changes control wire = FULL
> receiver changes control wire = EMPTY
> Conventions:

HI is FULL or LO is FULL

• Very simple pipeline control
> avoids XOR
> one AND function
> speed of 5 inverter ring oscillator

February, 2016 Slide 19

Asynchronous Research CenterSelf-Timed Circuits

6-4 GasP circuit
• Single control wire plus data

> Control wire is bidirectional
> HI is FULL convention
> Bundled data
> Normally opaque

February, 2016 Slide 20

Asynchronous Research CenterSelf-Timed Circuits

GasP circuit diagram (HI = FULL)

3/14/2016

Fleet, Infinity & Marina 6

February, 2016 Slide 21

Asynchronous Research CenterSelf-Timed Circuits

Click (2010)
• Normally opaque

• Two control wires:
> Request (r)

> Acknowledge (a)
> EMPTY if r = a

> FULL if r ≠ a

February, 2016 Slide 22

Asynchronous Research CenterSelf-Timed Circuits

Global state
• Is an unnecessary fiction

• Handshakes isolate local actions

• Transactions are what matters

• Pipelines are easy to think about
> local transactions tell all

> avoid state explosion

> painless concurrency

> e.g. the UNIX pipe

February, 2016 Slide 23

Asynchronous Research CenterSelf-Timed Circuits

Fork and join pipes

• Fork sends same data many ways

• Join combines many data inputs

• Fork then Join = parallel pipeline

February, 2016 Slide 24

Asynchronous Research CenterSelf-Timed Circuits

Fork and join pipes

• storage capacity of the shorter

• latency of the slower

• slack matching avoids
> excess storage

> excess latency

3/14/2016

Fleet, Infinity & Marina 7

February, 2016 Slide 25

Asynchronous Research CenterSelf-Timed Circuits

Self-timing Challenges

• Tools
> CAD systems depend on clock

• e.g. Static timing of logic loops

• Training
> Schools and texts teach clock

> Rigid thinking

• Management confidence
> Need examples

February, 2016 Slide 26

Asynchronous Research CenterSelf-Timed Circuits

Unique validation tasks

• Combinational loops

• Slack matching

• Working with local state

• “Cycle accurate” meaningless

February, 2016 Slide 27

Asynchronous Research CenterSelf-Timed Circuits

Unique verification tasks

• Relative delays
> like timing closure, but local

• Deadlock
> wormhole networks OK if no loops

> other cases?

• Non-determinism
> order may depend on delays

February, 2016 Slide 28

Asynchronous Research CenterSelf-Timed Circuits

Self-timing Advantages

• Modularity
> Divide design and conquer

> Libraries

> Scalable to big systems

• Appropriate delay
> Easy cases can be fast

> Slow cases don’t matter if rare

> Data dependent timing

3/14/2016

Fleet, Infinity & Marina 8

February, 2016 Slide 29

Asynchronous Research CenterSelf-Timed Circuits

Self-timing Advantages

• Separate function from layout
>Any layout works properly

>Layout sets speed

>New layout can
• Improve performance

• Reduce power

• Saves power

February, 2016 Slide 30

Asynchronous Research CenterSelf-Timed Circuits

Self Timing is Inevitable

• Clocked paradigm has:
> Practical problem of confounding

• Layout

• Logic

• Geometry

> Fundamental problem
• “Simultaneous” not possible over space

• GALS is industry response
> Rich with synchronizers

February, 2016 Slide 31

Asynchronous Research CenterSelf-Timed Circuits

Discussion

1

Understanding
Self-Timed Circuits

3. Building Blocks and Protocols

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 of 68 Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 2 of 68

� Intermezzo: Why asynchronous?

� Building blocks

� Links and joints

� Action and the role of full and empty

� Systems of building blocks

� Building blocks with handshake interfaces

� Handshake protocols

� GasP and Click FIFO

� Pros and Cons of handshake interfaces

� Building blocks with full-empty interfaces

� GasP and Click revisited

� Mixed GasP and Click FIFO

� Pros and Cons of full-empty interfaces

� Summary and Conclusion

Outline

slide 3 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

INTERMEZZO:
Why Asynchronous or Self-Timed?

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 4 of 68

� Modern computer systems are distributed over space

� Examples:

� Internet of things

the network of physical objects or "things"

embedded with electronics, software, sensors,

and network connectivity, which enables these

objects to collect and exchange data
[Wikipedia]

� IBM's TrueNorth

modular chips that act like neurons

and form artificial neural networks

to run "deep learning algorithms",

like Skype's chat translator or

Facebook's facial recognition

Motivation: why asynchronous? [1/9]

2

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 5 of 68

Motivation: why asynchronous? [2/9]

� We can manage time + communication delay over space, provided

� synchronicity is required only over short distances

� long-distance communication relies on causality

i.e. event orderings (+ communication delay)

� Examples:

� It took 4 hours to get the final position commands

from Earth to New Horizons near Pluto, in order

to make this picture of Pluto and its moon Charon.
[www.planetary.org/blogs/emily-lakdawalla/2015/01300800-talking-to-pluto-is-hard.html]

� In August 2012, NASA landed Curiosity on Mars.

At the time, Mars was 13 minutes talk-time away.

The landing was on autopilot, the last 13 minutes.
[http://mars.nasa.gov/msl]

Curiosity "selfie"

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 6 of 68

Motivation: why asynchronous? [3/9]

� Technology can make a space look smaller

� so that synchronicity can be maintained over a longer distance

� Examples:

� Rail transport

took over transport by horse

and introduced traveling "on time"

� Global Positioning System (GPS)
[Roger L. Easton, Ivan A. Getting, Bradford Parkinson, 1978]

� Internet (communication network)
[Internet protocols: TCP/IP Vint Cerf, Bob Kahn, 1974]

� World Wide Web (information space)
[Tim Berners-Lee, 1989]

� Email, Dropbox, Skype, TeamViewer

for our Portland-Lanzhou meetings

GPS satellite

After building a train station on Germany's railway, the hours

on the tower clock in Speyer (top) no longer sufficed. An extra

clock (bottom) was added to show the minutes in each hour.

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 7 of 68

Motivation: why asynchronous? [4/9]

Modern chips are distributed systems
Why aren't we designing them as such?

� Or technology can make a space look BIGGER

� making us dive head on into synchronicity limits

� Example:

Nanometer chip technology enables more and faster transistors per chip

but the wires scale less well, and are therefore much slower.

As a result:

� Global clocks are too slow for modern chips

� It takes hundreds of clock domains, ten thousand signals crossing them,

and many clock ticks, to communicate within a single networking chip
[Jeanne Trinko, IBM, Keynote Speech ASYNC 2013]

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 8 of 68

Motivation: why asynchronous? [5/9]

� We design and study hardware

� distributed over self-timed components + communication protocols

3

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 9 of 68

Motivation: why asynchronous? [6/9]

� Inside a component

� behavior can be as chaotic as a kindergarten playground

� which is fine, because the space is small enough to synchronize events

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 10 of 68

Motivation: why asynchronous? [7/9]

� The communication protocols between the components

� are based on event orderings (+ communication delay)

� and are as orderly as a "crocodile"

� which is necessary for correctness (+ performance)

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 11 of 68

orderly

crocodile

chaotic

playground

orderly

crocodile

chaotic

playground

Motivation: why asynchronous? [8/9]

Summary:

We design and study hardware

� distributed over self-timed components + communication protocols

where

� Inside a component it can be as chaotic as a kindergarten playground

which is fine, because components are small enough to control events

� Between components, the protocols are as orderly as a "crocodile"

which guarantees that the communication is correct

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 12 of 68

orderly

crocodile

chaotic

playground

orderly

crocodile

chaotic

playground

Motivation: why asynchronous? [9/9]

� The playground system works, provided local supervisors

� oversee the playground to avoid accidents, bullying, fights

� ensure children use the "crocodile" between playgrounds

� Hardware analogy:

� accidents: wrong handshake protocol, ignored transitions, drive fights

� supervisors: event ordering constraints, a.k.a. relative timing constraints

� This is a scalable system because the supervisors are local

4

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 13 of 68

� Intermezzo: Why asynchronous?

� Building blocks

� Links and joints

� Action and the role of full and empty

� Systems of building blocks

� Building blocks with handshake interfaces

� Handshake protocols

� GasP and Click FIFO

� Pros and Cons of handshake interfaces

� Building blocks with full-empty interfaces

� GasP and Click revisited

� Mixed GasP and Click FIFO

� Pros and Cons of full-empty interfaces

� Summary and Conclusion

Outline

slide 14 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

BUILDING BLOCKS

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 15 of 68

Building blocks

orderly

crocodile

chaotic

playground

orderly

crocodile

[Analogy reminder]

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 16 of 68

Building blocks

handshake component

module
joint

communication channel

handshake channel
link link

in out

5

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 17 of 68

Building blocks: action

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

link in link out

joint

fullempty

link in link out

joint

emptyfull

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 18 of 68

joint1 joint2 joint3

empty

link2 link3 link4link1

empty

Systems of building blocks (1/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

empty full

fullexternal

fill

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 19 of 68

Systems of building blocks (2/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

joint1 joint2 joint3

full

link2 link3 link4link1

empty

empty full

fullexternal

fill

data have moved forward

as far as they can

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 20 of 68

Systems of building blocks (3/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

joint1 joint2 joint3

full

link2 link3 link4link1

emptyfullexternal

fill

empty full

data have moved forward

as far as they can

external

fill

full

6

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 21 of 68

Systems of building blocks (4/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

empty full

full

joint1 joint2 joint3

link2 link3 link4link1

full empty
external

drain

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 22 of 68

Systems of building blocks (5/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

full

joint1 joint2 joint3

link2 link3 link4link1

empty empty
external

drain

space has moved backward

as far as it can

empty full

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 23 of 68

empty external

drain

empty

Systems of building blocks (6/6)

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

full

joint1 joint2 joint3

link2 link3 link4link1

empty empty
external

drain

space has moved backward

as far as it can

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 24 of 68

� Intermezzo: Why asynchronous?

� Building blocks

� Links and joints

� Action and the role of full and empty

� Systems of building blocks

� Building blocks with handshake interfaces

� Handshake protocols

� GasP and Click FIFO

� Pros and Cons of handshake interfaces

� Building blocks with full-empty interfaces

� GasP and Click revisited

� Mixed GasP and Click FIFO

� Pros and Cons of full-empty interfaces

� Summary and Conclusion

Outline

7

slide 25 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

1st BUILDING BLOCK SOLUTION:
with handshake interfaces

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 26 of 68

� Handshakes encode full, empty, and valid data when full

� Examples:

� 2-phase return-to-zero (RTZ) with bundled data (used in GasP)

full: statewire is high / empty: statewire is low

� 2-phase non-RTZ with bundled data (used in Click)

full: request � acknowledge / empty: request	� acknowledge

Handshake protocols

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 27 of 68

Building blocks with handshake interfaces

link joint link

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 28 of 68

Dout [1:M]Din [1:N]

SWoutSWin

GasP

link joint link

Building blocks with handshake interfaces

fillout

fullout

drainin

fullin

8

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 29 of 68

Click

Rin

AoutAin

Rout

Din [1:N] Dout [1:M]

link joint link

Building blocks with handshake interfaces

fillout

fullout

drainin

fullin

slide 30 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

so FAR so GOOD

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 31 of 68

GasP GasP

Systems with handshake interfaces (1 /3)
a

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 32 of 68

GasP GasP

Systems with handshake interfaces (1 /3)
a

9

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 33 of 68

GasP GasP

Systems with handshake interfaces (1 /3)
b

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 34 of 68

Systems with handshake interfaces (1 /3)

GasP GasP

c

slide 35 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

so FAR so GOOD

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 36 of 68

Click Click

Systems with handshake interfaces (2 /3)
a

10

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 37 of 68

Click Click

Systems with handshake interfaces (2 /3)
b

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 38 of 68

Click Click

Systems with handshake interfaces (2 /3)
c

slide 39 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

so FAR so GOOD

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 40 of 68

Systems with handshake interfaces (3 /3)

GasP Click

a

11

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 41 of 68

GasP Click

Systems with handshake interfaces (3 /3)
b

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 42 of 68

GasP Click

Systems with handshake interfaces (3 /3)
b

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 43 of 68

GasP Click

Systems with handshake interfaces (3 /3)
c

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 44 of 68

Systems with handshake interfaces (3 /3)

Din
Ain
Rin

Dout

SWout

WRONG
� different control wires
� different full-empty encoding

c

12

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 45 of 68

� Pros

� Most R&D in asynchronous (self-timed) circuits use handshake interfaces

� Cons

� Building blocks with different handshakes need translators to communicate

� Translators cost extra validation effort + area, time, and power

� This complicates collaboration and design re-use

Handshake interfaces: pros and cons

2-phase
NRZ

REQ�ACK

Gotcha!

link is full

Please!

fill the link

2-phase

NRZ

REQ low

translators

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 46 of 68

� Intermezzo: Why asynchronous?

� Building blocks

� Links and joints

� Action and the role of full and empty

� Systems of building blocks

� Building blocks with handshake interfaces

� Handshake protocols

� GasP and Click FIFO

� Pros and Cons of handshake interfaces

� Building blocks with full-empty interfaces

� GasP and Click revisited

� Mixed GasP and Click FIFO

� Pros and Cons of full-empty interfaces

� Summary and Conclusion

Outline

slide 47 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

2nd BUILDING BLOCK SOLUTION:
with full-empty interfaces

slide 48 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

GasP revisited

13

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 49 of 68

link joint

Building block interfaces revisited

link

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 50 of 68

Building block interfaces revisited...from

Dout [1:M]Din [1:N]

SWoutSWin

GasP

link joint

fillout

fullout

drainin

fullin

link

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 51 of 68

Building block interfaces revisited...to

joint

Dout [1:M]Din [1:N]

SWoutSWin

GasP

half-link half-link

Din

drainin

fullin

'

fillout

Dout

fullout

'

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 52 of 68

GasP link

drainout

Dstoredout

fulloutSWout

GasP

joint

Din [1:N]

SWin

half-link

Building block interfaces revisited...to
Din

drainin

fullin

'

fillout

Dout

fullout

'

14

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 53 of 68

drainout

Dstoredout

fulloutSWout

GasP

joint

Building block interfaces revisited...to
Din

drainin

fullin

'

fillout

Dout

fullout

'

GasP link

Din

fillin

fullin SWin

Dstoredin

GasP link

slide 54 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

Click revisited

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 55 of 68

Building block interfaces revisited...from

Click

Rin

AoutAin

Rout

Din [1:N] Dout [1:M]

link joint link

fillout

fullout

drainin

fullin

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 56 of 68

Building block interfaces revisited...to

joint

Rin

AoutAin

Rout

Click

Dout [1:M]
Dout

'

fillout

fullout

Din [1:N]

half-link half-link

drainin

fullin

Din
'

15

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 57 of 68

Building block interfaces revisited...to

fillout

fullout

drainin

fullin

Rin

Ain

Click

DoutDin
Din [1:N]

half-link joint Click link

drainout

Dstoredout

fulloutAout

Rout

''

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 58 of 68

Building block interfaces revisited...to

fillout

fullout

drainin

fullin

Click

DoutDin

joint Click link

drainout

Dstoredout

fulloutAout

Rout

Click link

Ain

Rin

fillin

fullin

Din
''

slide 59 of 68Understanding Self-Timed Circuits — 3. Building Blocks and Protocols

Mixed systems revisited

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 60 of 68

Mixed systems with full-empty interfaces

GasP Click

GasP Click Click

16

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 61 of 68

Mixed systems with full-empty interfaces

GasP Click

GasP Click Click

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 62 of 68

Mixed systems with full-empty interfaces

GasP Click

GasP Click Click

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 63 of 68

Mixed systems with full-empty interfaces

GasP Click

GasP Click Click

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 64 of 68

� Cons

� Revisit existing design methods and CAD tools

� Pros

� Translation-free communication between different self-timed circuit families

� Simplifies collaboration and design re-use

Full-empty interfaces: pros and cons

Gotcha!

link is full

Please!

fill the link

17

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 65 of 68

Translation-free communication for all

Explore the limits and opportunities of FULL-EMPTY interfaces for circuit
families that extend the geographic reach and herald collaborative design

Research opportunity:
ARC internship or MSc or PhD thesis

Gotcha!

link is full

Please!

fill the link

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 66 of 68

� Intermezzo: Why asynchronous?

� Building blocks

� Links and joints

� Action and the role of full and empty

� Systems of building blocks

� Building blocks with handshake interfaces

� Handshake protocols

� GasP and Click FIFO

� Pros and Cons of handshake interfaces

� Building blocks with full-empty interfaces

� GasP and Click revisited

� Mixed GasP and Click FIFO

� Pros and Cons of full-empty interfaces

� Summary and Conclusion

Outline

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 67 of 68

� Communication delay matters!

� Modern chips are distributed systems — so design them as such!

� Self-timed circuits are distributed and scale over space

� Interfaces matter!

� Design them for collaboration and re-use

Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni, Chris Cowan, and

Ivan Sutherland, Naturalized Communication and Testing, ASYNC 2015, pages 77-84, 2015

(presentation on ASYNC 2015 web site)

� Think about full and empty

Summary and Conclusion

Understanding Self-Timed Circuits — 3. Building Blocks and Protocols slide 68 of 68

� Key in asynchronous or self-timed design

� full means data are valid

� empty means there is space for new data

� Avoid time and power hungry polling

� You've got mail when the mailbox flag is up

� Avoid time and power hungry memory clearing

� Instead of clearing all register bits, declare the register empty

� Reduce the search time for a parking space in everyday life

The importance of full and empty

FULL EMPTY FULL

3/14/2016

Fleet, Infinity & Marina 1

Understanding
Self-Timed Circuits

4. Measuring Performance

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 February, 2016 Slide 2

Asynchronous Research CenterSelf-Timed Circuits

Delay in CMOS logic gates

• Turn on a transistor

• Slope of output voltage

• Depends on the load

February, 2016 Slide 3

Asynchronous Research CenterSelf-Timed Circuits

Ring oscillator

• Odd number of stages (3)

• All same size
Any size

• If different sizes
some may fail
to reach the rails

February, 2016 Slide 4

Asynchronous Research CenterSelf-Timed Circuits

Conditions for full swing

• For three stages
>Delays must match within 30%

• For five stages
>Delays must match within 300%

• We use at least 5 stages

3/14/2016

Fleet, Infinity & Marina 2

February, 2016 Slide 5

Asynchronous Research CenterSelf-Timed Circuits

Conditions for pulse

• Two edges with odd separation

• Need at least 3 gates between

• Better to have 5 gates

February, 2016 Slide 6

Asynchronous Research CenterSelf-Timed Circuits

Conditions for full swing

• GasP has 2 rings of 5 stages each

Transparent when fire = HI

February, 2016 Slide 7

Asynchronous Research CenterSelf-Timed Circuits

Self-timed pipelines

• First-In-First-Out (FIFO) buffer

• Number of entries is variable
>Can be EMPTY; zero entries

>Can be FULL; one entry every stage

>Or any amount in between

• Can put in - unless FULL

• Can take out - unless EMPTY

February, 2016 Slide 8

Asynchronous Research CenterSelf-Timed Circuits

Self-timed pipelines (cont’d)

• Data Items move toward output
>Remaining in sequence

>Data items can’t overtake others

• Spaces move toward input
>By exchange with data items

• Analogies:
>one lane road

>queue of people at bus stop

3/14/2016

Fleet, Infinity & Marina 3

February, 2016 Slide 9

Asynchronous Research CenterSelf-Timed Circuits

NOT a ring buffer FIFO

• A section of RAM can be a FIFO

• Read and write pointers

• Pointer arithmetic computes FULL

• Each cycle either reads or writes

• Contrast with self-timed FIFO
reading and writing concurrently.

February, 2016 Slide 10

Asynchronous Research CenterSelf-Timed Circuits

Self-timed pipelines (cont’d)

• How fast do data move?
>Depends on the circuit

• How fast do spaces move?
>Depends on the circuit

• “Canopy Graph” shows speed

• Introduced by Ted Williams (PhD 1991)

• Named by Gill and Singh (Gill's PhD 2010)

February, 2016 Slide 11

Asynchronous Research CenterSelf-Timed Circuits

Canopy graphs

• Throughput versus occupancy
> throughput in items/time: GDI/s

> occupancy in items/stage from 0 to 1

• No occupancy = no throughput

• Full occupancy = no throughput

• Occupancy for max throughput

• Calculated for a ring

February, 2016 Slide 12

Asynchronous Research CenterSelf-Timed Circuits

GasP circuit diagram (HI = FULL)

3/14/2016

Fleet, Infinity & Marina 4

February, 2016 Slide 13

Asynchronous Research CenterSelf-Timed Circuits

Throughput vs Occupancy (90nm)
Test ring has 11 GasP stages

February, 2016 Slide 14

Asynchronous Research CenterSelf-Timed Circuits

Throughput vs Occupancy (40nm)
Simulated rings of 36 stages

February, 2016 Slide 15

Asynchronous Research CenterSelf-Timed Circuits

Mousetrap (2001)
• Normally transparent

• Two wires: request & acknowledge
> FULL when they differ

> Latch opaque when FULL

February, 2016 Slide 16

Asynchronous Research CenterSelf-Timed Circuits

Throughput vs Occupancy (40nm)
Canopy graphs from Weaver rings

0

1

2

3

4

5

6

7

0 10 20 30 40 50

G
ig
a
 D
a
ta

 I
te
m
s/
se
co
n
d

Number of Data Items

Throughput vs Occupancy

Ring 0

Ring 1

Ring 2

Ring 3

Ring 4

Ring 5

Ring 6

Ring 7

Ring 8

Ring 9

3/14/2016

Fleet, Infinity & Marina 5

February, 2016 Slide 17

Asynchronous Research CenterSelf-Timed Circuits

Drafting (a small effect)

• Data items form groups
> X X X X

>The first one goes slower

>The rest catch up

• Why?
>Wires fully charged for first

>Not yet fully charged for others

February, 2016 Slide 18

Asynchronous Research CenterSelf-Timed Circuits

Drafting (cont’d)

• We know by many stops
>Where were the tokens at stop?

>How many got past (statistically)?

• Measured only in rings
>After passing billions of stages

>Now doing experiments to observe
onset of drafting

February, 2016 Slide 19

Asynchronous Research CenterSelf-Timed Circuits

Discussion

1

Understanding
Self-Timed Circuits

5. Timing Validation

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 of 8 Understanding Self-Timed Circuits — 5. Timing Validation slide 2 of 8

orderly

crocodile

chaotic

playground

orderly

crocodile

chaotic

playground

Asynchronous design: reminder (1/4)

� We design and study hardware

� distributed over self-timed components + communication protocols

� where

� Inside a component it can be as chaotic as a kindergarten playground

which is fine, because components are small enough to control events

� Between components, the protocols are as orderly as a "crocodile"

which guarantees that the communication is correct

Understanding Self-Timed Circuits — 5. Timing Validation slide 3 of 8

Asynchronous design: reminder (2/4)

� The playground system works, provided

local supervisors

� oversee the playground to avoid accidents

� ensure children use the "crocodile" between playgrounds

orderly

crocodile

chaotic

playground

orderly

crocodile

chaotic

playground

Understanding Self-Timed Circuits — 5. Timing Validation slide 4 of 8

Asynchronous design: reminder (3/4)

orderly

crocodile

chaotic

playground

orderly

crocodile

chaotic

playground

� Timing validation provides the local supervisors

� Analogy

playground : self-timed component

crocodile : channel connection with communication protocol

system : collection of components and communication channels

accident : wrong protocol

supervisors : event ordering constraints, a.k.a. relative timing constraints

2

Understanding Self-Timed Circuits — 5. Timing Validation slide 5 of 8

� Timing validation provides the local supervisors

� Analogy

playground : self-timed component

crocodile : communication channel with protocol

system : collection of components and communication channels

accident : wrong protocol

supervisors : event ordering constraints, a.k.a. relative timing constraints

Asynchronous design: reminder (4/4)

chaotic

playground

communication

protocol

self-timed

component

Click Storage

(FIFO)

handshake

orderly

crocodile

Understanding Self-Timed Circuits — 5. Timing Validation slide 6 of 8

� By carefully considering time locally, we can ignore time globally

� Timing constraint generation can be done in a modular way

and in advance of chip design

� as part of building a library of verified components

� that are used again and again, for each and every chip design

• Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, and Ivan Sutherland,

Modular Timing Constraints for Delay-Insensitive Systems,

JCST, Springer China, 31(1):77-106, 2016

Summary and Conclusion

Understanding Self-Timed Circuits — 5. Timing Validation slide 7 of 8

Understanding Self-Timed Circuits — 5. Timing Validation slide 7 of 8

1/14/2017

Fleet, Infinity & Marina 1

Understanding
Self-Timed Circuits

6. Arbitration: Who wins?

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 February, 2016 Slide 2

Asynchronous Research CenterArbitration

Outline

• Quantize a continuous variable

• Time is the variable

• What happened first

• Exactly the same time?

• Arbiter circuit

• Decides, but may take time

February, 2016 Slide 3

Asynchronous Research CenterArbitration

Mutual exclusion

• Two events at “same” time
>which choice doesn’t matter

>but choice must be clean

• Flip-flop can hang metastable
>exit is Poisson distributed

>may take a long time, but rarely will

• Asynchronous system can wait

February, 2016 Slide 4

Asynchronous Research CenterArbitration

Mutual exclusion (Seitz)

Sizes optimized by

Swetha Mettala Gilla

6 6

3/14/2016

Fleet, Infinity & Marina 2

February, 2016 Slide 5

Asynchronous Research CenterArbitration

Continental divide

February, 2016 Slide 6

Asynchronous Research CenterArbitration

Continental divide

February, 2016 Slide 7

Asynchronous Research CenterArbitration

Continental divide

View east View west

February, 2016 Slide 8

Asynchronous Research CenterArbitration

Moving the Continental divide

View east Plan and elevation

3/14/2016

Fleet, Infinity & Marina 3

February, 2016 Slide 9

Asynchronous Research CenterArbitration

Manapouri powerplant, NZ

February, 2016 Slide 10

Asynchronous Research CenterArbitration

Metastability demonstration
(Chaney, St. Louis)

February, 2016 Slide 11

Asynchronous Research CenterArbitration

Scope trace
(Chaney, St. Louis)

February, 2016 Slide 12

Asynchronous Research CenterArbitration

Zeke to test arbiters (1998)

28 stage rings

with arbiters

between stages

3/14/2016

Fleet, Infinity & Marina 4

February, 2016 Slide 13

Asynchronous Research CenterArbitration

Infinity test (2008)

M
out

in0

in1

B
in

out0

out1

M

F

I

F

O

B

F

I

F

O

F

I

F

O

Demand Merge

Data-directed Branch

February, 2016 Slide 14

Asynchronous Research CenterArbitration

Infinity: Throughput vs Occupancy

February, 2016 Slide 15

Asynchronous Research CenterArbitration

Priority – a clocked idea

• Two people in an elevator

• One is “senior” and goes first

• Door opens:
>Senior leaves

>Junior leaves

• Senior has priority

February, 2016 Slide 16

Asynchronous Research CenterArbitration

Priority in a clockless world

• Two people approach a door

• One is “senior” with “priority”

• Senior arrives before junior
>Senior goes through first.

• Junior arrives before senior
>By two seconds?

>By two minutes?

1/14/2017

Fleet, Infinity & Marina 5

February, 2016 Slide 17

Asynchronous Research CenterArbitration

Priority

• Not meaningful without clock

• Is equivalent to delay

February, 2016 Slide 18

Asynchronous Research CenterArbitration

“Fair” arbitration

• What is “fair”

• First come first served

• If I arrive while busy and I wait
will I be served next?

• Greedy requests get
alternate service

• More than two users?

February, 2016 Slide 19

Asynchronous Research CenterArbitration

Stopping self-timed systems

• Clean stop requires arbitration
>Stop in mid action OR

>Finish the action, then stop

• Without arbitration, runt pulses
>Give chance of data error or

>Loss of whole data item

February, 2016 Slide 20

Asynchronous Research CenterArbitration

MrGO

• Half an arbiter

• To stop cleanly

• A “proper stopper”

• Shall I stop now
or complete
this action?

6 6

3/14/2016

Fleet, Infinity & Marina 6

February, 2016 Slide 21

Asynchronous Research CenterArbitration

Discussion

1

Understanding
Self-Timed Circuits

7. Initialization, Test, and Debug

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1 of 65 Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 2 of 65

� Reminder: Building blocks

� What's so special about testing circuits?

� Test space and control — in 3D

� Scan state control

� MrGO action control

� Test examples using scan + MrGO

� Multi-step:

• Testing a counter at speed, for one data item

• Testing a counter at speed, for a burst of data

• Using the counter to characterize throughput

� Single-step:

• Testing stuck-at faults in building blocks

� Summary and Conclusion

Outline

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 3 of 65

Building blocks: reminder

self-timed component

joint

communication channel

link link

in out

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 4 of 65

Building blocks: action reminder

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

link in link out

joint

fullempty

link in link out

joint

emptyfull

2

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 5 of 65

� Reminder: Building blocks

� What's so special about testing circuits?

� Test space and control — in 3D

� Scan state control

� MrGO action control

� Test examples using scan + MrGO

� Multi-step:

• Testing a counter at speed, for one data item

• Testing a counter at speed, for a burst of data

• Using the counter to characterize throughput

� Single-step:

• Testing stuck-at faults in building blocks

� Summary and Conclusion

Outline

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 6 of 65

� Isn't this similar to testing software?

� so many lines - so few exports

� for which the answer is:

� use an interactive code debugger

� to set break points, single-step code, etc.

so MANY signals - so FEW pins

E
P

R
O

M
 -

b
y
 Z

e
p
h

y
ri
s
,

W
ik

ip
e
d
ia

In
te

l
8

0
4

8
6

D
X

2
 -

C
C

 B
Y

-S
A

 2
.5

,
W

ik
ip

e
d
ia

S
m

a
ll

c
o
d
e
 f

ra
g
m

e
n

t
fr

o
m

 5
0

0
0

0
 c

o
d
e
 l

in
e
s
 i

n
 t

h
e

A
R

C
w

e
ld

e
r

s
ili

c
o
n

 c
o
m

p
ile

r
fo

r
s
e
lf
-t

im
e
d
 c

ir
c
u

its

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 7 of 65

� Isn't this similar to testing software?

� so many lines - so few exports

� for which the answer is:

� use an interactive code debugger

� to set break points, single-step code, etc.

SO

� Why not test the pre-silicon code ...

� Please do

� ... instead of testing the silicon version?

� It's not enough, because

� the code translation may introduce bugs

� and manufacturing may introduce defects

� Wanted:

� Silicon equivalent of a code debugger

so MANY signals - so FEW pins

E
P

R
O

M
 -

b
y
 Z

e
p
h

y
ri
s
,

W
ik

ip
e
d
ia

In
te

l
8

0
4

8
6

D
X

2
 -

C
C

 B
Y

-S
A

 2
.5

,
W

ik
ip

e
d
ia

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 8 of 65

� Reminder: Building blocks

� What's so special about testing circuits?

� Test space and control — in 3D

� Scan state control

� MrGO action control

� Test examples using scan + MrGO

� Multi-step:

• Testing a counter at speed, for one data item

• Testing a counter at speed, for a burst of data

• Using the counter to characterize throughput

� Single-step:

• Testing stuck-at faults in building blocks

� Summary and Conclusion

Outline

3

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 9 of 65

Test space and control:
a 3D visualization

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 10 of 65

Test control (1/3): none
� suffices if many internal signals are also external

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 11 of 65

Test control (2/3): over global state + action
� scantest (scan): initialization (+ single-step and multi-step test in clocked systems)

[Eichelberger-Williams, 1977]

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 12 of 65

Test control (2/3): over global state + action
� scantest (scan): initialization (+ single-step and multi-step test in clocked systems)

[Eichelberger-Williams, 1977]

4

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 13 of 65

Test control (2/3): over global state + action
� scantest (scan): initialization (+ single-step and multi-step test in clocked systems)

[Eichelberger-Williams, 1977]

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 14 of 65

SCAN: state control

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 15 of 65

� Scan-chain

� Can store + move (shift) data

� Entry and exit are external

� Can write data from the scan chain into internal circuit signals

� Can read internal circuit signals and store their values in the scan chain

� Scan-control

� For scan operations: shift, write, read, enable-disable circuit action

� Can be self-timed or clocked; we use clocked, because

• it doesn't matter: systems operate independent of how they're tested

• IEEE standards are available

Scan design

circuit

scan-chain

scan scan scan scan

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 16 of 65

Scan design

link in link out

joint

circuit

scan-chain

scan scan scan scan

lin
k
 o

u
t

d
a
ta

 i
n

d
a
ta

 o
u
t

lin
k
 i
n

5

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 17 of 65

Scan operations: shift in stimuli (1/5)

circuit

scan-chain

scan scan scan scan

link in link out

joint

? ?

serial shift

1 full 0 empty scan

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 18 of 65

Scan operations: shift in stimuli (2/5)

circuit

scan-chain

scan scan scan scan

link in link out

joint

? ?

serial shift

1 full 0 empty

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 19 of 65

Scan operations: shift in stimuli (3/5)

circuit

scan-chain

scan empty scan scan

link in link out

joint

? ?

serial shift

1 full 0

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 20 of 65

Scan operations: shift in stimuli (4/5)

circuit

scan-chain

scan 0 empty scan

link in link out

joint

? ?

serial shift

full1

6

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 21 of 65

Scan operations: shift in stimuli (5/5)

circuit

scan-chain

scan full 0 empty

link in link out

joint

? ?

serial shift

1

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 22 of 65

Scan operations: write stimuli to circuit

circuit

scan-chain

scan full 0 empty

link in link out

joint

? ?

parallel write

1

1 0

lin
k
 o

u
t

d
a
ta

 i
n

d
a
ta

 o
u
t

lin
k
 i
n

disable all

circuit actions

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 23 of 65

link in link out

joint

1 01 1

circuit

scan-chain

scan full 0 empty 1

enable all

circuit actions

Scan operations: let the circuit run

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 24 of 65

Scan operations: read results from circuit

circuit

scan-chain

scan full 0 empty

link in link out

joint

1 1

parallel read

1

lin
k
 o

u
t

d
a
ta

 i
n

d
a
ta

 o
u
t

lin
k
 i
n

scan empty 1 full

disable all

circuit actions

7

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 25 of 65

Scan operations: shift out results

circuit

scan-chain

link in link out

joint

1 1

serial shift

1scan empty 1 full 1scan scan scan scan scan 1 empty 1 full

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 26 of 65

� Pros

� Good for circuit initialization

� Good for testing single-step circuit actions

� Good for sequential testing of multi-step circuit actions, at speed:

just "keep ticking" as many times as needed

� But

� What's in a "tick" — when it's a self-timed circuit?

� Does a "tick" stop?

� If it doesn't then how can we use scan reads and writes, safely?

� Cons

� Scan by itself isn't enough for self-timed circuits

� Example:

Handshake Solutions clocks every loop to kill self-timed action at test to

regain control over initialization and single-step test (not sequential test)

SCAN: pros and cons

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 27 of 65

What's missing?
back to 3D test space and control

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 28 of 65

Test control (2/3): over global state + action
� scantest (scan): initialization (+ single-step and multi-step test in clocked systems)

[Eichelberger-Williams, 1977]

8

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 29 of 65

Test control (3/3): + distinguish local actions
� scan+GO: initialization + single-step and multi-step and at-speed test and debug

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 30 of 65

Test control (3/3): + distinguish local actions
� scan+GO: initialization + single-step and multi-step and at-speed test and debug

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 31 of 65

Test control (3/3): + distinguish local actions
� scan+GO: initialization + single-step and multi-step and at-speed test and debug

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 32 of 65

GO: (individual) local action control

9

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 33 of 65

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

joint

link in link out

emptyfull

joint

link in link out

fullempty

Building blocks: action reminder

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 34 of 65

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building blocks: action with GO control

run

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 35 of 65

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building blocks: action with GO control

run stop + freeze

no action

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 36 of 65

Building blocks: design with GO control

GO

design reminder

joint linklink

10

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 37 of 65

drainout

Dstoredout

fulloutSWout

joint

Building blocks: design with GO control
Din

drainin

fullin

'

fillout

Dout

fullout

'

GasP link

Din

fillin

fullin SWin

Dstoredin

GasP link

design reminder

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 38 of 65

joint

Building blocks: design with GO control
Din

drainin

fullin

'

fillout

Dout

fullout

'

linklink

design reminder

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 39 of 65

Building blocks: design with GO control

design reminder

drainin

fullin

fillout

fullout

Combinational Logic

Din
' Dout

'

joint linklink

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 40 of 65

Combinational Logic

Building blocks: design with GO control

• go is high (GO) : run

• go is low () : stop and freeze

• arbiter for safe stop : "proper stopper"

• scan chain delivers go signals

drainin

fullin

fillout

fullout

go

Solution MrGO:
pronounced "Mister GO"

joint linklink

Din
' Dout

'

11

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 41 of 65

MrGO: dedicated action control
• go is high (GO) – start in to out

• go is low () – stop or freeze in to out

• arbiter for safe stop – "proper stopper"

• scan chain delivers go signals

(backup)

out

in

go

icon

6 6

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 42 of 65

� Reminder: Building blocks

� What's so special about testing circuits?

� Test space and control — in 3D

� Scan state control

� MrGO action control

� Test examples using scan + MrGO

� Multi-step:

• Testing a counter at speed, for one data item

• Testing a counter at speed, for a burst of data

• Using the counter to characterize throughput

� Single-step:

• Testing stuck-at faults in building blocks

� Summary and Conclusion

Outline

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 43 of 65

Sequential at-speed test and debug
using scan + MrGO

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 44 of 65

Testing a counter at speed

INITIALIZE
1. freeze joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

? ? ? ?

joint 1 2 3 4 5

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

12

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 45 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

? ? ? ?

joint 1 2 3 4 5

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 46 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 47 of 65

GO GO

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 48 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0

13

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 49 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 50 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

0

GO GO

joint 1 2 3 4 5

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 51 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

0

GO GO

joint 1 2 3 4 5

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 52 of 65

GO GO

joint 1 2 3 4 5

GO

01

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

14

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 53 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 54 of 65

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 55 of 65

Sequential at-speed test and debug
data burst

(backup) Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 56 of 65

Testing a burst of data at speed

INITIALy"

FINAL

2

under test

empty

GOGO GO

full

GOGO

empty

GO GOGO GO

full
0

takeoff runway landing runway
under test

fullempty

(backup)

15

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 57 of 65

Characterization of throughput
using scan + MrGO

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 58 of 65

Performance characterization

DO (ALL > i > 0 links)

counter=0
run 1 second with i full links
arbitrated stop
read counter

OD y"

FINAL for i ~ 60% links

GO

6G
full

GO GO GO GOGO

joint (N+1)~1 2 3 4 5 6 ... N

emptyfull full

(backup)

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 59 of 65

Structural fault testing
using scan + MrGO

(backup) Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 60 of 65

TEST datapath (normally opaque)

DO (ALL CL test inputs)

freeze joint

set fullin = TRUE

fullout = FALSE

Din = test input

Dstoredout = ¬CL(Din)

evaluate if Dstoredout remains unchanged

unfreeze joint

evaluate if Dstoredout = CL(Din)

OD

TEST control logic

DO (ALL full-empty link combos)

freeze joint

set fullin = combo(in)

fullout = combo(out)

evaluate if links remain unchanged

unfreeze joint

evaluate final link states

OD

Testing stuck-at faults

orGO

CL

under test

in out

DstoredoutDin Dout

(backup)

16

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 61 of 65

� Two working silicon experiments: Weaver and Anvil

� use building blocks with full-empty interfaces
� and MrGO + JTAG-scan for test, debug, characterization

iv
a
n

c
h
ris

n
a
v

h
o
o
n

s
w

e
th

a
m

a
rl
y

Get real!

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 62 of 65

� Reminder: Building blocks

� What's so special about testing circuits?

� Test space and control — in 3D

� Scan state control

� MrGO action control

� Test examples using scan + MrGO

� Multi-step:

• Testing a counter at speed, for one data item

• Testing a counter at speed, for a burst of data

• Using the counter to characterize throughput

� Single-step:

• Testing stuck-at faults in building blocks

� Summary and Conclusion

Outline

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 63 of 65

� Test control = state control (scan) + action control (MrGO)

� Actions matter!

� Recognize and distinguish them

� Control them individually for at-speed test, debug, and characterization

Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni, Chris Cowan, and

Ivan Sutherland, Naturalized Communication and Testing, ASYNC 2015, pages 77-84, 2015

(presentation on ASYNC 2015 web site)

Poster by Swetha on Testing with MrGO (see ASYNC 2015 web site)

Summary and Conclusion

•

•

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 64 of 65

Interactive action control

Explore the limits and opportunities of dedicated action control à la MrGO
for silicon test and debug and characterization of distributed VLSI systems

Research opportunity:
ARC internship or MSc or PhD thesis

GO

Understanding Self-Timed Circuits — 7. Initialization, Test, and Debug slide 65 of 65

6 6

3/14/2016

Fleet, Infinity & Marina 1

Understanding
Self-Timed Circuits

8. The Weaver

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

January-February 2016

slide 1

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 2

Subject of this talk

• Weaver: a non-blocking 8x8 crossbar

• Built in 40 nm TSMC technology

• Less that 1 ns latency

• 3.4 Terabits/second max throughput
Which is 6 billion data items (max)/sec/channel

times 72 bits per data item, times 8 channels

• Uses MrGO Test and debug

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 3

Test setup

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 4

Weaver overview

8 rings

8 recirculating rings
provide high-speed
data for the switch

Not shown:
2 more rings
without
switches

3/14/2016

Fleet, Infinity & Marina 2

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 5

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 6

The counters

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 7

Folded crossbar switch

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 8

One double-crosser

3/14/2016

Fleet, Infinity & Marina 3

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 9

Demand merge

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 10

A Double Crosser

output A
in A

o
u
tp

u
t
B

in
 B

A[c] = 0

A[c] = 1

B
[c

]
=

 0

B
[c

]
=

 1

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 11

Splitter – double-barrel SW

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 12

Double-barrel ricochet

3/14/2016

Fleet, Infinity & Marina 4

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 13

The counter experiment

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 14

Arbiters alternate if overloaded

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 15

Crossbar steering bit test

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 16

Testability

Infi
nit

y

Fu
ll-E

mp
ty

One
 GO c

on
tro

l

All
 GO

 c
on

tro
l

Cou
nt

ers

Non
e

Gu
ar

d b
its

All
 da

ta

One
 w

or
d

Data

OneNone

A few

ClockedSystems Every

GO Weave
r

Gated clocks

3/14/2016

Fleet, Infinity & Marina 5

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 17

Weaver performance

• Canopy graphs
> Horizontal axis = occupancy

• no occupants: no action

• jammed full: no action

> Vertical axis = throughput, power, etc.

• Shape reveals details

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 18

Throughput for all 10 rings

0

1

2

3

4

5

6

7

0 10 20 30 40 50

G
ig
a
 D
a
ta

 I
te
m
s/
se
co
n
d

Number of Data Items

Throughput vs Occupancy

Ring 0

Ring 1

Ring 2

Ring 3

Ring 4

Ring 5

Ring 6

Ring 7

Ring 8

Ring 9

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 19

Power vs. data (ring 3)

0

1

2

3

4

5

6

0 10 20 30 40 50

T
h
ro
u
g
h
p
u
t
(G
D
I/
s)

P
o
w
e
r
(1
0
0
s
o
f
M
W
)

Number of Data Items

Throughput and Power vs Occupancy

throughput

all zero

random

alternate

checker

Power

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 20

Throughput vs. voltage (ring 3)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

T
h
ro
u
g
h
p
u
t
re
la

v
e
 t
o
 m

a
x

Number of Data Items

Throughput and Supply Voltage

1.0 volts

0.9 volts

0.8 volts

0.7 volts

0.6 volts

3/14/2016

Fleet, Infinity & Marina 6

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 21

Power vs. voltage (ring 3)

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

R
e
la

v
e
 P
o
w
e
r

Number of Data Items

Power Rela ve to Maximum

1.0 volts

0.9 volts

0.8 volts

0.7 volts

0.6 volts

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 22

Our 40 nm TSMC chip exhibits
• First example of MrGO control

for full test and debug

• 3.4 Terabits/second max throughput

• Combination of testability and speed
suits our circuits to on-chip networks
> High throughput

> Reduced latency

> Low energy

> Span multiple clock domains

> Fewer synchronizers

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 23

Acknowledgements – thanks to:

• Oracle – paid for the Weaver chip

• Jon Lexau – lots of help in finishing

• Portland State – for space and students

• Sponsors of the ARC:
> Oracle

> DARPA, Microsoft

> Private Individuals

Asynchronous Research CenterA View of Self-Timed Systems

June 2015 Slide 24

Discussion

Fudan University, Shanghai

	1-Introduction_ARCatPSU_4pp.pdf
	Blank Page

	3-BuildingBlocks_Protocols_4pp.pdf
	Blank Page

	4-MeasuringPerformance_4pp.pdf
	Blank Page

	5-TimingValidation_Hoon_poster_1pp.pdf
	Blank Page

	7_Initialization_Test_Debug_SwethaPoster_1pp.pdf
	Blank Page

