

Input Slope [ps] Output Load [ff]	14	14.2		15.1		16.3		21.4	
	delay [ps]	output slope [ps]	delay [ps]	output slope [ps]	delay [ps]	output slope [ps]	delay [ps]	output slope [ps]	
0.0	35.8	8.8	36.3	8.6	37.4	8.5	39.2	8.3	
18.2	37.7	10.0	38.0	10.1	39.3	9.6	40.8	10.8	
59.3	41.6	13.8	41.9	14.2	43.0	13.9	44.7	13.9	
101.4	45.0	18.0	45.3	18.0	46.3	18.3	48.1	18.2	
142.8	48.0	22.8	48.4	22.5	49.3	22.8	51.2	22.7	
185.1	50.9	26.9	51.2	27.0	52.1	27.1	54.0	27.0	

Slide 32

Conclusion and Future Work Take-Away: • We now have a Timing Validation flow for single-track circuits • It translates FAITH (design assumptions) into MEASUREMENT • by generating Look Up Tables • that go into the USC Static Timing Analysis flow • which reports how well the FAITH holds up • The proof of the pudding is in the eating • I used this flow to validate relative timing assumptions in 6-4 GasP • The results match with the results of my ASYNC 2010 publication Future Work: • Wire delay model • with near-end capacitive load and far-end delay information

Master of Science Thesis Defense

Flow automation

