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Abstract

Library characterization and ‘Static Timing Analysis’ (STA) are widely used in the de-

sign of modern CMOS integrated circuits to confirm that critical timing constraints are

met. While many commercial tools are available to do timing validation using library

characterization and static timing analysis, their operation depends on calculations rela-

tive to a global synchronous clock. This thesis applies timing validation to circuits from

which the global synchronous clock is absent, making application of commercial tools

difficult. Previous work at the University of Southern California (USC) showed how

to overcome the incompatibility of commercial STA tools for asynchronous circuits.

This thesis shows how to overcome the incompatibility of library characterization for

asynchronous circuits, and ties the results to the STA solution of USC.

The particular family of circuits considered in this thesis is called GasP. GasP circuits

are light in area and power, and have demonstrated operation at about twice the through-

put one would expect from conventional clocked circuits. This makes GasP an ideal

candidate for modern network-on-chip and system-on-chip architectures. In part, GasP

circuits achieve their performance advantages by using a ‘single-track’ signaling proto-

col. Two GasP modules communicate with each other over a single wire. One module

drives the wire up and a second module at the other end of the wire drives the wire

down. This conflicts with the common assumption that wires are driven only from one

end. As a result, special circuitry is needed to characterize a GasP library module. This

thesis shows how to break a GasP module and its timing constraints into manageable

pieces and how to simulate and collect the data relevant for characterization and static

timing analysis. When combined with software tools for identifying the critical timing

constraints, these thesis results will provide confidence in the correct operation of GasP.
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Chapter 1

INTRODUCTION

Concurrency and energy efficiency have taken their place as first class criteria in the

design of modern circuits and systems along with, and at times even at the cost of,

speed in terms of throughput and latency. The design of modern concurrent systems

centers around a communication infrastructure that connects a number of functional

blocks. Examples are IBM Research’s Cell systems [8], Intel’s research milestones for

many-core and teraflop systems [9, 10], and Sun’s (now: Oracle’s) UltraSPARC T1

microprocessor, codenamed ‘Niagara’ [11]. Each block tends to have its own clock or

timing regime, fit to best match its operations. From a timing point of view, the blocks

operate asynchronously. Even if blocks use the same clock frequency, their operations

are likely to be skewed or out of phase with respect to each other.

The Asynchronous Research Center (ARC) at Portland State University is building a

concurrent system architecture called ‘Fleet’ [31, 13] centered around an asynchronous

communication network, built using GasP modules. Fleet anticipates the use of a va-

riety of computation blocks of low to modest complexity, called ‘ships’, such as low-

power adders and multipliers, high-speed adders and multipliers, dividers, various shift

and sort functions, I/O functions, and memory blocks. The ships can be synchronous
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or asynchronous, including GasP. They can be integrated in a single chip, or spread

over different chips or FPGAs. This makes it possible to import asynchronous ships

designed by companies like Achronix Semiconductor Corporation [5] for asynchronous

FPGA’s, FulcrumMicrosystems [7] for high-density ethernet switches, and Tiempo [14]

for ultra-low-power functions. Alternatively, Fleet can take ships built using differ-

ent asynchronous design styles from other academic and research institutes. For an

overview of asynchronous design styles and a list of institutes that study and develop

asynchronous circuits, see the yearly international symposium on asynchronous circuits

and systems, which is approaching its 17-th anniversary [12].

1.1 GasP Circuits

The target circuits for this thesis are GasP circuits. These circuits use handshake signal-

ing over a single-track wire and single-rail data encoding. This results in (N+1) wires to

communicate N data bits. The combination of single-track handshaking and single-rail

data results in light-weight circuits — light in area and light in power. GasP circuits

also happen to be about twice as fast as one would expect of a globally clocked circuit

implemented in the same technology. Add the flexibility and elasticity of asynchronous

design to high speed, low power, and low area, and you get an excellent circuit family

for on-chip communication — which is why Fleet uses a GasP network on chip.

In addition to the data wires, GasP circuits use a single wire for timing. The single-track

handshake is a bi-directional communication on that wire. A logical high voltage level

on the wire indicates a request, and a logical low voltage level on the wire indicates an

acknowledge signal. The wire has two drivers— one at each end, one for the request and

one for the acknowledge. This leads naturally to a two-phase return-to-zero handshake.
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The wire is shared, so each end drives only briefly. The brief drive avoids a drive fight

between the two ends. In addition, each driver responds only to changes at its own end.

It’s this local response that enables the communication to complete in two phases. To

make this work, we need some faith: faith in our own engineering and in the design

tools that we use. The faith in a single-track handshake depends on two assumptions:

Assumption 1: The brief drive is long enough to traverse the wire.

Assumption 2: The voltage level at the near end of the wire reflects the far-end level.

Data in GasP are exchanged using a bundled-data, also known as single-rail, protocol.

Data bits are represented using one wire per bit, just like in conventional synchronous

circuits. The single-track request signal indicates that the sender module has new data

for the receiver module, i.e. it acts as a ‘data valid’ signal for the data transfer. The

single-track acknowledge signal indicates that the receiver module has finished consum-

ing the data, i.e. it acts as a ‘completion’ signal for the data transfer. Figure 1.1 gives a

high-level overview of a linear pipeline in GasP. The GasP modules are connected with

single-track wires. Each GasP module Mi generates a local pulse signal FIREi that acts

as a local clock or enable signal for the group of latches above it, making the group tem-

porarily transparent. To make this work, we need — again — some faith. The faith in

a bundled datapath operation can be expressed in terms of conventional setup and hold

times between the data inputs and outputs and the clock enable signals at both ends of

the datapath. The data bundling constraints in GasP and their static timing analysis have

been solved successfully by Prasad Joshi in his Master of Science thesis [2].

In the rest of my thesis, I will assume that timing constraints related to datapaths are no

longer an issue, and I will henceforth ignore the datapath portion of a GasP design.
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Figure 1.1 High-level view of a linear pipeline in GasP with a bundled datapath.
The GasP control modules are connected with bi-directional single-track wires. Their
implementations are omitted here, but follow in Chapter 2, Figure 2.1, page 11. Each
GasP module Mi generates a local pulse signal FIREi that acts as a local clock or enable
signal for the group of latches above it, making the group temporarily transparent.

The message to take away is that GasP designs are light-weight because GasP designers

use faith where they can and build in measurement where they must. This take-away also

explains where my thesis comes in: I developed a timing validation flow that translates

faith intomeasurement. As a result, a GasP designer can rely on faith to make her design

light-weight, and use my validation flow to check how well that faith holds up.

1.2 Timing Validation Flow

Figure 1.2 gives an overview of the timing validation flow I offer. The complete flow

consists of three consecutive parts: (1) generation of the critical timing constraints, and

(2) library characterization, and (3) static timing analysis (STA).
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Figure 1.2 Timing validation flow for GasP circuits. The complete flow consists of
three parts: (1) generation of the critical timing constraints, (2) library characterization,
and (3) static timing analysis (STA). Together the three parts take a GasP circuit, built
using faith, and translate it into timing reports that measure how well the faith holds up.

Ideally, the first step takes a GasP circuit and generates its critical timing constraints.

There is a tool for this step, developed at the University of Utah by Professor Ken

Stevens and his students [26, 37]. The tool is called ‘Analyze’. It is being extended

for GasP circuits here at Portland State University by Professor Xiaoyu Song and his

students, in collaboration with the Asynchronous Research Center. The tool uses formal

verification techniques. The timing constraints are called ‘Relative Timing Constraints’.

In my thesis, I assume that the first part is done, i.e. I start with a GasP circuit and a

given set of relative timing constraints.
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The second step in the flow, and the first step addressed in my thesis is called ‘Library

Characterization’. This is the key part of my thesis, and it’s new work. In this step, I

take a GasP circuit and its relative timing constraints. I partition these into manageable

pieces that I simulate for various operating conditions. And I generate a collection of

so-called ‘Look Up Tables’ (LUTs) that store the timing information of the paths under

those conditions.

I feed these look up tables and a so-called ‘Black Box’ model of the GasP circuit into

static timing analysis. The black box shows only the circuit input and output pins,

and hides the combinational loops and single-track details of GasP. This third step is not

new. The black box model and the analysis commands for the relative timing constraints

were developed at the University of Southern California by Professor Peter Beerel and

his students. The tool itself is a commercial tool by Synopsys called ‘PrimeTime’ [35].

All I had to do was to get it running at Portland State University and to import my timing

constraints and look up tables.

The result of static timing analysis is a collection of timing reports, one for each relative

timing constraint, showing how much slack there is to make or break the constraint.

So, in total, these three flow parts take a GasP circuit, built using faith, and translate it

into timing reports that measure how well the faith holds up. In summary: the timing

validation flow outlined in Figure 1.2 translates faith into measurement.1.1

1.3 Reading Guide

I have now told you why I built a timing validation flow for GasP, and which parts I

borrowed and which parts are new. The rest of my thesis is organized as follows:
1.1Of course, the real measurement is the silicon, but that is a very expensive and time-consuming

measurement. The measurement I am talking about is a simulated measurement.
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• Chapter 2 gives the design details on GasP, and identifies the four key relative

timing constraints for single-track communication. In this thesis, I work with

TSMC 90nm CMOS implementations of 6-4 GasP, but that’s just a choice. This

choice has zero impact on the generality and applicability of my flow to other

CMOS implementations or other members of the GasP family, such as 4-2 GasP

or 3-7 GasP. More GasP details can be found in Appendix O or [30, 29, 18, 13].

• Chapter 3–4 are about library characterization, and cover he biggest part of my

thesis. Here, I show how timing constraints are translated into look up tables.

This requires three steps. In the first step, I partition the timing constraints into

manageable pieces. In the second step, I build a simulation environment for

each partitioned timing constraint, using the schematic design environment pro-

vided by Electric [24] and the transistor-level simulation environment provided

by SPICE [34]. In the third step, I run the SPICE simulator to generate the look

up tables. Chapter 3 explains the basic simulation environment in Electric and

the SPICE commands for the third step. Chapter 4 takes a 6-4 GasP module and

the four key relative timing constraints identified in Chapter 2, and goes into the

details of each step.

• Chapter 5 shows how static timing analysis uses the timing information in the look

up tables to validate the four relative timing constraints. Here, I explain the STA

part of the flow and show how to import the look up tables generated in Chapter 4.

• Chapter 6 analyzes the timing results produced by the STA part of the flow. Be-

cause the proof of the pudding is in the eating, I did not just propose and develop

a timing validation flow, but I also used it. I used it to validate the four timing

constraints that are key to single-track handshake communication in 6-4 GasP.
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Moreover, I show that the results in the timing reports are compatible with the

results of my ASYNC 2010 publication in [18] and Appendix O.

• Chapter 7 compares my approach to the approach taken by USC. I deliberately

postpone this comparison to the end of my thesis, because this enables me to give

a more in-depth explanation than would be possible with an up-front comparison

where the reader has not yet had a chance to read any of my work.

• Chapter 8 concludes this thesis and indicates what next steps are needed. As far as

future work goes, what this flow needs most is a wire delay model. The wire delay

model should distinguish the effective capacitance seen at the near end of the wire

from the capacitance and delay seen at the far end. It may be that an Elmore delay

model suffices [23, 36]. Last but not least: this flow needs automation so it can

become an integral part of the GasP design environment.

Chapters 2–7 are also available as internal reports [16, 17, 19] from the Asynchronous

Research Center at Portland State University, where I worked as a Research Assistant.

The reports are co-authored by Marly Roncken and Ivan Sutherland. For that reason,

Chapters 2–7 use as author identity ‘we’ instead of ‘I’. The author identity changes to

‘I’ again when I conclude this thesis in Chapter 8.

After working with flows that require various tools and translations from file formats

in one tool to file formats in another tool, I have come to realize that documentation

often lacks the clarity and teaching capability that it should provide. I have therefore

set an extra goal for my thesis. Not only do I want to show that I generated a timing

validation flow for single-track circuits in GasP, but I also want to explain this flow in a

way that is useful for professors as well as for their students. I have set up this thesis so
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that others can easily use the flow, execute it, and validate its results. The many files in

Appendices A–M in this thesis are there to support this extra goal.

In addition to Appendices A–M with files, I have added three more Appendices N–P

with extra bonus material to complete the picture and provide a quick tour of this thesis:

• Appendix N contains the ARC report on the Distance Constraint Graph. I defined

this graph notion when studying 6-4 GasP with short wires. It has turned out to be

a useful abstraction for thinking about wire lengths and module distances versus

critical timing paths (or relative timing constraints as we call them at the ARC).

• Appendix O contains the paper that I presented and published at ASYNC 2010. It

contains the short-to-medium-to-long wire studies for 6-4 GasP. The above ARC

report and the ASYNC 2010 paper shaped the topic of this thesis. Both are cited

repeatedly in this thesis to motivate their inclusion. IEEE and my co-authors

graciously allowed me to include them as appendix to this thesis.

• Appendix P contains the handout of the powerpoint presentation that I presented

during my thesis defense, on 29 October 2010. Reading the powerpoint slides,

which I printed as a 4-slides-per-page handout may be the quickest way to get a

tour of this thesis. I hope you will enjoy the tour!
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Chapter 2

6-4 GASP AND ITS RELATIVE TIMING CONSTRAINTS

Chapter 2 introduces the basics of GasP circuits. We use a 6-4 GasP FIFO module as

reference design. Figure 2.1 shows a two-stage FIFO with two 6-4 GasP FIFO modules,

M1 and M2. Modules M1 and M2 are connected by a bi-directional wire L2 in the

middle. Module M1 drives wire L2 high via P-transistor E and module M2 drives wire

L2 low via N-transistor X. Wire L2 is called a ‘single-track wire’, but in GasP we also

call it a ‘state wire’ because it holds state. It is high when it has valid data in which case

we call its state ‘Full’ and it is low when it has a bubble, in which case we call its state

‘Empty’. GasP module M1 fires when its PRED1 signal is high, meaning full, and its

SUCC1 signal is low, meaning empty.

When M1 fires, it forwards the full state on its left to state wire L2 and module M2 on

its right, using the six gates on the red arrow in Figure 2.1: A, B, C, D, E and F. When

M2 fires it drains state wire L2, using the 4 gates on the green arrow: A, B, C and X.

The name for 6-4 GasP comes from the six gates in the path going forward from one

module to the next, and the four gates in the reverse path.

In addition, a 6-4 GasP module has two self-resetting loops of five gates each, as in-

dicated by the blue arrows in Figure 2.1. We distinguish the successor loop through
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PRED2 SUCC2
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FIRE2

single-track
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(high is FULL)

to data latches

nPRED1
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FORWARD

REVERSE

Module M1 Wire L2 Module M2

Figure 2.1 Two-stage FIFO with two 6-4 GasP modules, M1 and M2, connected by a
single-track wire L2 which is bi-directional. In GasP, we often refer to single-track wire
L2 as ‘state wire’. The bundled data paths are not shown here, nor are the state wires
connected to the left of M1 and the right of M2. For a high-level view with datapaths,
see Figure 1.1 on page 4.

the path with gates A, B, C, D, and E from the predecessor loop through the path with

gates A, B, C, X, and F. When state wire L2 is not driven its state is held by the half-

keepers at the two ends of the wire, shown in the white insets of Figure 2.1. Note that

the NMOS half-keeper is connected to the SUCC1 signal at the successor side and to

the successor loop. Similarly, the PMOS half-keeper is connected to the PRED1 signal

at the predecessor side and to the predecessor loop. Further details on 6-4 GasP can be

found in Appendix O and in [30, 29, 18, 13].

The two self-resetting loops turn off the drive signal to the state wire and we must avoid

letting them turn the drive off prematurely. Correct operation of 6-4 GasP requires that

state wire L2 is (1) driven long enough in the forward direction to raise both wire ends,

SUCC1 and PRED2, and (2) driven long enough in the reverse direction to lower both

wire ends.
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To validate that both (1) and (2) hold, we compare the forward and the reverse drive

delays for L2 to the self-resetting loop delays and require the former to beat the latter.

Thus, state wire L2 in Figure 2.1 produces the following four relative timing constraints:

• RT1 or RT(L2)TrfF−RstB : The forward transfer delay to drive both ends of L2 high

through DE in module M1 is shorter than the delay of the backward self-resetting

loop through XFABCDE in M1 that stops the drive. Figure 2.2(a) illustrates this

graphically: the red path must be shorter than the blue path.

• RT2 or RT(L2)TrfF−RstF : The forward transfer delay to drive both ends of L2 high

through DE in module M1 is shorter than the delay of the forward self-resetting

loop through DEABCDE in M1 that stops the drive. Figure 2.2(b) illustrates this

graphically: the red path must be shorter than the blue path.

• RT3 or RT(L2)TrfB−RstF : The reverse transfer delay to drive both ends of L2 low

through X in module M2 is shorter than the delay of the forward self-resetting

loop through DEABCX in M2 that stops the drive. Figure 2.2(c) illustrates this

graphically: the green path must be shorter than the blue path.

• RT4 or RT(L2)TrfB−RstB : The backward transfer delay to drive both L2 ends low

through X in module M2 is shorter than the delay of the backward self-resetting

loop through XFABCX in M2 that stops the drive. Figure 2.2(d) illustrates this

graphically: the green path must be shorter than the blue path.

From these relative timing constraints, and their graphical representations in Figure 2.2,

it follows that the red, green and blue paths in Figures 2.1–2.2 are the circuit paths

whose delays we must calculate. Note that the blue paths contain (combinational) loops.

This classifies them as complex paths, and as such as paths too difficult to handle by

commercial library characterization and static timing analysis tools. In Chapters 4 and

5 we explain how this can be solved.
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Figure 2.2 Graphical representation of the four relative timing constraints on state wire
L2 in Figure 2.1. Graph (a) is a graphical representation of relative timing constraint
RT1 or RT(L2)TrfF−RstB. It requires that the delay for the red-arrow path must be less
than the delay for the blue-arrow path. The red-arrow path in graph (a) corresponds to
the forward red arrow in Figure 2.1, followed from FIRE1 to PRED2. The blue-arrow
path in (a) correspond to the backward blue reset arrow in Figure 2.1, followed from
FIRE1 to FIRE1 and on to the point where M1 stops its forward drive to L2. We use cir-
cles for gates and arcs for signal transitions. A ‘+’ symbol indicates a rising transition,
and a ‘-’ symbol indicates a falling transition. Likewise, graph (b) is a graphical repre-
sentation of RT2 or RT(L2)TrfF−RstF, graph (c) of RT3 or RT(L2)TrfB−RstF, and (d) of
RT4 or RT(L2)TrfB−RstB. The green-arrow paths in graph (c) and graph (d) correspond
to the reverse green arrow in Figure 2.1, followed from FIRE2 to SUCC1. The delay for
the green-arrow path in graph (c) must be less than the delay for the blue-arrow path in
graph (c), and likewise for graph (d).
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Chapter 3

LIBRARY CHARACTERIZATION PART-A: LOOK UP TABLES (LUTs)

Chapter 3 is also available as internal report ARC2010-smg01 [16]. It describes the

results of our investigations into creating look up tables that accurately characterize the

timing information of a 6-4 GasP module. These tables allow us to bypass tool issues

related to loops and other design elements used in asynchronous circuits that standard

tools for synchronous circuit designs are not accustomed to. In addition to avoiding tool

issues, the use of look up tables can also speed up the static timing analysis (STA) of a

large GasP design. We present our results in two parts. PART-A, described here, takes a

simple circuit without loops, and shows the basic flow aspects from the schematics entry

level of the design in Electric to the SPICE simulation set-up and the SPICE output files

with the look up tables. PART-B, described in Chapter 4 shows how to partition complex

circuits with loops and multiple inputs and outputs into designs simple enough for the

characterization flow in PART-A.

3.1 Introduction

A look up table is basically an array with a search key and a corresponding result. look

up tables are often used to reduce the run time of a computation. In the old days people

used printed look up tables like logarithmic or trigonometry tables to speed up hand
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calculations. Look up tables are used in one of three ways: (1) Exact match or (2)

Interpolation, or (3) Extrapolation. When the search key exists, i.e. when it exactly

matches a look up table entry, we can simply read out the corresponding result value.

When the search key does not match any of the look up table entries, we estimate the

result value for a search key that is inside respectively outside the entry range, by using

interpolation respectively extrapolation techniques on the result values of the look up

table entries that are closest in value to the search key. For our usage, linear interpolation

and extrapolation techniques suffice.

We use look up tables (LUTs) for static timing analysis (STA) of GasP circuits. The look

up tables that we generate store the path delays for a GasP circuit, under various oper-

ating conditions. Our look up tables use a two-dimensional search key (wid1 × wid2)

and store three types of delay:

1. (wid1 × wid2)→ slope (in[1])

2. (wid1 × wid2)→ delay (in[1] to out[1])

3. (wid1 × wid2)→ slope (out[1])

where:

• wid1 is the size of the external gate driving path input in[1].

• wid2 is the size of the external gate driven by path output out[1].

• slope(in[1]) is the input transition slope, a.k.a. input slew time, as denoted by the

time difference (tin2−tin1) from time tin1 when a rising input transition on in[1]

passes the 20% supply voltage point to time tin2 when it passes the 80% voltage

point — and vice versa for a falling input transition.

• delay(in[1] to out[1]) is the input-to-output transition delay time (tout−tin) from

time tin when the input transition on in[1] passes the 50% supply voltage point to

time tout when the output transition on out[1] passes the 50% supply point.
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• slope(out[1]) is the output transition slope, a.k.a. output slew, as for instance

denoted by the time difference (tout2 − tout1) from time tout1 when a falling

output transition on out[1] passes the 80% supply voltage point to time tout2

when it passes the 20% point — and vice versa for a rising output transition.

For those of you who are familiar with standard static timing analysis (STA) tools like

PrimeTime of Synopsys: note that the search keys in our look up tables are different.

We use sizing information instead of input slopes and output loads. By doing this we

can use the theory of Logical Effort [32] in both the design and the characterization of

our circuits. We feel that this makes the characterization process less artificial and more

realistic. To accommodate standard STA tools, we measure the input slopes for a given

drive size and we have methods to translate a driven output size into an output load

which we’ll explain in Chapter 5. In the present Chapter 3, we show how to generate

such look up tables for simple paths in a GasP circuit, i.e. paths with one input and one

output, and without feedback. Complex paths are the topic of Chapter 4.

There are basically two ways to sweep the search key values for (wid1 × wid2) and

generate the resulting delay and slope information for a simple path in a GasP circuit.

One approach is to design all sweeps in parallel at the schematic entry level and create

one composite SPICE run. This works provided the size of the simulation result file is

small enough to be read back into Electric’s schematic entry and layout environment [24]

for validation and debug. We had some trouble with this in our long wire studies for [18].

We will investigate another approach where we design exactly one parameterized sweep

schematics in Electric, which we will simulate multiple times, each time with a new set

of parameter values, using the .DATA sweep command in SPICE [34].
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Our look up table generation procedure distinguishes the following five steps:

Step 1: Use schematics and layout tool Electric to access the GasP design.

Step 2: In Electric, create a realistic simulation environment for the GasP design.

Step 3: From Electric, generate input files for SPICE:

• Generate a SPICE netlist for the GasP design and its environment.

• Generate SPICE simulation set-up files.

Step 4: Modify the SPICE input files:

• In the netlist, create sweep parameters for wid1 and wid2.

• In the simulation set-up files, add sweep statements for wid1 and wid2, and

measurement statements for in[1] and out[1].

Step 5: Run SPICE and capture the look up table results in an output file.

The outline for the rest of Chapter 3 is as follows. Sections 3.2 to 3.6 each discuss one

step in our 5-step look up table generation procedure. We use the 6-4 GasP circuit of

Figure 3.1 on page 19 as our baseline example. Section 3.7 compares the results ob-

tained by applying the 5-step procedure to this circuit to the results obtained from the

alternative approach: i.e. from a reference design where all sweeps are embedded in

parallel at the schematics entry level and where the results are obtained in one SPICE

run. The reference design follows in Figure 3.7, page 31. Section 3.8 concludes Chap-

ter 3. All the SPICE input and output files for the baseline example and the reference

design can be found in Appendix A and B.

Note:

We postpone the comparison between our library characterization work and prior work

at USC by Mallika Prakash [21, 22] and Prasad Joshi [2, 3] to Chapter 7.
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3.2 Step 1: Use Electric to Access the GasP Design

Figure 3.1 shows the schematic diagram of the 6-4 Half-way GasP circuit that we use as

our design example throughout Chapter 3. The circuit name is Half-way GasP because

it represents about half of a 6-4 GasP module in Figure 2.1. The Half-way GasP circuit

has one input pin, PRED, and one output pin, FIRE. Input PRED drives an inverter

called F which subsequently drives a NOR gate called A. The other input to the NOR

gate is grounded. Output FIRE is the output of the NOR gate, delayed by two inversions

through gates B and C. Half-way GasP is a fictional circuit which uses gate size 10 for

all its gates rather than the step-up of 3 sizing strategy of Logical Effort designs [32].

The operation of the Half-way GasP circuit is as follows. When PRED goes low, the

corresponding input to NOR gate A goes high, which results in FIRE going low. The

nominal delay between PRED going low and FIRE going low is about 4 gate delays.

The delay decreases if the output load driven by FIRE decreases or the input drive to

PRED increases. The delay increases if the output load driven by FIRE increases or the

input drive to PRED decreases. Likewise, when PRED goes high, FIRE will go high

after a delay of about 4 gate delays, with a decrease or increase in delay as before. We

will characterize the falling path delay from PRED going low to FIRE going low.

Circuit and path are represented by a black box whose icon is shown in the upper right

corner of Figure 3.1. Only the information that we need from the black box is visible:

• Input PRED and output FIRE, as these connect to the simulation environment.

• Size of initial gate in the path, i.e. 10 (for F), and of final gate, i.e. 10 (for C), as

these determine the sweep sizes for the input driver and output load inverters in

the simulation set-up discussed in the next section.

• The path we’re characterizing: PRED- to FIRE-.
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Figure 3.1 Half-way GasP circuit. The icon in the upper right corner of the picture
shows the black box representation of the circuit, which has just enough information to
characterize the path from PRED falling to FIRE falling.
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Figure 3.2 Schematics of the simulation environment for the Half-way GasP circuit in
Figure 3.1, with sweep parameters wid1, wid2 and observation nodes in[1], out[1].
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3.3 Step 2: Create a Simulation Environment for the Design

Figure 3.2 shows the schematics of the simulation environment using the black box icon

for the Half-way GasP circuit in Figure 3.1. We use this simulation environment to

generate different input slopes for PRED and different output loads for FIRE. We do

this by generating different driver sizes wid1 for the inverter that drives PRED, and by

using different load sizes wid2 for the inverter that is driven by FIRE. Labels Din[1],

in[1] and out[1] are the observation points for measuring delay and slope information.

We added a pulse generator to start the different simulation measurements — one per

pulse. The generator creates a pulse with a 2ns width and a full-swing slope of 50ps.3.1

Note that we use a series connection of two inverters between the pulse generator and

black box input PRED: a so-called source inverter followed by the already mentioned

driver inverter. Note also the step-down of 3 from the size wid1 of the driver inverter

to the size wids of the source inverter upstream. A step-down of 3 upstream matches

the Logical Effort design strategy [32], and ensures a realistic input slope for the driver

input, independent of the slope generated by the pulse generator. We also use a series

connection of two inverters for the simulation environment at black box output FIRE: a

so-called Miller inverter following the already mentioned load inverter. Note the step-up

of 3 downstream from the size wid2 of the load inverter to the size widM of the Miller

inverter. The step-up of 3 downstream matches the Logical Effort design strategy, and

ensures that the load inverter produces a realistic output load, i.e. it produces just enough

source-to-gate ‘Miller Effect’ for the load inverter as a real environment designed with

Logical Effort would produce for the given load size.
3.1A slope of 50ps works fine for this fictitious example. However, for realistic simulation set-ups, we

recommend to use a slope or slew time more typical of a standard inverter operation. For the 90nmCMOS
process that we currently use, a typical slope for a full signal swing would correspond to 20ps.
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3.4 Step 3: Generate Input Files for SPICE

The next two Sections 3.4.1 and 3.4.2 cover the following items:

• Generate a SPICE netlist for the GasP design and its environment.

• Generate a SPICE simulation set-up file.

3.4.1 Generate a SPICE Netlist

The SPICE netlist generated from Electric for the simulation environment in Figure 3.2

is listed in Appendix A.1. The file extension is ‘.spi’. Unfortunately, we have thus far

been unable to force Electric and SPICE to retain the parameter names for the sizes of

the driver and load inverters, wid1 and wid2. Instead of a sweep parameter, we get a

‘null’ value in the SPICE formulas embedded in the inverter and transistor schematics,

as is visible from the highlighted yellow-colored text in Figure 3.3. Fortunately, this

is not a show-stopper, and so we will proceed to work with the resulting netlist with

‘null’ values. In Section 3.5.1 we will substitute the ‘null’ formulas with the correct

parameterized formulas containing wid1 and wid2. However, we will add the challenge

of finding a more direct solution for generating an Electric-to-SPICE netlist with sweep

parameters to our list of future research items — see Section 3.8.

3.4.2 Generate SPICE Simulation Files: HEADER and TRAILER

The two basic SPICE simulation files, the HEADER and the TRAILER, generated from

Electric for the simulation environment in Figure 3.2 are listed in Appendix A.2 and

Appendix A.3. The file extenstion is ‘.hsp’. The header file has additional content with

process information. We excluded process information for reasons of confidentiality.
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*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wids d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='null*(1+ABN/sqrt(null*null))' L='null' 
+DELVTO='AVT0N/sqrt(null*null)' 
.ENDS NMOS-X_wids 
 
*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_wids d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='null*(1+ABP/sqrt(null*null))' L='null'
+DELVTO='AVT0P/sqrt(null*null)' 
.ENDS PMOS-X_wids 

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wid1 d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='null*(1+ABN/sqrt(null*null))' L='null' 
+DELVTO='AVT0N/sqrt(null*null)' 
.ENDS NMOS-X_wid1 
 
*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_widM d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='null*(1+ABP/sqrt(null*null))' L='null'
+DELVTO='AVT0P/sqrt(null*null)' 
.ENDS PMOS-X_wid1 

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wid2 d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='null*(1+ABN/sqrt(null*null))' L='null' 
+DELVTO='AVT0N/sqrt(null*null)' 
.ENDS NMOS-X_wid2 
 
*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_wid2 d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='null*(1+ABP/sqrt(null*null))' L='null' 
+DELVTO='AVT0P/sqrt(null*null)' 
.ENDS PMOS-X_wid2 

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_widM d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='null*(1+ABN/sqrt(null*null))' L='null' 
+DELVTO='AVT0N/sqrt(null*null)' 
.ENDS NMOS-X_widM 
 
*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_widM d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='null*(1+ABP/sqrt(null*null))' L='null' 
+DELVTO='AVT0P/sqrt(null*null)' 
.ENDS PMOS-X_widM 

Figure 3.3 SPICE netlist fragments for the source, driver, load and Miller inverters in
Figure 3.2. The width and length calculations of the PMOS and NMOS transistors in
these parameterized inverter netlists wrongly get ‘null’ values inserted where the size
parameters wid1 and wid2 are used. This incorrect insertion is clearly visible in the
highlighted yellow text.

22



3.5 Step 4: Modify the SPICE Input Files

The next two Sections 3.5.1 and 3.5.2 cover the following items:

• In the netlist, create sweep parameters for wid1 and wid2.

• In the simulation set-up files, add sweep and measurement statements.

3.5.1 Create Sweep Parameters in the SPICE Netlist

In Section 3.4.1, Figure 3.3, we observed that the parameterized sizes wid1 and wid2

for the driver and load inverters are wrongly expanded into formulas with ‘null’ in the

SPICE netlist parts for the source, driver, load and Miller inverters. We will fix this by

substituting the correct formulas. We can derive the correct formulas from the original

SPICE text in Electric, or simply by looking at the results for the other inverting gates.

Figure 3.4 shows the updated netlist parts with the correct formulas. This substitution

process can be easily automated, using a Perl script.

Note that the formulas have size parameters wid1 and wid2. This will enable us to do

simulation sweeps and generate look up tables for different values of wid1 and wid2.

For completeness and continuity in the Appendices part of this thesis, we have repeated

these corrected SPICE netlist portions in Appendix A.4.
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*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wids d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='3*(wid1/3) *(1+ABN/sqrt(3*(wid1/3)*2 ))'L='2'  
+DELVTO='AVT0N/sqrt(3*(wid1/3)*2)'  
.ENDS NMOS-X_wids 
 
*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_wids d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='2*3*(wid1/3) *(1+ABP/sqrt(2*3*(wid1/3)*2 ))'L='2'
+DELVTO='AVT0P/sqrt(2*3*(wid1/3)*2 )'  
.ENDS PMOS-X_wids 

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wid1 d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='3*wid1 *(1+ABN/sqrt(3*wid1*2 ))' L='2'  
+DELVTO='AVT0N/sqrt(3*wid1*2 )' 
.ENDS NMOS-X_wid1 
 
*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_wid1 d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='2*3*wid1 *(1+ABP/sqrt(2*3*wid1*2 ))' L='2'  
+DELVTO='AVT0P/sqrt(2*3*wid1*2 )' 
.ENDS PMOS-X_wid1 

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_wid2 d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='3*wid2*(1+ABN/sqrt(3*wid2*2))' L='2'  
+DELVTO='AVT0N/sqrt(3*wid2*2)' 
.ENDS NMOS-X_wid2 
 
*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_wid2 d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='2*3*wid2*(1+ABP/sqrt(2*3*wid2*2))' L='2'  
+DELVTO='AVT0P/sqrt(2*3*wid2*2)' 
.ENDS PMOS-X_wid2 

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch} 
.SUBCKT NMOS-X_widM d g s 
** GLOBAL gnd 
MNMOSf@0 d g s gnd nch W='3*3*wid2*(1+ABN/sqrt(3*3*wid2*2))' L='2'  
+DELVTO='AVT0N/sqrt(3*3*wid2*2 )' 
.ENDS NMOS-X_widM 
 
*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch} 
.SUBCKT PMOS-X_widM d g s 
** GLOBAL vdd 
MPMOSf@0 d g s vdd pch W='2*3*3*wid2*(1+ABP/sqrt(2*3*3*wid2*2))' L='2'  
+DELVTO='AVT0P/sqrt(2*3*3*wid2*2)' 
.ENDS PMOS-X_widM 

Figure 3.4 Corrected SPICE netlist for the source, driver, load and Miller inverters in
Figure 3.2. The corrections are highlighted in blue.
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3.5.2 Add Sweep and Measurement Statements to the TRAILER File

This is the step where we add the sweep commands for simulating the now correctly

parameterized netlist for a specific range of driver and load sizes (wid1 × wid2) and

where we specify what we want to measure at the observation nodes in[1] and out[1] to

generate the slope and delay information discussed on page 15:

1. (wid1 × wid2)→ slope (in[1])

2. (wid1 × wid2)→ delay (in[1] to out[1])

3. (wid1 × wid2)→ slope (out[1])

As sweep command, we use the .DATA sweep command explained in HSPICE reference

manual [34], Chapter 2: HSPICE and HSPICE RF Netlist Commands, pages 60–66. Our

.DATA command uses a row-column matrix input format, where each column contains

the values of a single sweep variable and each row contains the full set of sweep values

needed for a single sweep. For instance,

.DATA mysweep wid1 wid2

9 5

12 5

· · · · · ·

.ENDDATA

specifies that the first sweep uses value 9 for driver size wid1 and 5 for load size wid2,

the second sweep uses the value 12 for wid1 and 5 for wid2, etcetera.

The type of analysis done for our DATA sweep ‘mysweep’ is specified separately. We

use a transient analysis similar to the one specified in [34], Chapter 2, page 62. Each of

our sweeps starts by default at 0ps, uses time increments of 1ps, and stops at 100ns:

.TRAN 1ps 100ns SWEEP DATA=mysweep
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The measurements done per sweep are specified in a separate .MEASURE statement.

The type of .MEASURE statements that we need relate to rise, fall and delay mea-

surements, and are specified in the HSPICE reference manual in [34], Chapter 2, on

pages 162–165. We measure rise times from 20% to 80% of the full signal swing from

GROUND level (Gnd, VSS) to SUPPLY voltage level (VDD), and we measure fall times

from 80% to 20%. We measure input-to-output delays from 50% voltage swing at the

input to 50% voltage swing at the output. The syntax for all three measurements is very

similar. Here is an example of the syntax for measuring a falling transition on in[1]:

.MEASURE tfall i 1

+ trig v(in[1]) val=‘0.8*SUPPLY’ fall=3

+ targ v(in[1]) val=‘0.2*SUPPLY’ fall=3

The above example specifies that the measurement is triggered as soon as the voltage

level for the third falling transition (fall=3) on in[1] reaches 80% of the SUPPLY volt-

age (val=‘0.8*SUPPLY’). It specifies that the measurement ends when the third falling

transition on in[1] reaches the target voltage level of 20% the SUPPLY voltage.

Figure 3.5 gives the combined text with the .DATA sweep and the transient analysis, and

the slope measurement on input in[1]. Note that there is no need to use capitals for the

commands, as we did above. The complete text with all the sweep, analysis and mea-

surement statements for the parameterized netlist of Figure 3.2 follows in Appendix A.5.

3.6 Step 5: Generate a SPICE Output File with Look Up Tables

We are now ready to run the two SPICE input files modified in Step 4 (Section 3.5) and

to generate an output file with the look up table information that we want. The SPICE

output file has extension ‘.mt0’. The full printout follows in Appendix A.6.
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* Step size and run time 
.tran 1ps 100ns sweep data=mysweep

.data mysweep  wid1 wid2
9 5
12 5
20 5

9 20
12 20
20 20

9 40
12 40
20 40

9 50
12 50
20 50
.enddata

 
.measure tfall_i_1
+ trig v(in[1]) val='0.8*SUPPLY' fall=3
+ targ v(in[1]) val='0.2*SUPPLY' fall=3

Figure 3.5 SPICE simulation file fragment, showing the .DATA sweep command and
the transient analysis that we use for our library characterizations. We show just one
measurement statement, measuring the slope of a falling transition on input in[1].
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Figure 3.6 contains an excerpt, that we’ll use to explain the formatting of the output file:

Column 1: The index in the first column gives the sweep iteration number. Note that

the numbers use an excessive amount of significant digits. We kept these, because

these are the exact results as produced by SPICE. We propose to do any necessary

post-processing afterwards, using for instance Microsoft Excel.

Column 2: The second column contains a sequence of three values for each sweep:

wid1, tfall o 1 and alter#. The last value is of no importance. The value for

wid1 is the width of the driver inverter for the current sweep, and the value for

tfall o 1 is the slope or transition time of the falling output transition on out[1].

The significant numbers in the output file are probably realistic only down to a

tenth of a picosecond. We can read from Figure 3.6 that the first sweep finds

wid1=9 and tfall o 1=6.9ps.

Column 3: The third column contains a sequence of two values for each sweep: wid2

and tf delay. Here, wid2 is the width of the load inverter for the current sweep, and

tf delay the input-to-output or propagation delay for a falling transition on in[1]

to the corresponding falling transition on out[1]. We can read from Figure 3.6 that

the first sweep finds wid2=5 and tf delay=48.1ps

Column 4: The fourth column contains again a sequence of two values for each sweep:

tfall i 1 and temper. We will ignore the latter sweep variable for temperature

here and focus on tfall i 1 which is the slope or transition time of the falling

input transition on in[1]. We can read from Figure 3.6 that the first sweep finds

tfall i 1=14ps.

So, all with all, columns 1 to 4 together give us the look up table results that we want,

phrased as: (wid1 × wid2)→ (tfall i 1, tf delay, tfall o 1).
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$DATA1 SOURCE='HSPICE' VERSION='C-2009.03 64-BIT'
.TITLE ' *** spice deck for cell lut_b_blackbox1{sch} from library lut_parta_90n'

 index            wid1             wid2             tfall_i_1         
                  tfall_o_1        tf_delay         temper            
                  alter#            
    1.0000           9.0000           5.0000         1.403e-11        
                   6.999e-12        4.809e-11         25.0000         
                     1.0000         
    2.0000          12.0000           5.0000         1.280e-11        
                   7.369e-12        4.741e-11         25.0000         
                     1.0000         
    3.0000          20.0000           5.0000         1.073e-11        
                   6.986e-12        4.685e-11         25.0000         
                     1.0000         
    4.0000           9.0000          20.0000         1.429e-11        
                   1.239e-11        5.232e-11         25.0000         
                     1.0000         
    5.0000          12.0000          20.0000         1.285e-11        
                   1.243e-11        5.167e-11         25.0000         
                     1.0000         
    6.0000          20.0000          20.0000         1.073e-11        
                   1.252e-11        5.102e-11         25.0000            

Figure 3.6 Fragment of the SPICE output file with the look up table data, showing
(wid1 × wid2)→ (tfall i 1, tf delay, tfall o 1).
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3.7 Validation

In the introduction Section 3.1, we indicated that there are two ways to sweep the search

key values for (wid1 × wid2) and to generate the resulting delay and slope information

for a simple path in a GasP circuit. ‘Way one’ is to do the sweep work at design time

in Electric, and ‘way two’ is to do the sweep work in SPICE. We followed ‘way two’

because the alternative produces much larger SPICE output file sizes. In this section,

we compare our results against the results obtained with ‘way one’.

Figure 3.7 shows four out of the total of twelve sweeps that we ran, covering all possible

driver sizes and all possible load sizes, but only four combinations of driver and load

sizes. The four sweeps appear as four parallel designs, all designed in Electric. SPICE

will run all four designs in parallel. It does this without needing a .DATA sweep com-

mand. However, we do need to specify analysis and measurement statements. So, the

original five steps that were needed for ‘way two’ can be simplified to:

Step 1: (as before) Use Electric to access the GasP design of Figure 3.1.

Step 2: In Electric, create Figure 3.7 with parallel design sweep environments.

Step 3: (as before) From Electric, generate input files for SPICE:

• Generate a SPICE netlist for the GasP design and its environment.

• Generate a SPICE simulation set-up file.

Step 4: Modify only the SPICE simulation set-up file:

• Add transient analysis and measurement statements.

Step 5: Run SPICE and capture the look up table results in an output file.

The corresponding SPICE input and output files follow in Appendix B.
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X=9

in1

Driver SourcePulse

out1

X=5

PRED FIRE

Load Miller 
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Black Box
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FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps
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PRED FIRE __

X=9

in2

Driver SourcePulse

out2
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PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

X=3 X=60

PRED FIRE __

X=12

in3

Driver SourcePulse

out3

X=40

PRED FIRE

Load Miller 

Din3

Black Box

10 10

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

X=4 X=120

PRED FIRE __

X=20

in4

Driver SourcePulse

out4

X=50

PRED FIRE

Load Miller 

Din4

Black Box

10 10

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

X=20/3 X=150
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Figure 3.7 Array schematics for sweeping four combinations of driver and source
widths in parallel, using four different instances of the simulation set-up of Figure 3.2.
Note that the observation signals are now named Din1 to Din4, in1 to in4, out1 to out 4.
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              Driver wid1=9  Load wid2=5               Driver wid1=9  Load wid2=20

% Difference % Difference

Input Fall time in ps 1.38E-11 1.40E-11 1% 1.38E-11 1.43E-11 3%
Output Fall time in ps 6.86E-12 7.00E-12 1.9% 1.23E-11 1.24E-11 1%
Transition delay falling in ps 4.79E-11 4.81E-11 0% 5.22E-11 5.23E-11 0%

              Driver wid1=12  Load wid2=40               Driver wid1=20  Load wid2=50

% Difference % Difference

Input Fall time in ps 1.25E-11 1.27E-11 2% 1.11E-11 1.08E-11 -3%
Output Fall time in ps 1.98E-11 2.03E-11 2% 2.41E-11 2.44E-11 1%
Transition delay falling in ps 5.68E-11 5.69E-11 0% 5.87E-11 5.87E-11 0%

"Way One"
Design Sweep 

"Way One"
Design Sweep 

"Way Two"
SPICE Sweep 

"Way Two"
SPICE Sweep 

"Way One"
Design Sweep 

"Way One"
Design Sweep 

"Way Two"
SPICE Sweep 

"Way Two"
SPICE Sweep 

Figure 3.8 Comparison of the simulation results between ‘way one’ and ‘way two’.
‘Way one’ is a sweep performed at the design level, using parallel instances of four
different simulation environments as illustrated in Figure 3.7. ‘Way two’ is the approach
that we presented in Sections 3.2 to 3.6, where we perform the sweep as part of the
SPICE simulation, using .DATA sweep commands.

The table in Figure 3.8 shows a comparison of the results of the four sweeps for ‘way

one’ versus the earlier SPICE sweeps which we have dubbed ‘way two’. As before,

all measured simulation delays are shown in seconds, with a precision in the order of

one tenth of a picosecond. In addition to measured times, we also show the relative

difference between ‘way one’ and ‘way two’ measurement results, calculated as:

((‘way two’ or our result) (‘way one’ or array schematics result)) / (‘way two’ result)

The results are very similar. The largest differences of -3% and 3% are for input fall

times. The good news is that the differences disappear over the length of the path: the

differences between the input-to-output path delays are a negligibly 0%.

This is good news because, in the end, it is the path delays that matter. The rise and fall

times at input and output nodes are used only to connect the simulation results from one

path to the next path in the overall circuit operation, and to compute the combined path

delay. The end goal of our look up table results is to allow static timing analysis tools

like PrimeTime to compute path delays for relative timing validation of GasP. Relative

timing validation amounts to validating that one path has less delay than another path.
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Given this background knowledge and the results in Figure 3.8, we may conclude that

a difference of 3% for the input slope of a path is not going to matter. In summary: the

results obtained via ‘way one’ are similar to those obtained by ‘way two’.

3.8 Conclusion and Future Work for Chapter 3

We created a characterization flow for generating look up tables with timing information

for a simple input-to-output transition in a simplified 6-4 GasP circuit. This chapter is

dubbed ‘PART-A’ because it has a follow-up part. PART-B, in the next chapter, shows

how to characterize a complete 6-4 GasP module. In PART-B, we will partition the

behavior of a 6-4 GasP FIFO circuit into simple input-to-output transitions and simpli-

fied circuits that can be fed back into the library characterization flow developed here in

PART-A. Given that “the proof of the pudding is in the eating”, we will feed the look up

tables that we generate in PART-B to a standard static timing analysis tool to validate

the relative timing constrains of the 6-4 GasP FIFO module. This happens in Chapter 5.

As far as future work goes, the characterization flow in PART-A can benefit from:

1. Flow automation:

• We need templates for Steps 1–2, to automate the creation of simulation

environments like Figure 3.2 and 3.7, for different GasP circuits in Electric.

• We need scripts to automate the SPICE simulation part in Steps 3–5.

2. A direct solution for creating sweep variables wid1 and wid2 for the driver and

load inverters in the simulation environment at the schematic level of Electric:

• Currently, Electric produces ‘null’ values for the sweep parameters wid1 and

wid2 in Figure 3.2. This is visible from the SPICE netlist that we generate

in Step 3. We correct this in Step 4, but it would be much better to avoid the

need for such a correction.
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Chapter 4

LIBRARY CHARACTERIZATION PART-B: FROM GASP TO LUTs

Chapter 4 is also available as internal report ARC2010-smg02 [17]. It is the second

of a two-part solution to create look up tables that accurately characterize the timing

information of a 6-4 GasP circuit. PART-A in the previous Chapter 3 takes a simple

circuit without timing loops, and shows the basic flow aspects from the schematics entry

level of the design in Electric to the SPICE simulation set-up and the SPICE output

files with the look up tables. PART-B, described here, shows how to partition complex

circuits with timing loops and multiple inputs and outputs into designs for which the

timing is simple enough to be handled by the characterization flow in PART-A.

4.1 Introduction

In PART-A, presented in Chapter 3 and available as report ARC2010-smg01 [16], we

showed how one can use SPICE to generate look up tables with timing information of

a 6-4 GasP circuit. We generated look up tables for input-to-output propagation times

and slew times, a.k.a. slopes or rise and fall times, under various input slopes and output

loads. We used a 6-4 GasP sub-circuit, called Half-way GasP, to illustrate the approach.

PART-A focused on simple input-to-output paths. PART-B, presented here, extends

PART-A, by explaining how to deal with complex paths. We illustrate this extension on

the full-fledged 6-4 GasP FIFO design of Figure 2.1 on page 11.
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For complex paths with loops or multiple input and output ports we use a two-step

procedure. In the first step, called STEP 1 below, we break the path into a sequence

of input-to-output paths, each simple enough to fit in the solution approach of PART-A.

In the second step, called STEP 2 below, we show how one should simulate the simple

paths to guarantee that the sum of the look up table entries for the propagation times

through the simple paths is a sufficiently accurate approximation of the propagation

time through the complex path. STEP 2 introduces a unique problem that stems from

the single-track handshake protocol in 6-4 GasP: any simple path ending at a single-track

output signal is left un-driven at the end of an input pulse. This prevents us from running

multiple simulation cycles per sweep — and we typically run a few cycles before we

start measuring to get beyond initialization issues. We solve this problem by adding a

VCCS device to re-initialize the ouput signal without extra load or delay to the signal.

The solution follows in Section 4.4.2.2.

We deploy the look up tables generated with this combined PART-A and PART-B ap-

proach to analyze and validate so-called ‘Relative Timing’ constraints in GasP using

standard static timing analysis (STA) tools. Relative timing constraints describe the or-

der in which two signals must arrive at a point of convergence [27, 28]. Specifically:

relative timing constraints require that the maximum path delay for the fast signal is

below the minimum path delay for the slow signal. This implies that our look up tables

must characterize maximum and minimum path delays. This implication simplifies the

characterization process because we can ignore all of the intermediary delay scenarios.

We use this fact in the naming convention of paths, to express whether the path describes

a fast or slow signal. We also use it to incorporate ‘The Charlie Effect’ [1] into our sim-

ulation setup. We use ‘The Charlie Effect’only to obtain a maximum or minimum delay
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setup, where needed. For the timing constraints that we characterize and analyze in this

thesis, it sufficed to simulate a minimal falling gate delay for gate A in Figure 2.1. We

do this by adding a VCVS device. The device enables us to synchronize input events for

gates with multiple input signals, without adding extra load or delay. The synchronized

(rising) inputs to gate A create a minimal (falling) gate delay for A, which is exactly

what we need for the relative timing constraints evaluated in this thesis. The solution

follows in Section 4.4.2.1.

The organization of the remainder of Chapter 4 is as follows. Section 4.2 is a quick

reminder of what a look up table is and how it is used. Section 4.3 explains STEP 1 of

our two-step procedure: how to partition complex circuit paths with loops and multiple

input and output ports into simple paths without loops and with one input and one out-

put. Section 4.4 explains STEP 2 of our two-step procedure: how to simulate simple

input-to-output paths with sufficient accuracy so that the generated look up tables are a

good black box representation for maximum and minimum input-to-output propagation

delays and input and output slopes. Section 4.5 generalizes the simulation setup and

solves outstanding issues that we encountered in PART-B while using the simulation

setup presented in PART-A. Section 4.6 concludes this Chapter 4. Appendices C to H

contain the SPICE simulation files generated in STEP 2.

Note:

We postpone the comparison between our library characterization work and prior work

at USC by Mallika Prakash [21, 22] and Prasad Joshi [2, 3] to Chapter 7.
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4.2 Quick Reminder: What’s a Look Up Table and How’s It Used?

As a quick preview or reminder of what a look up table is and how it is used in static

timing analysis, Figure 4.1 shows a two-dimenstional look up table for a simple path in a

6-4 GasP circuit. The path starts with a rising transition on signal SUCCi and ends with

a falling transition on signal FIREi. We simulated this path using the general simulation

setup of Figure 4.21, page 82. We simulated it for a wide range of input slopes, using

drive sizes, and output loads, using load sizes. It is the most detailed look up table that

you will find in this thesis. Figure 4.2 plots the landscapes for the input-to-output delay

and the output slopes reported in the look up table of Figure 4.1. As you can see, the

landscape graphs are very amenable to linear approximation techniques, which is how

static timing analysis uses a look up table.

Because emphasis in Chapters 3–4 is about creating a ‘flow’ for look up tables, the other

tables in this thesis are smaller, to simplify the presentation.

4.3 STEP 1: Partitioning Complex Paths into Simple Paths

In Chapter 2, we learned about the basic 6-4 GasP module and its four foremost critical

relative timing constraints, RT1 to RT4. From Figure 2.1 on page 11 we know that all

four timing constraints deal with loops and have multiple inputs and outputs. Below,

we will explain STEP 1 of our two-step look up table generation procedure by showing

how to break the complex paths in RT1 to RT4 into a sequence of input-to-output paths,

where each path is simple enough so we can use the solution approach of PART-A,

presented in [16] and Chapter 3, to generate the look up tables for it.
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36 18 9 6 5 4

0 35.0 7.8 36.0 8.0 37.6 8.1 39.3 7.7 40.6 7.7 42.2 8.0
40 34.0 10.0 38.1 10.3 39.5 10.0 41.2 10.1 42.5 9.8 44.0 9.9
80 38.7 11.4 40.0 11.7 41.5 11.6 43.0 11.6 44.3 11.8 46.0 12.4

160 41.9 15.0 43.0 14.9 44.5 15.0 46.2 15.4 47.6 15.2 49.0 15.6
240 44.7 19.2 45.8 19.2 47.5 19.4 49.0 19.1 50.2 19.1 51.7 18.9
320 47.5 23.0 48.8 23.0 50.0 22.6 51.7 22.8 52.8 22.8 54.4 23.2
400 50.1 26.8 51.0 27.1 52.7 27.2 54.0 27.2 55.5 27.1 56.8 26.5

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

Load
size wid2

Drive size 
        wid1

Figure 4.1 Look up table (driver size wid1 × load size wid2)→ (delay, output slope).
for a simple path in a 6-4 GasP circuit. The path starts with a rising transition on
signal SUCCi and ends with a falling transition on signal FIREi. We simulated it for
a wide range of input slopes (using drive sizes) and output loads (using load sizes).
In Section 5.2 we translate (wid1 × wid2) into (input slope × output load) coordinates.
The translation of a —more limited-range — version of the above look up table follows
in Figure 5.4, page 99.

Figure 4.2 Landscape graphs with the delay and output slope information from the
look up table in Figure 4.1 above. Delays go from 0ps to 60ps with a color distinction
every 10ps, and output slopes from 0ps to 30ps with a color distinction every 5ps. We
dropped the index ‘i’ from the path name, because the path is fully contained within a
6-4 GasP module. Note that these landscapes use (load size × drive size) rather than
(load capacitance × input slope) coordinates. In Section 5.2 we translate the former
coordinate system into the latter. The translations of—more-limited range— landscape
versions for the landscapes in this Figure 4.2 follow in Figure 5.9(top), page 104.
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The caveat is that look up tables deal with circuit parameters that can be measured

reasonably well in advance. For instance, it takes reasonably low effort to make ac-

curate look up tables that capture the internal path delays in modules M1 and M2 of

Figure 2.1. Capturing these internal path delays takes hardly any effort, because each

module is a hard macro with pre-defined internal loads, internal wire lengths, and inter-

nal drive strengths — custom-designed according to the theory of Logical Effort [32].

But to make an accurate look up table that captures the path delay through state wire L2

between modules M1 and M2 is a tremendous amount of work, because (1) we do not

know the exact length and width and spacing of L2 until the system has been placed and

routed, and (2) the dependency of the state wire delay to layout wire parameters such as

length, width and spacing becomes more complex with longer wires, as we show in [18].

To ensure that timing analysis and relative timing validation for GasP are both accurate

and practical, we are going to leave the delay and slope measurements associated with

state wire L2 to static timing analysis (STA) with back-annotated wire information from

the final layout results. In the partitioning method, to be presented below, we will in-

dicate which of the final paths we are going to leave to STA, and which ones we will

characterize using the LUT or look up table approach.

To partition the paths, we first cut them at basic input-output signals, because these

are the points where external drives and loads are attached. For our example circuit in

Figure 2.1 with its four relative timing constraints in Figure 2.2, the basic input-output

signals are PRED1, SUCC1, FIRE1 and PRED2, SUCC2, FIRE2. We will introduce

a few more input-output signals, to control or observe the delay and slope simulation

measurements as we go along. The partitioning for the paths that constitute each relative

timing constraint follows in Figures 4.3–4.6.
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We will explain our partitioning strategy using the partitioning for RT1 in Figure 4.3.

Figure 4.3 partitions the complex paths in RT1 into simple input-to-output paths. The

graph at the top is a copy of the graphical representation for RT1 from Figure 2.2(a).

It shows a red-arrow path, which we will simply call the red path, and it shows a blue-

arrow path, which we will simply call the blue path. RT1 requires that the red path delay

is less than the blue path delay.

We cut the red path of RT1 at the basic input-output signals FIRE1, SUCC1 and PRED2.

This yields two simple paths, indicated by the two graphs below the fat black arrow on

the right and separated by a fat ‘+’ sign, shown in Figure 4.3 . For the first path we can

reasonably well measure input-to-output delays and slopes and capture these in look up

tables. We named this path LUTred:FIRE1+SUCC1+. Note that the name keeps the

information about the path color, namely red, and about how the timing is captured,

namely by LUT or look up table. The color is important for the simulation set-up: the

(maximum) total delay of the red path must be less than the (minimum) total delay of

the blue path, and so for red paths we are interested in simulating maximum delays. The

second path goes through state wire L2, and so, we are going to leave its delay and slope

measurements to STA or static timing analysis with back-annotated wire information

from the final layout results. We named this second path STAred:SUCC1+PRED2+.

Note that also this name keeps the information about the path color, namely red, and

about how the information is to be captured, namely by STA.

We initially cut the blue path of RT1 at the basic input-output signals FIRE1, PRED1 and

SUCC1. This yields three paths, indicated by the three graphs below the fat black arrow

on the left and separated by a fat ‘+’ sign. For the first two paths we can reasonably well

measure input-to-output delays and slopes and capture these in look up tables.
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We named the first path LUTblue:FIRE1+PRED1− and we named the second path

LUTblue:PRED1−FIRE1−. Note that, as before, both names keep the information

about path color, namely blue, and about how the information is to be captured, namely

by LUT or look up table. The total (minimum) delay of the blue path must exceed the

total (maximum) delay of the red path, and so for blue paths we are interested in simu-

lating minimum delays. The string ‘blue’ in the path name helps us remember that this

path must be simulated under minimum delay conditions.

The third blue path goes from FIRE1− to SUCC1nodrive. The name SUCC1nodrive

expresses that module M1 has stopped driving input-output signal SUCC1. We know of

no direct way to measure SUCC1nodrive, using voltage levels. The best approximation

and most practical way for us to measure when SUCC1nodrive holds is to measure when

the voltage level of input signal Dout1 to drive transistor E drops below E’s threshold

level, because that’s what stops module M1’s drive of SUCC1. To enable such a mea-

surement, we add Dout1 to the set of input-output signals of module M1, so it becomes

available for look up table generation and moreover it remains available for static tim-

ing analysis where we tend to treat M1 as a black box with input-output signals and with

input-to-output timing information stored in look up tables. Following the path naming

convention introduced above, we call this third path: LUTblue:FIRE1−Dout1+.

Note how the graph for LUTblue:FIRE1−Dout1+ emphasizes the difference between

observing Dout1 and observing the indirect target SUCC1nodrive by changing the path

line and arrow color from solid blue for the first part of the path to dashed grey for the

indirect observation part.
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Figure 4.3 Partitioning of the complex paths in relative timing constraint RT1 or
RT(L2)TrfF−RstB of Figure 2.2(a) into simple timing paths for its blue path (left) and
for its red path (right).
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Figure 4.4 Partitioning of the complex paths in relative timing constraint RT2 or
RT(L2)TrfF−RstF of Figure 2.2(b) into simple timing paths for its blue path (left) and
for its red path (right).
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RT(L2)TrfB−RstF of Figure 2.2(c) into simple timing paths for its green path (left) and
for its blue path (right).
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This concludes the explanation of the partition for RT1 in Figure 4.3. The partitionings

for RT2 to RT4 in Figure 4.4 to 4.6 follow the same approach — specifically:

• Path names for each of the simple paths include information about path color,

namely red or green or blue, and about how the information is captured, namely

by look up table (LUT) or via static timing analysis (STA). So, by looking at the

path name we will know how to set up the path simulations for delays and slopes.

Green and red paths will be simulated for maximum delays. Blue paths will be

simulated for minimum delays. That way, we can easily validate RT1 to RT4,

which are all of one of the two following forms:

◦ the total red path delay is less than the total blue path delay, or

◦ the total green path delay is less than the total blue path delay.

• Each blue path partition ends in a final path with a nodrive target. The final blue

path in Figure 4.4 ends in SUCC1nodrive. The final blue paths in Figure 4.5 and

Figure 4.6 end in PRED2nodrive. As in Figure 4.3, we approximate these targets

by observing the input signal to the drive transistor: instead of SUCC1nodrive we

observe Dout1, and instead of PRED2nodrive we observe FIRE2. As before, we

emphasize this in the graph by changing the path line and arrow color from solid

blue to dashed grey for the indirect observation part.

• The final graphs for the paths with nodrive target PRED2nodrive in Figure 4.5

and Figure 4.6 have a yellow background to indicate that something special is

happening here. Both paths start when signal FIRE2 reaches a pre-determined

output voltage level in the previous path and they end when FIRE2 drops below

the threshold level of drive transistor X. We will not distinguish these two points.

In other words: we declare the paths in the yellow-colored graphs of Figure 4.5

and Figure 4.6 empty and will delete these paths from the RT3 and RT4 partitions.
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4.4 STEP 2: Defining an Accurate Simulation Set-Up for Simple Paths

In Section 4.4, we will create accurate simulation set-ups for the input-to-output delay

and slope calculations of the simple paths for RT1 to RT4. We will do this as follows.

Using the complex to simple path partitions for RT1 to RT4 in Figure 4.3 to Figure 4.6

of Section 4.3, we will partition the 6-4 GasP modules M1 and M2 in Figure 2.1 into

sub-circuits that allow us to simulate and capture the input-to-output delay and slope

information for each particular simple path in RT1 to RT4. We do this in Section 4.4.1

In Section 4.4.2 we will enhance this collection of sub-circuits with extra features so we

can (1) simulate minimum and maximum delay scenarios using ‘The Charlie Effect’,

and (2) enable simulation sweeps for simple paths ending in un-driven state wires.

In Section 4.4.3 we revisit the solution approach of PART-A of Chapter 3 and show how

we can simulate this collection of enhanced sub-circuits to generate look up tables for

each simple path in RT1 to RT4 that has a name starting with ‘LUT’. We leave the paths

with names starting with ‘STA’ to static timing analysis. The look up tables will capture

the path delays and output slopes under various input slopes and output loads.

Section 4.5 shows how we can generalize the limited simulation setups that we used in

Section 4.4.3, and make them work for all possible sweep cases.

4.4.1 Circuit Partitioning for RT1 to RT4

In this section, we will partition the two-stage GasP FIFO in Figure 2.1 into sub-circuits

that act as the core simulation set-up for the simple paths of RT1–RT4 in Figures 4.3

to 4.6. So, for instance, we partition the circuit in Figure 2.1 to fit the RT1 partition in

Figure 4.3. It is not necessary that this sub-circuit partitioning matches the sub-circuit

partitioning for RT2 or RT3 or RT4, but we will try to share sub-circuits where we can,

because this will reduce the total number of simulation set-ups.
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One way to reduce and simplify simulation set-ups is to work with input slopes, like most

of the look up table generation methods do — and to not work with input loads. There

is a strong motivation to do it this way:

• If we generate look up tables by simulating input-to-output delays and output

slopes for a range of input slopes and output loads, then it does not matter how

we obtain the input slopes. In particular: it does not matter which output loads we

used in the simulation set-up for a preceding path to generate the output slope that

we now use as input slope for the present path. As a result, the simulation set-ups

for subsequent paths are independent of each other.

• Were we to use input loads, and generate look up tables by simulating input-to-

output delays and output slopes for a range of input loads and output loads, the

dependency between the simulation set-ups of subsequent paths would make it

hard or at least more complex to share the simulation set-up between paths with

different continuations or with different previous paths.

As an example, consider the simple path LUTblue:PREDi−FIREi−, which is

in the partition of RT1 in Figure 4.3 for i=1, and in the partition of RT4 in

Figure 4.6 for i=2. Given that Modules M1 and M2 use the same circuit tem-

plate, the paths are the same for i=1 and i=2. But the successor path in RT1

is LUTblue:FIREi−Douti+ and has the capacitive load of gate D on its input

FIRE1, while the successor path in RT4 is empty and thus carries no load on its

input FIRE2. Simulating the joint path LUTblue:PREDi−FIREi−with all its out-

put loads, i.e. for X and D and the VDD-connected PMOS half-keeper and the

external latches, would give the correct output delay and slope for RT4. But the

delays would be skewed for the RT1 continuation into LUTblue:FIREi−Douti+

because load D is used twice.
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To fix this, we can either simulate the joint path twice, once for RT1 with all the

output loads, and once more for RT4 with all the output loads except for D. Or,

we can simulate the joint path for a wider range of loads to cover both simulation

set-ups in one run. For RT1 we would use the results for the look up table index

(Cin, Cout−CD) and for RT4 we would use the results at index (Cin, Cout) , where

Cin, Cout, CD are the input load capacitance at PREDi, the full load capacitance

at output FIREi, and the load capacitance of gate D.

This gets more complex when the number of successor or predecessor paths

grows. The more successor and predecessor paths there are to a joint path, the

more dependencies we will need to track and the more complex look up table

generation and usage will become. For us, this is the key motivation to generate

look up tables by using input slopes instead of input loads.

Figure 4.7 shows a complete collection of sub-circuits of Figure 2.1 for covering the

relative timing partitions of RT1, RT2, RT3 and RT4 in Figure 4.3 to Figure 4.6. The

signals in the sub-circuits of Figure 4.7 are indexed using (i − 1) and i and (i + 1)

instead of 1 for M1 and 2 for M2. The variable indexing enables us to exploit the fact

that modules M1 and M2 have identical schematics and use similar single-track wire

connections to both their predecessor and successor modules. The index variables also

make it easier to identify a shared circuit and simulation set-up for simple relative timing

paths that differ only in their index number.
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Figures 4.3–4.6 define the following nine simple relative timing paths:

• LUTblue:PREDi−FIREi−

◦ from RT1 partition, Figure 4.3 ( i=1)
◦ from RT4 partition, Figure 4.6 (i=2)

• LUTblue:SUCCi+FIREi−

◦ from RT2 partition, Figure 4.4 ( i=1)
◦ from RT3 partition, Figure 4.5 (i=2)

• LUTred:FIREi+SUCCi+

◦ from RT1 partition, Figure 4.3 ( i=1)
◦ from RT2 partition, Figure 4.4 (i=1)

• LUTblue:FIREi+SUCCi+

◦ from RT2 partition, Figure 4.4 ( i=1)
◦ from RT3 partition, Figure 4.5 (i=2)

• LUTblue:FIREi−Douti+

◦ from RT1 partition, Figure 4.3 ( i=1)
◦ from RT2 partition, Figure 4.4 (i=1)

• LUTblue:FIREi+PREDi−

◦ from RT1 partition, Figure 4.3 ( i=1)
◦ from RT4 partition, Figure 4.6 (i=2)

• LUTgreen:FIREi+PREDi−

◦ from RT3 partition, Figure 4.5 ( i=2)
◦ from RT4 partition, Figure 4.6 (i=2)

• STAgreen:PRED(i+1)-SUCCi−

◦ from RT3 partition, Figure 4.5 (i=1)
◦ from RT4 partition, Figure 4.6 (i=1)

• STAred:SUCCi+PRED(i+1)+

◦ from RT1 partition, Figure 4.3 (i=1)
◦ from RT2 partition, Figure 4.4 (i=1)
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Figure 4.7 Partitioning of the 6-4 GasP Modules M1 and M2 of Figure 2.1 into
sub-circuits that match the relative timing partitioning in Figures 4.3–4.6. For each
sub-circuit we give a list of the simple relative timing paths that match this sub-circuit.
The sub-circuit and its list of simple paths contain sufficient information to finalize the
simulation environment for path delay and slope calculations. The simulation results
will be captured either by look up tables (LUT) or via static timing analysis (STA). Blue
paths will be simulated for minimum path delay calculations. Red and green paths will
be simulated for maximum path delay calculations. In Section 4.4.2, Figures 4.8–4.11,
we will finalize the above sub-circuits for (a), (b) and (c) to support minimum and
maximum delay calculations and serial sweeps.

Note: The careful reader who has read PART-A, Chapter 3, will notice that we did not
add Miller inverters following the internal path loads in Figure 4.7(a)-(e) as we should
have. Alternatively, we could add second-level internal loads, e.g. we could add gate E
as a load to gate D in Figure 4.7 (a) to create a realistic Miller effect for D.
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Each of the above nine paths maps to one of the sub-circuits in Figure 4.7, as follows:

LUTblue:PREDi−FIREi− : This path goes through gates F, A, B, C. From Figure 2.1

we know that the loads at output signal FIREi are (1) gates D and X and the PMOS

keeper as internal load and (2) the data latches as external load. We explicitly

include the total internal load for FIREi in the sub-circuit. The external load

remains external and becomes an input parameter of the simulation sweep, as

discussed in Section 4.4.3. The resulting sub-circuit is shown in Figure 4.7(a).

Note that it has three inputs: PREDi, nPREDi and SUCCi. In Section 4.4.2, we

will re-arrange the input connections and add circuitry to obtain a single input to

single output simulation environment for minimum path delay calculations of the

two blue paths that map to this sub-circuit.

LUTblue:SUCCi+FIREi− : This path goes through gates A, B, C, and maps to the

same sub-circuit as previous path LUTblue:PREDi−FIREi−, i.e. Figure 4.7(a).

LUTred:FIREi+SUCCi+ : This path goes through gates D and E. From Figure 2.1

we know that the loads at output signal SUCCi are (1) gates A and X and the

NMOS keeper as internal load and (2) state wire L2 to the successor module of

i as external load. As we did above for the other paths, we include all internal

loads in the sub-circuit and we bring the external load in as input parameter to the

simulation sweep. The resulting sub-circuit is shown in Figure 4.7(b). The extra

output Douti of this sub-circuit can be ignored for this path.

LUTblue:FIREi+SUCCi+ : This path maps to the same sub-circuit as its ‘red’ ver-

sion LUTred:FIREi+SUCCi+, i.e. Figure 4.7(b). The only difference in the sim-

ulation set-up would be the selection of PVT (Process, Voltage, Temperature)

settings to get minimum path delay calculations for the blue path and maximum

ones for the red path. Output Douti of the circuit can be ignored for this path.
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LUTblue:FIREi−Douti+ : This path goes through just gate D. From Figure 2.1 we

know that the internal loads at output signal Douti are gate E and the NMOS

keeper, and that there are no external loads connected to Douti. This path can be

mapped to the same sub-circuit as the previous two paths, namely Figure 4.7(b).

The extra output SUCCi of this sub-circuit can be ignored for this specific path.

LUTblue:FIREi+PREDi− : This path goes through just gate X. From Figure 2.1

we know that the loads at output signal PREDi are (1) gates X and F and the

PMOS keeper as internal load and (2) state wire L2 to the predecessor module of

i as external load. As we did above for the other paths, we include all internal

loads in the sub-circuit and we bring the external load in as input parameter to the

simulation sweep. The resulting sub-circuit is shown in Figure 4.7(c).

LUTgreen:FIREi+PREDi− : This path maps to the same sub-circuit as its ‘blue’

version LUTblue:FIREi+PREDi− above, i.e. Figure 4.7(c). The only difference

in the simulation set-up would be the selection of Process, Voltage, Temperature

(PVT) settings to obtain minimum path delay calculations for the blue path and

maximum path delay calculations for the green path.

STAgreen:PRED(i+1)−SUCCi− : This path covers the state wire connection L2 from

module M(i + 1) to Mi. From Figure 2.1 we know that the loads at output signal

SUCCi are (1) gates A, E and the NMOS keeper as internal load and (2) wire

L2 as external load. As we did above for the other paths, we include all internal

loads in the sub-circuit and we bring the external load in as input parameter to the

simulation sweep. The resulting sub-circuit is shown in Figure 4.7(d).

STAred:SUCCi+PRED(i+1)+ : This path covers the state wire connection L2 from

module M(i) to module M(i + 1). From Figure 2.1 we know that the loads at

output signal PRED(i+1) are (1) gates F and X and the PMOS keeper as internal
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load and (2) state wire L2 as external load. As we did above for the other paths,

we include all internal loads in the sub-circuit and we bring the external load in as

input parameter to the simulation sweep. The resulting sub-circuit is Figure 4.7(e).

Note that all but the final two sub-circuits in Figure 4.7(d)-(e) are associated with paths

whose timing information goes into look up tables (LUT). The paths associated with

the final two sub-circuits will be simulated with methods available during static timing

analysis (STA), using layout information, as explained on page 39 in Section 4.3. Note

too that the two STA-based paths cross module boundaries: they go from M(i + 1) to

Mi or vice versa, whereas the LUT-based paths are confined to a single module Mi. This

makes it possible to view and validate LUT-based relative timing constraints on a mod-

ule by module basis, rather than on the state wire by state wire basis that we followed

thus far. The module based view may fit better into standard tool flows than a wire based

view. For instance, it would enable us to annotate the relative timing constraints in the

schematics description of the module, as is done in the pipeline compilation flow for

‘Click’ by Handshake Solutions [20].

This is the point where we hand over the STA-based paths to future researchers of timing

flows for GasP. The rest of Chapter 4 focuses on LUT-based paths.
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4.4.2 Circuit Enhancements for Min-Max and Repetitive Simulations

The sub-circuits and simple relative timing paths in Figure 4.7(a)–(c) are not yet ready

for simulation with the look up table generation approach of PART-A of Chapter 3 for

the following three reasons:

1. Gate A in Figure 4.7(a) exhibits different input-to-output delays depending on the

arrival times of the transitions at its two inputs, nPREDi and SUCCi. We must

minimize the delay for gate A when we are simulating blue paths, and we must

maximize the delay for A when we are simulating red and green paths. Given that

the relative timing constraints through gate A in this report use strictly blue paths,

it suffices to set up the simulation so that the gate delay for A is minimal.

2. Figure 4.7(a) has multiple inputs. The solution presented in PART-A handles only

single input to single output look up tables.

3. Figure 4.7(b) cannot be used directly for serial simulations from FIREi to SUCCi

because output SUCCi starts to float when the pulse generator on FIREi resets the

input to low before starting the next high transition. To obtain valid input to output

delay and slope measurement, we must re-initialize the output signal to low before

starting the next high transition. Likewise, Figure 4.7(c) cannot be used directly

for sweeps that contain multiple simulation cycles from FIREi to PREDi.

Section 4.4.2.1 discusses how we can solve the issues indicated in items 1–2 above.

Section 4.4.2.2 discusses how we can solve the issues explained in item 3 above. And

Section 4.4.2.3 summarizes the new list of sub-circuits and simple relative timing paths

that we obtain after solving items 1–3 for the old list of sub-circuits in Figure 4.7(a)–(c).

We will pass the new list on to Section 4.4.3 where we generate the look up tables.
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4.4.2.1 Simulating Minimum Gate Delays

Any AND or OR type logic will have series transistors as well as transistors in parallel.

The 6-4 GasP gate A in the sub-circuit shown in Figure 4.7(a) has two PMOS transistors

in series and two NMOS transistors in parallel. When transistors in series turn on at the

same time it takes longer to conduct current than when one of the transistors is already

turned on or turned on partially. In contrast, when transistors in parallel turn on at the

same time, current is conducted faster than when one of the transistors is already on or

partially on. We call this ‘The Charlie Effect’ [1], after the late Charles Molnar. The

result is that the delay of NOR gate A is maximal when the two input signals nPREDi

and SUCCi fall at the same time, and the delay is minimal when the two input signals

rise at the same time.

For the blue-colored relative timing paths covered by Figure 4.7(a) we are interested in

the minimal propagation time for rising input transitions on nPRED i and SUCCi. This

means that we want the rising transitions to coincide. We can force this in SPICE by

using a so-called Voltage Controlled Voltage Source (VCVS) on the two signals.

A VCVS is a fictional device — or, as Ivan Sutherland calls it in our ARC report [17]:

a ‘demon in a box’ — that (or according to Ivan “who”) can be used in a simulation

environment to achieve perfectly synchronized transitions. In this case: it enables us to

generate perfectly synchronized rising transitions on gate A inputs nPREDi and SUCCi.

The VCVS in Figure 4.8 has two ports that relate to nPREDi, namely in and GNDin, and

two ports that relate to SUCCi, namely out and GNDout. It copies the voltage difference

between in and GNDin onto out and GNDout — and it does this without delay, i.e.

instantaneously.
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We can adjust the copy function of a VCVS device in two ways: (1) by scaling the

voltage range up or down by a factor called ‘Gain’, and (2) by cutting off the range at a

predefined minimum or maximum voltage, called ‘Minimum’ and ‘Maximum’, where

Minimum≤Maximum. This yields the following relation:

(in − GNDin)

= Gain × (out − GNDout) if Minimum≤ Gain × (out − GNDout) ≤Maximum

= Minimum if Gain × (out − GNDout) ≤Minimum

= Maximum if Maximum≤ Gain × (out − GNDout)

++
Gain=1

Maximum=10V
Minimum=-10V

VCVS

PREDi SUCCi

FIREi

nPREDi
5

30

80

10

F

A

B

C1

12
Keeper
PMOS

VDD

4
D

20
X

VSS

in out

GNDin GNDout

VSS VSS

Figure 4.8 Enhancement for Figure 4.7(a) and LUTblue:PREDi−FIREi−. The
changes over the sub-circuit in Figure 4.7(a) are (1) an additional Voltage Controlled
Voltage Source (VCVS) between the inputs to gate A to minimize the gate delay for
a falling output transition on A, and (2) a reduction of the total number of sub-circuit
inputs from three (PREDi, nPREDi, SUCCi) to one (PREDi) to make this circuit fit
into the LUT generation approach in PART-A, Chapter 3. The VCVS has Gain=1, Min-
imum=10V and Maximum=10V.
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Figure 4.9 Enhancement for Figure 4.7(a) and LUTblue:SUCCi+FIREi−. The
changes are similar to those for Figure 4.8, showing (1) an additional Voltage Con-
trolled Voltage Source (VCVS) between the inputs to gate A to minimize the gate delay
for a falling output transition on A, and (2) a reduction of the total number of sub-circuit
inputs from three (PREDi, nPREDi, SUCCi) to one (SUCCi) to make this circuit fit into
the LUT generation approach published in PART-A, Chapter 3. The VCVS has Gain=1,
Minimum=10V and Maximum=10V.

For relative timing path LUTblue: PREDi−FIREi− we will use a VCVS device

with in=nPREDi, out=SUCCi, GNDin=GNDout=VSS, Gain=1, Minimum=10V, and

Maximum=10V. For the other relative timing path LUTblue: SUCCi+FIREi− cov-

ered by Figure 4.7(a) we will use a VCVS device with in= SUCCi, out= nPREDi, and

GNDin=GNDout=VSS, Gain=1, Minimum=10V, and Maximum=10V. The correspond-

ing enhanced sub-circuits follow in Figure 4.8 and Figure 4.9. Note that the resulting

circuits have exactly one input and one output, and that they use minimal gate delays for

gate A. Thus, they solve the issues brought up in items 1–2 on page 55, at the beginning

of Section 4.4.2.
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4.4.2.2 Autonomously Re-Initializing Un-Driven Wires

The GasP family communicates bi-directionally over single-track state wires between

modules. A module connected to a state wire can either raise the wire or lower the wire,

but it cannot do both. For instance, module M1 in Figure 2.1, page 11, can raise state

wire L2 via its local pull-up transistor E, and module M2 can lower L2 via its local pull-

down transistor X. In between these active pull-up and pull-down events, that each last

for about five gate delays, the state of the wire is maintained by the keepers. For state

wire L2 in Figure 2.1, the pull-up and pull-down circuit of its keeper are partitioned over

the two modules: L2-pull-up module M1 gets the maintain-low-state or NMOS keeper,

and L2-pull-downmoduleM2 gets the maintain-high-state or PMOS keeper. As a result,

the sub-circuits in Figure 4.7(b)-(c) miss half of the L2 keeper circuitry. Missing half of

the keeper circuitry turns out not to be an issue for the simulation setup. In fact, it will

turn out that the sub-circuits have exactly the right half-keeper to make the setup work.

The issue is that Figure 4.7(b) can pull SUCCi high and keep it low, but it cannot actively

lower SUCCi. This is a problem if we want to simulate more than one input-to-output

transition: a high input pulse on FIREi will initially pull SUCCi high but then leave

SUCCi un-driven and hence floating as soon as FIREi is low. If we fail to reset SUCCi

back to VSS, the next simulation will start with SUCCi at an unknown voltage level and

thereby render the simulated path delay and output slope for LUTred:FIREi+SUCCi+

and LUTblue:FIREi+SUCCi+ meaningless.4.1 This is a problem because we typically

run a few simulation cycles before we start measuring the timing, to get past initializa-

tion issues. To support multiple simulation cycles, we must reset SUCC i to its initial

state after completion of the current simulation and before the start of the next.
4.1Even if module M1 had a full L2 keeper, leaving SUCC i at a stable high voltage at the end of the

FIREi pulse, we would still have to reset SUCCi to its initialization state before the next simulation cycle.
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We can do this with a Voltage Controlled Current Source (VCCS). Like the VCVS that

we used earlier, a VCCS is a fictional device or ‘demon in a box’. A VCCS device

can be used in a simulation environment to re-initialize un-driven wires. The VCCS

in Figure 4.10 has two ports, in1 and in2, that compare the voltage levels of SUCCi

and a FIREi-related signal called FIRE CSi. It has two ports, out1 and out2, that un-

charge SUCCi to re-initialize it to VSS when needed. The difference (in1 - in2) in Volts

is translated into Amperes for a current flowing from out1 to out2. The translation is

without delay, i.e. instantaneously. We can adjust the voltage-to-current translation

function of a VCCS device in two ways: (1) by scaling the target range up or down

by a factor called ‘Gain’, and (2) by cutting off the range at a predefined minimum

or maximum level, called ‘Minimum’ and ‘Maximum’, where Minimum≤Maximum.

This yields the following relation: 4.2

Iout1−to−out2 [A]

∼ Gain × (in1 − in2) [V] if Minimum≤ Gain × (in1 − in2) ≤Maximum

∼ Minimum if Gain × (in1 − in2) ≤Minimum

∼ Maximum if Maximum≤ Gain × (in1 − in2)

Signal FIRE CSi in Figure 4.10 goes from 0 Volts (VSS) to 1.5 Volts (50% above VDD).

It rises before FIREi rises and it falls after FIREi falls. FIRE CSi is high indicates

that “we are in the simulation window for the FIREi-to-SUCCi transition”, i.e. we

are somewhere in the critical section for the simulation measurement. By widening

and raising the pulse for FIRE CSi relative to FIREi, we can guarantee that (1) the

simulated transition measurement is over when FIRE CSi goes low, and (2) the VCCS

is unaffected by any transition noise on output signal SUCCi as long as FIRE CSi is at

an ultra-high 1.5V.

4.2For convenience of notation, we assume we can mix and match Voltage and Ampere scales.
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Figure 4.10 Enhancement for the sub-circuit in Figure 4.7(b) and the relative tim-
ing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+. The enhancement
enables the repetitive simulation sweeps needed to create look up tables with timing
information for a range of input slopes and output loads. The change over Figure 4.7(b)
is an additional Voltage Controlled Current Source (VCCS) on output signal SUCCi to
force the signal out of an un-driven high state and to re-initialize it to VSS for the next
simulation.The VCCS has Gain=0.1, Minimum=0A and Maximum=1A. Note that we
indicated the relation between the pulse generators for VCCS control signal FIRE CSi
and sub-circuit input signal FIREi. We will use this information in Section 4.4.3 to set
up the look up table sweeps.
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Moreover, if we make sure that FIRE CSi is low for long enough to pull SUCCi low,

then the NMOS half-keeper in Figure 4.10 will take over the maintenance of the 0V VSS

level on SUCCi. When the keeper kicks in, we no longer need the VCCS device to drive

SUCCi and so we can safely raise FIRE CSi in preparation for the next simulation.

In summary: Figure 4.10 gives the enhancement for the sub-circuit in Figure 4.7(b) and

the two relative timing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+.

It has a VCCS device with in1=SUCCi, in2=FIRE CSi, out1=SUCCi, out2=VSS,

Gain=0.1, Minimum=0A, and Maximum=1A. A gain of 0.1 is high enough to make

the voltage change on out1’s SUCCi closely track the downgoing slope of the pulse

generator for FIRE CSi. For a preview, see the simulation results in Figure 4.16 and

Figure 4.17 on pages 74–75. This VCCS device comes with the following relational

simulation set-up requirements for signals FIREi and FIRE CSi:

• FIRE CSi rises to an ultra-high 1.5V before FIREi starts rising to 1.0V VDD.

• FIRE CSi starts falling to a low VSS level after FIREi is already low.

• Signal pulse widths and periods must be long enough for SUCCi to rise and fall.

Figure 4.11 gives a similar enhancement for the sub-circuit in Figure 4.7(c) and the two

relative timing paths LUTgreen:FIREi+PREDi− and LUTblue:FIREi+PREDi−. It has

a VCCS device with in1=PREDi, in2=FIRE CSi, out1=PREDi, out2=VSS, Gain=0.1,

Minimum=1A, Maximum=0A. Here, the purpose of the VCCS device is to re-initialize

the un-driven low PREDi signal to a high 1.0V VDD level after FIREi falls. We do this

by inverting the FIRE CSi signal in relation to FIREi:

• FIRE CSi falls to an ultra-low −0.5V before FIREi starts rising to VDD.

• FIRE CSi starts rising to VDD level after FIREi is already low.

• Signal pulse widths and periods must be long enough for PREDi to fall and rise.
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Figure 4.11 Enhancement for the sub-circuit in Figure 4.7(c) and relative timings
LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi− to enable the repetitive
simulation sweeps needed to create look up tables with timing information for a range
of input slopes and output loads. The enhancement is similar to Figure 4.10. It uses an
additional Voltage Controlled Current Source (VCCS) on output signal PREDi to force
the signal out of an undriven low state and to re-initialize it to VDD for the next simula-
tion. The VCCS device has Gain=0.1, Minimum=1A and Maximum=0A. Note that we
indicated the relation between the pulse generators for VCCS control signal FIRE CSi
and sub-circuit input signal FIREi. We will use this information in Section 4.4.3 to set
up the look up table sweeps.
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The VCCS in Figure 4.11 translates a negative voltage difference (PREDi − FIRE CSi)

into a negative current Iout1−to−out2 in the range of 1A to 0A. This corresponds to a

positive current flow in the range of 0A to 1A from out2 to out1, i.e. to PREDi, which

charges PREDi until the voltage on PREDi matches that of VDD. Note that this works

independent of the actual voltage source for out2 —out2 can be VSS or VDD or−200V.

What matters is the out2-to-out1 direction of the current flow and the gain. A gain of 0.1

is high enough to make the voltage change on out1’s PREDi closely track the upgoing

slope of the pulse generator for FIRE CSi. For a quick preview, see the simulation

results in Figure 4.19 and Figure 4.20 on pages 79–80.

Note that both Figure 4.10 and Figure 4.11 have an Ampere meter to measure

Iout1−to−out2. We use the Ampere meter to validate that the VCCS operation does not

interfere with the actual simulation measurement. We will come back to this again in

Sections 4.4.3.4–4.4.3.5.

4.4.2.3 Summary of Circuit Enhancements

The new list of sub-circuits and simple relative timing paths that we get by solving the

issues on page 55 for the old sub-circuits in Figure 4.7(a)–(c) on page 51 is as follows:

1. Figure 4.8, replacing Figure 4.7(a), with LUTblue:PREDi−FIREi−

2. Figure 4.9, replacing Figure 4.7(a), with LUTblue:SUCCi+FIREi−

3. Figure 4.7(b) with LUTblue:FIREi− Douti+

4. Figure 4.10, replacing Figure 4.7(b), with LUTred/blue:FIREi+SUCCi+

5. Figure 4.11, replacing Figure 4.7(c), with LUTblue/green:FIREi+PREDi−

We will pass this list on to Section 4.4.3 where we generate the look up tables.
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4.4.3 Back to PART-A to Generate Look Up Tables

In this section, we will take the sub-circuits and simple relative timing paths listed in

the previous Section 4.4.2.3 and build the final simulation environments to generate

look up tables with timing information on input-to-output delay and output slope, for a

range of input slopes and output load conditions. To build the look up table simulation

environments, we follow the procedure explained in PART-A, Chapter 3, which can be

summarized as follows:

• To create realistic input slopes, we use a so-called driver inverter at the input of the

sub-circuit. We sweep the input slope by sweeping the size of the driver inverter.

To simulate a range of driver sizes, we use a pulse generator with a pulse width

and period that are long enough for the path transition to complete and stabilize.

We add a so-called source inverter between pulse generator and driver inverter to

provide realistic input slopes to the driver inverter. The source inverter is a step-up

of 3 smaller than the driver inverter.

• To create realistic output loads, we use a so-called load inverter. We sweep the

capacitive output load by sweeping the size of the load inverter. We add a so-

called Miller inverter at the output of the load inverter for a realistic Miller effect.

The Miller inverter is a step-up of 3 larger than the load inverter.

In our sweeps, we maintain a relationship between driving and driven inverters where

the size of the driving inverter is 0.20 (1/5th) to 2 times the size of the gate that it drives.

This makes sense from a design perspective. In summary: we sweep the driver inverter

from 0.20 to 2 times the size of the sub-circuit gate that it drives, and we sweep the

load inverter from 0.5 (1/2nd) to 5 times the size of the sub-circuit gate that drives it.

We use wids, wid1, wid2, widM to denote the size of respectively the source inverter,
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the driver inverter, the load inverter, and the Miller inverter. We maintain a step-up of 3

size relationship between the source inverter and the driver inverter. This means that we

sweep both inverters simultaneously, using the current wid1 value for the driver inverter

and wids=(wid1)/3 for the source inverter. Similarly, we use widM=3×wid2.

In the following five Sections 4.4.3.1–4.4.3.5, we prepare the final look up table simula-

tion sweep for each of the five sub-circuit-with-simple-paths listed in Section 4.4.2.3.

4.4.3.1 Setup for Figure 4.8 and LUTblue:PREDi−FIREi−

Figure 4.12 shows the simulation setup for the sub-circuit in Figure 4.8 and simple rel-

ative timing path LUTblue:PREDi−FIREi−. The sub-circuit and path are represented

by a black box. Only the information that we need from the black box is visible:

• Input PREDi and output FIREi, as these connect to the simulation environment.

• Size of initial gate in the path, i.e. 5 (for F), and of final gate, i.e. 80 (for C), as

these determine the sweep sizes for the source, driver, load, Miller inverters.

• Path name, LUTblue:PREDi−FIREi−, because this specifies the transition type

(input/output rising/falling, fast/slow).

The sweep values for source, driver, load, Miller inverters are calculated as follows:

• Size wid1 of the driver inverter has a sweep range from 0.2×F to 2×F, where F=5

— the size of the first black box gate in the path. We divided this 1-10 range into

five more-or-less linear integer sizes, giving wid1=1, 3, 6, 8, 10.

• Size wids for the source is a step down of 3 the size of the driver inverter, wid1.

For now, we exclude wid1=1 from our sweep, because it would yield a size for

wids below the minimum inverter size of 1. In Section 4.5, we will give a general

solution for obtaining a step down of 3 with buildable inverter sizes, i.e. inverter

sizes ≥1. For now, the sweep values for wids are: 1, 2, 3, 3.
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Figure 4.12 Final simulation setup for the sub-circuit in Figure 4.8 and simple path
LUTblue:PREDi−FIREi−. The black box represents the sub-circuit. We use a pulse
generator followed by a source and a driver inverter at the PREDi input of the black
box, and we use a load and a Miller inverter at the output. The pulse generator goes
from 0V (VSS) to 1V (VDD) and creates a high pulse of 1V with a pulse width of 2ns
and a period of 4ns. We sweep the driver and load sizes: wid1 and wid2. We measure
propagation and transition delays by observing black box input and output in[1], out[1].

• Size wid2 for the load inverter is swept from 0.5×C to 5×C, where C=80 — the

size of the last black box gate in the path. We linearized the 40-400 range into five

more-or-less linear integer sizes, giving wid2=40, 130, 220, 310, 400.

• The size of the Miller inverter varies with the load size: widM=3×wid2.

We use the schematics entry tool Electric to generate (1) a SPICE netlist for Figure 4.12

and (2) a basic SPICE simulation file which contains the settings for the 90nm CMOS

process used for this schematics. We modify the SPICE netlist to add the sweep vari-

ables for wid1 and wid2, as explained in PART-A, Chapter 3. We adapt the SPICE

simulation file by adding the sweep, analysis and measurement statements needed to

generate the three look up tables:

• (wid1 × wid2)→ slope (in[1])

• (wid1 × wid2)→ delay (in[1] to out[1])

• (wid1 × wid2)→ slope (out[1])
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SPICE netlist, simulation, and result files are shown in Appendix C. We have used typ-

ical Process, Voltage and Temperature (PVT) library settings, here. In general, though,

we would advise using fast settings to characterize blue paths, because we are interested

in minimum delays for blue paths.

4.4.3.2 Setup for Figure 4.9 and LUTblue:SUCCi+FIREi−

Figure 4.13 shows the simulation setup for the sub-circuit in Figure 4.9 and simple rel-

ative timing path LUTblue:SUCCi+FIREi−. The sub-circuit and path are represented

by a black box. Only the information that we need from the black box is visible:

• Input SUCCi and output FIREi, as these connect to the simulation environment.

• Size of initial gate 4.3 in the path, i.e. 10 (for A), and of final gate, i.e. 80 (for C),

as these determine the sweep sizes for the source, driver, load, Miller inverters.

• Path name, LUTblue:SUCCi+FIREi−, because this specifies the transition type

(input/output rising/falling, fast/slow).

The sweep values for source, driver, load, Miller inverters are calculated in the same

way as we calculated the sweep values for the previous Figure 4.12 in Section 4.4.3.1:

• Driver sweep values for wid1 are: 2 (=0.20×10), 6, 10, 16, 20 (=2×10).

• Source sweep values for wids are a step down of 3 from the size of the driver

inverter, wid1. As in Section 4.4.3.1, we exclude wid1=2 from our sweep, because

it yields a size for wids below the minimum inverter size of 1. In Section 4.5, we

show how this can be solved. For now, the sweep values for wids are: 1, 2, 3, 3.

• load sweep values for wid2 are: 40 (=0.5×80), 130, 220, 310, 400 (=5×80).

• The size of the Miller inverter varies with the load size: widM=3×wid2.

4.3We simplified this calculation. The real size seen by the driver is 10×(LogicalEffort(A) def= 5/3)∼17.

68



X=wid1

Din[1] in[1]

Driver SourcePulse

LUTblue:SUCCi+FIREi-

out[1]

X=wid2

SUCCi FIREi
Load Miller 

Black Box

10 80

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

DelayTime=0s

PulsePeriod=4ns

X=wids=(wid1)/3 X=widM=3*wid2

Figure 4.13 Final simulation setup for the sub-circuit in Figure 4.9 and simple path
LUTblue:SUCCi+FIREi−. The black box represents the sub-circuit. We use a pulse
generator followed by a source and a driver inverter at the SUCCi input of the black
box, and we use a load and a Miller inverter at the output. The pulse generator goes
from 0V (VSS) to 1V (VDD) and creates a high pulse of 1V with a pulse width of 2ns
and a period of 4ns. We sweep the driver and load sizes: wid1 and wid2. We measure
propagation and transition delays by observing black box input and output in[1], out[1].

The SPICE files for Figure 4.13 are generated like those for the previous Figure 4.12

in Section 4.4.3.1. The final SPICE netlist and simulation setup and results files follow

in Appendix D. We have used typical Process, Voltage and Temperature (PVT) library

settings, here, though we advise using fast settings to characterize blue-colored paths.

4.4.3.3 Setup for Figure 4.7(b) and LUTblue:FIREi−Douti+

Figure 4.14 shows the simulation setup for the sub-circuit in Figure 4.7(b) and simple

relative timing path LUTblue:FIREi−Douti+. The sub-circuit and path are represented

by a black box. Only the information that we need from the black box is visible:

• Input FIREi and output Douti, as these connect to the simulation environment.

• Size of initial gate in the path, i.e. 4 (for D), because this determines the sweep

sizes for the source and driver inverters.

• There is no size indication for the final gate because Douti is an internal signal.

This also explains why there are no load and Miller inverter in Figure 4.14.

69



X=wid1

Din[1] in[1]

Driver SourcePulse

LUTblue:FIREi-Douti+

out[1]

FIREi Douti

Black Box

4

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

DelayTime=0s

PulsePeriod=4ns

X=wids=(wid1)/3

Figure 4.14 Final simulation setup for the sub-circuit in Figure 4.7(b) and simple path
LUTblue:FIREi−Douti+. The black box represents the sub-circuit. We use a pulse
generator followed by a source and a driver inverter at the FIREi input of the black box.
The pulse generator goes from 0V (VSS) to 1V (VDD) and creates a high pulse of 1V
with a pulse width of 2ns and a period of 4ns. We sweep the driver wid1. We measure
propagation and transition delays by observing black box input and output in[1], out[1].

• Path name, LUTblue:FIREi−Douti+, because this specifies the transition type

(input/output rising/falling, fast/slow).

The sweep values for the source and driver inverters are calculated in the same way as

we calculated the sweep values for Figure 4.12 in Section 4.4.3.1:

• Driver sweep values for wid1 are: 1 (=0.20×4 rounded up), 3, 4, 6, 8 (=2×4).

• Source sweep values for wids are a step down of 3 from the size of the driver

inverter, wid1. As in Section 4.4.3.1, we exclude wid1=1 from our sweep, because

it yields a size for wids below the minimum inverter size of 1. In Section 4.5, we

give a general solution to obtain a step down of 3 with buildable inverter sizes≥1.

For now, the sweep values for wids are: 1, 1, 2, 3.
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The SPICE files for Figure 4.14 are generated like those for Figure 4.12 in Sec-

tion 4.4.3.1 and follow in Appendix E. We have used typical Process, Voltage and

Temperature (PVT) library settings. In general, we would advise using fast settings to

characterize blue paths, because we are interested in minimum delays for blue paths.

4.4.3.4 Setup for Figure 4.10, LUTred/blue:FIREi+SUCCi+

Figure 4.15 shows the simulation setup for the sub-circuit in Figure 4.10 and simple

relative timing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+. Sub-

circuit and paths are represented by a black box. Only the information that we need

from the black box is visible:

• Input FIREi and output SUCCi, as these connect to the simulation environment.

• Size of initial gate in the paths, i.e. 4 (for D), and of final gate, i.e. 20 (for E), as

these determine the sweep sizes for the source, driver, load, Miller inverters.

• Path names LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+, because

these specify the transition type (input/output rising/falling, fast/slow).

• Pulse generator for VCCS input FIRE CSi, because it must be aligned to FIREi.

• Ampere meter monitoring the VCCS current flow for Iout1−to−out2 to validate that

the VCCS operation does not interfere with the actual simulation measurement.

The sweep values for source, driver, load, Miller inverters are calculated in the same

way as we calculated the sweep values for Figure 4.12 in Section 4.4.3.1:

• Driver sweep values for wid1 are: 1 (=0.20×4 rounded up), 3, 4, 6, 8 (=2×4).

• Source sweep values for wids are a step down of 3 from the size of the driver

inverter, wid1. As in Section 4.4.3.1, we exclude wid1=1 from our sweep, because

it yields a size for wids below the minimum inverter size of 1. In Section 4.5, we

give a general solution to obtain a step down of 3 with buildable inverter sizes≥1.

For now, the sweep values for wids are: 1, 1, 2, 3.
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Figure 4.15 Final simulation setup of the sub-circuit in Figure 4.10 and simple paths
LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+. The black box represents
the sub-circuit. We use a pulse generator followed by a source and a driver inverter at
the FIREi input of the black box. The pulse generator goes from 0V (VSS) to 1V (VDD)
and creates a high pulse of 1V with a pulse width of 2ns and a period of 4ns. The pulse
generator for black box signal FIRE CSi goes from 0V (VSS) to 1.5V. It has the same
period but a wider pulse width of 3ns. As a result, the FIREi pulse falls completely
within the FIRE CSi pulse window. This guarantees that the VCCS device in the black
box works as intended. We can show that this is the case by observing the Ampere
meter and validating that it stays at 0A for the full duration of the FIREi pulse. At the
output end for SUCCi, we use a load inverter and Miller inverter. We sweep driver and
load sizes wid1 and wid2 and measure propagation and transition delays by observing
black box input and output in[1] and out[1].

• Load sweep values for wid2 are: 10 (=0.5×20), 33, 56, 78, 100 (=5×20).

• The size of the Miller inverter varies with the load size: widM=3×wid2.

The SPICE files for Figure 4.15 follow in Appendix F. They are generated similar to

the SPICE files for Figure 4.12 in Section 4.4.3.1. We simulated both paths with typical

Process, Voltage and Temperature (PVT) settings of the library. But, in general, we

would advice simulating the red path with slow PVT settings and the blue path with fast

PVT settings, because the relative timing assumptions need maximum delay estimates

for red paths and minimum delay estimates for blue paths.
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Figure 4.16 and Figure 4.17 show the two extreme, worst-case operating conditions for

the VCCS device in the black box. They validate that the VCCS operates as intended:

• The waveforms in Figure 4.16 were generated using the smallest simulated driver

size wid1=3, and the largest load size wid2=100. As a result, the pulse on input

signal FIREi is maximally delayed relative to the FIRE CSi pulse and so is the

measured transition from the rising input signal on FIREi to the rising output sig-

nal on SUCCi. Note that the transition on SUCCi falls clearly inside the FIREi

pulse. Note too that the FIREi pulse clearly fits inside the FIRE CSi pulse, with

slack to spare. Finally notice that SUCCi is re-initialized to a clean 0V VSS level

sufficiently long before the start of the next FIREi pulse, and that the Ampere me-

ter measurements indicate that there is no Iout1−to−out2 current flowing during the

FIREi pulse with the critical timing measurements for LUTred:FIREi+SUCCi+

respectively LUTblue:FIREi+SUCCi+. In summary: the VCCS device operates

correctly and does not interfere with the actual simulation measurement.

• The waveforms in Figure 4.17 were generated using the largest simulated driver

size wid1=8, and the largest load size wid2=100. As a result, the pulse on FIREi is

minimally delayed relative to the pulse on FIRE CSi, creating a minimal time in-

terval for FIRE CSi to re-initialize SUCCi before the next FIREi pulse and the

next FIRE CSi pulse. As before in Figure 4.16: the actual measurement for

LUTred:FIREi+SUCCi+ respectively LUTblue:FIREi+SUCCi+ falls clearly in-

side the FIREi pulse, the FIREi pulse falls clearly inside the FIRE CSi pulse,

SUCCi is re-initialized cleanly before the next pulse on FIRE CSi and the next

pulse on FIREi start, and there is no Iout1−to−out2 current flowing during the FIREi

pulse. So, also in this scenario, the VCCS device operates correctly and does not

interfere with the actual simulation measurement.
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Figure 4.16 This is the first of two validation runs showing that the VCCS used in
the black box of Figure 4.15 operates correctly and does not interfere with the actual
simulation measurements for the relative timing paths LUTred:FIREi+SUCCi+ and
LUTblue:FIREi+SUCCi+. We generated this information from SPICE simulations of
Figure 4.15, using the smallest driver (wid1=3) and the largest load (wid2=100). The
bottom simulation window shows two (red) FIRE CSi pulses and two (green) FIREi

pulses, and their relation in terms of voltage levels and time to each other and to
(blue/purple) output signal SUCCi. Both pulse generators produce a high pulse. The
top simulation window shows the VCCS current for Iout1−to−out2 as monitored by the
Ampere meter. The properties to validate are: (1) correct alignment of pulse generators,
i.e. the (green) FIREi pulse window lies within the (red) FIRE CSi pulse window, and
(2) correct measurement window, i.e. the rising transition for the (blue/purple) SUCCi
signal lies within the (green) FIREi-high pulse window, and (3) mutual exclusive VCCS
and measurement operations, i.e. Iout1−to−out2=0A when FIREi is high. Observe that
all three properties hold.

74



SUCCi

FIREi

TIME in ns

V
O

LT
A

G
E

 in
 V

TIME in ns

FIRE_CSi

C
ur

re
nt

 I (
ou

t1
-to

-o
ut

2)
 in

 A

Figure 4.17 Second of the two validation runs showing that the VCCS used in the
black box of Figure 4.15 operates correctly and does not interfere with the actual
simulation measurements for the relative timing paths LUTred:FIREi+SUCCi+ and
LUTblue:FIREi+SUCCi+. We generated this information from SPICE simulations of
Figure 4.15, using the largest driver (wid1=8) and the largest load (wid2=100). The
simulation windows follow the same organization as the previous validation run in Fig-
ure 4.16. As before, the properties to validate are: (1) correct alignment of pulse gen-
erators, i.e. the (green) FIREi pulse lies within the (red) FIRE CSi pulse window, (2)
correct measurement window, i.e. the rising transition for the (blue/purple) SUCCi
signal lies within the (green) FIREi-high window, and (3) VCCS and measurement op-
erations are mutually exclusive, i.e. Iout1−to−out2=0A when FIREi is high. As before,
all three properties hold.
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4.4.3.5 Setup for Figure 4.11, LUTblue/green:FIREi+PREDi−

Figure 4.18 shows the simulation setup for the sub-circuit in Figure 4.11 and simple

relative timing paths LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−. The

sub-circuit and the paths are represented by a black box. Only the information that we

need from the black box is visible. Similar to the information listed on page 71 for the

black box in Figure 4.15, we need:

• Input FIREi and output PREDi, as these connect to the simulation environment.

• Size of initial gate 4.4 in the path, i.e. 20 (for X), and of final gate, i.e. 20 (again X),

as these determine the sweep sizes for the source, driver, load, Miller inverters.

• Path names LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−, because

these specify the transition type (input/output rising/falling, fast/slow).

• Pulse generator for VCCS input FIRE CSi, because it must be aligned to FIREi.

• Ampere meter monitoring the VCCS current flow for Iout1−to−out2 to validate that

the VCCS operation does not interfere with the actual simulation measurement.

The sweep values for the source, driver, load, and Miller inverters are calculated in the

same way as we calculated the sweep values for Figure 4.12 in Section 4.4.3.1:

• Driver sweep values for wid1 are: 4 (=0.20×20), 13, 22, 31, 40 (=2×20).

• Source sweep values for wids are a step down of 3 from the size of the driver

inverter, wid1. We took the following values for wids: 1, 4, 7, 10, 13.

• Load sweep values for wid2 are: 10 (=0.5×20), 33, 56, 78, 100 (=5×20).

• The size of the Miller inverter varies with the load size: widM=3×wid2.
4.4We simplified this calculation. The real size seen by the driver is 20×(LogicalEffort(X) def= 1/3)∼7.
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Figure 4.18 Final simulation setup of the sub-circuit in Figure 4.11 and simple paths
LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−. The black box represents
the sub-circuit. We use a pulse generator followed by a source and a driver inverter at the
FIREi input of the black box. The pulse generator goes from 0V (VSS) to 1V (VDD)
and creates a high pulse of 1V with a pulse width of 2ns and a period of 4ns. The
pulse generator for black box signal FIRE CSi generates a low pulse and goes from 1V
(VDD) to -0.5V. It has the same period but a wider pulse width of 3ns. As a result, the
FIREi pulse falls completely within the FIRE CSi pulse window. This guarantees that
the VCCS device in the black box works as intended. We can show that this is the case
by observing the Ampere meter and validating that it stays at 0A for the full duration
of the FIREi pulse. At the output end for PREDi, we use a load inverter and a Miller
inverter. We sweep the driver and load sizes wid1 and wid2 and measure propagation
and transition delays by observing the black box input and output in[1] and out[1].

The SPICE files for Figure 4.18 are generated in a way similar to those for Figure 4.12

in Section 4.4.3.1, and follow in Appendix G. We show simulation results under typical

Process, Voltage, and Temperature (PVT) setting of the library. However, as a general

rule, we would advice simulating the green path with slow PVT settings and the blue

path with fast settings because the relative timing assumptions need maximum delay

estimates for green and minimum delay estimates for blue paths.
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Figures 4.19–4.20 show the two extreme, worst-case operating conditions for the VCCS

in the black box of Figure 4.18. They validate that the VCCS operates as intended:

• The waveforms in Figure 4.19 were generated using the smallest simulated driver

size wid1=4, and the largest load size wid2=100. As a result, the pulse on input

signal FIREi is maximally delayed relative to the FIRE CSi pulse and so is the

measured transition from the rising input signal on FIREi to the falling output

signal on PREDi. Note that the transition on PREDi falls clearly inside the FIREi

pulse. Note too that the FIREi pulse clearly fits inside the FIRE CSi pulse, with

slack to spare. Finally notice that PREDi is re-initialized to a clean 1V VDD level

sufficiently before the start of the next FIREi pulse, and that the Ampere meter

measurements indicate that there is no Iout1−to−out2 current flowing during the

FIREi pulse with the critical timing measurements for LUTblue:FIREi+PREDi−

respectively LUTgreen:FIREi+PREDi−. In summary: the VCCS device operates

correctly and does not interfere with the actual simulation measurement.

• The waveforms in Figure 4.20 were generated using the largest simulated driver

size wid1=40, and the largest load size wid2=100. As a result, the pulse on FIREi

is minimally delayed relative to the pulse on FIRE CSi, creating a minimal time

interval for FIRE CSi to re-initialize PREDi before the next FIREi pulse and

the next FIRE CSi pulse. As before in Figure 4.19: the actual measurement for

LUTblue:FIREi+PREDi− respectively LUTgreen:FIREi+PREDi− falls clearly

inside the FIREi pulse, the FIREi pulse falls clearly inside the FIRE CSi pulse,

PREDi is re-initialized cleanly before the next pulse on FIRE CSi and the next

pulse on FIREi start, and there is no Iout1−to−out2 current flowing during the FIREi

pulse. So, also in this scenario, the VCCS device operates correctly and does not

interfere with the actual simulation measurement.
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Figure 4.19 First of the two validation runs showing that the VCCS used in the
black box of Figure 4.18 operates correctly and does not interfere with the actual
simulation measurements for the relative timing paths LUTblue:FIREi+PREDi− and
LUTgreen:FIREi+PREDi−. We generated this information from SPICE simulations
of Figure 4.18, using the smallest driver (wid1=4) and the largest load (wid2=100).
The bottom simulation window shows two (red) FIRE CSi pulses and two (green)
FIREi pulses, and their relation in terms of voltage levels and time to each other and
to (blue/purple) output signal PREDi. The pulse generators produce a low pulse on
FIRE CSi and a high pulse on FIREi. The top simulation window shows the VCCS
current for Iout1−to−out2 as monitored by the Ampere meter in Figure 4.18. The prop-
erties to validate are: (1) correct alignment of pulse generators, i.e. the FIREi pulse lies
within the FIRE CSi pulse window, (2) correct measurement window, i.e. the rising
transition on PREDi lies within the FIREi window, and (3) the VCCS and measurement
operations are mutually exclusive, i.e. Iout1−to−out2=0A when FIREi is high. Observe
that all three properties hold.
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Figure 4.20 Second of the two validation runs showing that the VCCS used in the
black box of Figure 4.18 operates correctly and does not interfere with the actual
simulation measurements for the relative timing paths LUTblue:FIREi+PREDi− and
LUTgreen:FIREi+PREDi−. We generated this information from SPICE simulations
of Figure 4.18, using the largest driver (wid1=40) and the largest load (wid2=100). The
simulation windows follow the same organization as in the previous validation run in
Figure 4.19. As before, the properties to validate are as follows: (1) correct alignment
of pulse generators, i.e. the (green) FIREi pulse window lies within the (red) FIRE CSi

pulse window, and (2) correct measurement window, i.e. the rising transition on out-
put signal PREDi (in blue/purple) lies within the (green) FIREi-high window, and (3)
VCCS and measurement operations are mutually exclusive, i.e. Iout1−to−out2=0A when
FIREi is high. As before, all three properties hold.
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4.5 General Simulation Setup Covering All Possible Sweep Cases

Section 4.5.1 below shows a simulation environment that provides arbitrary external

input drives, as weak or as strong as needed. The issue with the simulation environment

defined in PART-A, Chapter 3, is that it does not support weak input drives in the order

of 0.20 times the size of the path input gate for four out of the five relative timing paths

characterized here in PART-B, Chapter 4.

Section 4.5.2 shows how to deal with zero external output loads. We like to include zero

external output load simulations to obtain lowerbounds for path propagation delays and

output slopes.

4.5.1 Covering All Possible External Input Drives

The first four out of five simulation setups, namely those described in Section 4.4.3.1 to

Section 4.4.3.4, lack the smallest-size driver. Only the fifth simulation setup described

in Section 4.4.3.5, contains the full sweep range. We defined the smallest driver size

to be 0.20 times the size of the first gate on the relative timing path that we plan to

simulate, rounded off to the closest integer greater or equal to 1, with 1 being the size

of the minimum inverter for the CMOS process of the design – see the introduction of

Section 4.4.3 on page 65. The reason for deleting the smallest-size driver from the first

four simulation setups is not because the driver size is too small, but because the extra

source inverter that we insert between the pulse generator and the driver is too small.

We require a step up of 3 in size between the source and driver, to ensure that the

driver receives a realistic input slope, independent of the slope of the pulse generator.

The smallest source inverter that we can build in this process has size wids=1. The

smallest driver size wid1 that this input configuration supports is a step-up of 3 bigger,

i.e. wid1=3×wids=3. To support a sweep value of 0.2, a driver size wid1=3 will support
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Figure 4.21 General simulation setup for look up table sweeps, ignoring potential
VCVS and VCCS add-ons. We sweep widT to set the input slope at in[1], and we
sweep wid2 to set the capacitive output load at out[1]. Note that we fixed driver and
source sizes to wid1=100×widBB and wids=(100/3)×widBB.

a smallest first gate size widBB=wid1/0.2=15 for the first gate of the timed path. The

fifth configuration in Figure 4.18, page 77 has size widBB=20≥15, and so the fifth

configuration can support the complete sweep. But the first four simulation setups all

have widBB≤10, which explains why we cannot support the complete sweep. We can

solve this issue, and support complete sweeps for any input gate size widBB≥1 by using

a slightly different input configuration.

Figure 4.21 shows the new simulation setup. The new setup adds two inverters to the

original input setup: a so-called Trash inverter and its Miller inverter, called Miller1.

Note that we renamed the Miller inverter at the output to Miller2. The Trash inverter

and its Miller inverter are inserted as extra load for the driver inverter, in addition to

the black box. The result will be that the driver output is divided over the two loads as

follows:

• Valsweep = (widBB + widT)/wid1, where widT is the size of the Trash inverter.
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We can make the sweep almost independent of size widBB, by using very large driver

and Trash sizes in relation to the size of the input gate:

• Let wid1=100×widBB

• Then a sweep value Valsweep=0.2 will yield 0.2=(widBB + widT)/(100×widBB)

i.e. widT=(20×widBB)−widBB = 19×widBB

• Sweep value Valsweep=2 will yield widT=(200×widBB)−widBB = 199×widBB

In this new input setup, we keep the driver and source sizes fixed to wid1=100×widBB,

wids=(100/3)×widBB, and we sweep Trash size widT and size widM1=3×widT of its

Miller inverter to sweep the input slope to the black box. The output setup is as before.

4.5.2 Covering Zero Exernal Output Loads

In Section 4.5.2, we will show how to deal with zero external output loads. We like

to include zero load simulations to obtain lowerbounds for path propagation delays and

output slopes. So far, we ran exactly one relative timing path with an external output

load of zero. The simulation environment for LUTblue:FIREi−Douti+ in Figure 4.14

on page 70 has no external output load, because signal Douti is an internal signal.

The following Figure 4.22 contains a simulation setup for simulating the other four

relative timing paths using zero external output loads. We could have done this by using

the original simulation setups, and by using the SPICE command file to disconnect the

wire connections to the external output loads. Here, in Figure 4.22, we have done it in a

way similar to Figure 4.14: we simply deleted the output loads from the original setups

and created new setups. We simulated the resulting setups in parallel. The corresponding

SPICE netlist, simulation and output files follow in Appendix H.
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DelayTime=0s

PulsePeriod=4ns

X=wids4=(widd4)/3
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A
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Figure 4.22 Simulation setup with zero external output loads for the original setups in
Figure 4.12 (top), Figure 4.13 (second), Figure 4.15 (third), and Figure 4.18 (bottom).
We sweep widd1, widd2, widd3 and widd4 to set the input slope for each path input.
We measure the propagation delays and slopes by observing in1 to in4 and out1 to out4.
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4.6 Conclusion and Future Work for Chapter 4

In Chapter 4, we designed a characterization flow to generate look up tables with timing

information for a typical 6-4 GasP circuit. This chapter is dubbed ‘PART-B’ because it

is the second of a two-part study in look up table generation for 6-4 GasP. PART-A in

Chapter 3 is the first part. It shows how to characterize a simple 6-4 GasP library module

without loops and with a single input and output. PART-B extends the characterization

flow in PART-A to general 6-4 GasP circuits, by partitioning the timing behavior of a

6-4 GasP circuit into simple input-to-output transitions and simplified circuits that can

be fed back into PART-A. Not only do we show how to do this, but we actually do it: we

partition complex relative timing paths and feed the sub-paths back into PART-A. The

SPICE input and output files in Appendix C–H bear witness to this. Proof of the pudding

follows in Chapter 5 where we run the standard STA tool PrimeTime of Synopsys on

the look up tables in Appendix C–H to validate the four key relative timing constraints

in a 6-4 GasP module, listed on page 12.

Here is a summary of the key steps in PART-B:

STEP 1: Partition complex GasP paths by cutting them at module boundaries, i.e. at

PREDi, FIREi, SUCCi, and at internal signals that control the single-track wire

drive, i.e. at Douti. The names of the sub-path cuttings reflect key properties of

the paths. For instance, sub-path name ‘LUTblue:PREDi−FIREi−’ indicates that

(1) the timing information of the path will be captured in a look up table (LUT),

(2) we are interested in simulating this path with minimal delay settings (blue),

(3) the path starts with PREDi falling and ends with a falling transition on FIREi.
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STEP 2: Set up an accurate simulation environment for each sub-path as follows:

1. From the 6-4 GasP schematics, include all the gates on the sub-path. For

all gates on the sub-path, include all the load capacitances on the gate by

including the gates and wires connected to the gate output. The resulting

circuit is a simplification of the original 6-4 GasP circuit. In particular, the

input signal goes to the first gate and nothing else, and the output signal

carries all the load that it carries in the 6-4 GasP schematics.

2. Model ‘The Charlie Effect’ needed for the sub-path, i.e. add a VCVS device

to synchronize the input transitions of a multi-input gate, or connect non-

leading gate inputs to VSS or VDD to let the leading input transition set

the gate delay. Two of the sub-paths characterized in Chapter 4 required a

VCVS device to synchronize the inputs of two-input gate A.

3. Re-initialize un-driven wires by adding a VCCS device. Four sub-paths that

we characterized in Chapter 4 required a VCCS device for this purpose.

4. Embed the resulting circuit into the simulation setup of PART-A to generate

SPICE input files and to create a SPICE output file with the look up tables.

As far as future work on PART-B goes, we have the following suggestions and hints:

1. Create wire models with near-end capacitive load and far-end delay information.

• It may be that an Elmore delay model suffices [23, 36].

2. Flow automation, also mentioned in the conclusion of PART-A, becomes even

more a necessity given the complexity of PART-A-to-B combined. Specifically:

• The path and circuit partitioning in PART-B can be simplified if we could

use pre-defined single-rail datapath designs with a fixed load on FIREi.
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• There may be other, perhaps easier, ways to partition the circuit. We could

for instance keep the full schematics but avoid false feedback paths by split-

ting signals that act as output as well as input into separate pins, as is done

in the static timing analysis approach for 6-4 GasP in [2] and in Chapter 5.

3. Use the general simulation setup described in Section 4.5, Figure 4.21.

• Figure 4.21 guarantees a simulation environment designed according to the

theory of Logical Effort, and avoids that the transistor sizes shrink below the

minimum size of 1, as we experienced for 4 out of our 5 simulation setups.

4. Use asymmetric sweeps and add sweep values for the two extreme ends.

• Asymmetric sweeps make it easier to validate that the rows and columns of

the look up tables are correctly copied and not accidentally swapped during

the transfer process from SPICE output files to PrimeTime input files.

• Sweep values for driver size wid1 and load size wid2 below and above the

anticipated sweep range of a GasP design make outlier values more accessi-

ble and their effects more predictable.
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Chapter 5

STATIC TIMING ANALYSIS OF 6-4 GASP USING LOOK UP TABLES

Chapter 5 is also available as internal report ARC2010-smg04 [19]. It describes how

we can use standard static timing analysis (STA) tools to validate the relative timing

constraints on which the correctness of 6-4 GasP circuits depends. We chose Synopsys

PrimeTime as the de facto STA tool standard. GasP is a non-standard circuit family

for STA tools like PrimeTime. The combinational loops in a GasP module and the

bi-directionality of the single-track communication channels between two GasP mod-

ules make GasP hard to digest for STA tools that are accustomed to clocked circuits

where such loops are restricted to state-holding elements like flipflops. To make GasP

digestible, we take the following approach:

1. We replace each GasP module by a black box in which each combinational loop is

modeled as a sequence of loop-less input-output paths whose timing information

is stored in look up tables.

2. We replace each bi-directional single-track wire by two uni-directional wires.

3. We reformulate each relative timing constraint as a data-to-data check from a

common point of divergence. We use this common point of divergence as a clock

signal. This brings our path1-to-path2 relative timing constraints into the standard

STA jargon of clock-to-(path1-versus-path2) constraints.
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This approach was initially developed at the University of Southern California (USC)

by Mallika Prakash for asynchronous circuits from USC, Fulcrum and Silistix [21, 22]

and it was extended by Prasad Joshi, also USC, to the single-track circuit family that

we use in 6-4 GasP [2, 3]. What we add to it is (1) the use of realistic look up tables

for timing the loop-less sub-paths that make up the combinational loops in a 6-4 GasP

circuit [16, 17], and (2) additional relative timing constraints that our short to medium

to long wire studies for 6-4 GasP have identified as necessary timing constraints [18].

5.1 Introduction

The term ‘static’ in static timing analysis alludes to the fact that the timing is analyzed

in a data- or input- independent manner, and contrasts to the ‘dynamic’ or ‘simulated’

timing analysis that we used in our library characterization approach in Chapters 3–4.

Static timing analysis (STA) tends to be much faster than simulated timing analysis. It

is used to analyze large complex designs: think ‘systems’ rather than ‘circuit modules’.

The speed-up is largely due to its use of simplified delay models and to its limited ability

to incorporate signal dependencies. Our simplified delay models are look up tables,

which we generate with SPICE, using the library characterization approach described in

Chapters 3 and 4. A quick overview of techniques used in static timing analysis and a

list of references about the state of the art can be found in [25].

Chapter 5 shows how to run static timing analysis, using Synopsys PrimeTime [35].

The flow that we use comes from the University of Southern California (USC), and was

developed by Mallika Prakash and Prasad Joshi two former Master of Science students

in the research group of Professor Peter Beerel. Mallika developed an STA flow for

asynchronous circuits from USC, Fulcrum and Silistix [21, 22] and Prasad extended her

flow to the single-track circuit family that we use in 6-4 GasP [2, 3]. The value that
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we add to the USC flow is the use of SPICED look up tables for 6-4 GasP, and the

methodology to generate these Tables.

We use static timing analysis to validate so-called ‘Relative Timing’ constraints [27, 28]

in our circuits. Relative timing constraints describe the order in which two signals must

arrive at a point of convergence. The signals typically start from a common point, the

point of divergence, and they are all of the form: ‘the delay for path A is less than the

delay for path B’. In this chapter, we will use static timing analysis to validate four rel-

ative timing constraints. These four constraints capture the key communication aspects

of single-track handshake signaling between two 6-4 GasP modules. They include the

two relative timing constraints for GasP with a lumped-capacitance single-track wire

model [4, 15]. In Chapter 4 we already characterized the timing information needed to

validate these four relative timing constraints, and we stored the information in a collec-

tion of look up tables. The search key (wid1 × wid2) that we use to index our look up

tables is different than the indexing used by PrimeTime. So, our first task is to translate

our SPICED look up tables into PrimeTime look up tables. After that, we follow the

USC static timing analysis flow for asynchronous circuits.

The resulting flow has five steps:

Step 1: Translate SPICED look up tables into PrimeTime look up tables.

Step 2: Replace each 6-4 GasP module in the (Verilog) design by a black box.

• Our black box model is slightly different than the one Prasad uses in [2].

Step 3: Create a (Liberty) library with the black box timing in look up tables.

• This requires renaming the tables to reflect the new black box pin names.

Step 4: Create a (Tcl) command file to validate the four relative timings.

Step 5: Run PrimeTime and inspect the timing reports.
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The rest of Chapter 5 is organized as follows. Section 5.2 covers the translation of our

SPICED look up tables into PrimeTime look up tables, i.e. it covers Step 1 in our five-

step STA flow. Section 5.3 covers the black box model for the 6-4 GasP module, i.e. it

covers Step 2 in our five-step STA flow. Sections 5.4–5.6 cover the remaining Steps 3-5.

The timing results in Section 5.6 exclude single-track wire delays, because our look up

tables do not generate these. So, instead of letting PrimeTime analyze the effects that

short, medium, and long wires have on the four relative timing constraints, we will do

the analysis ourselves, using the simulation results from our short-to-medium-to-long

wire study in Appendix O and [18]. The analysis can be found in Chapter 6. Section 5.7

concludes Chapter 5. Appendices I–M contain all the files generated in Steps 1–5,

ranging from SPICED look up table translations to PrimeTime commands and timing

reports.

Note:

We postpone the comparison between our library characterization work and prior work

at USC by Mallika Prakash [21, 22] and Prasad Joshi [2, 3] to Chapter 7.

5.2 STEP 1: From SPICED to PrimeTime Look Up Tables

The look up tables that we generated in Chapter 4 store the timing information for the

relative timing paths RT1 to RT4 of Figure 2.2, using a two-dimensional search key

(wid1 × wid2). We store three types of timing information — see also page 15:

1. (wid1 × wid2)→ slope (in[1])

2. (wid1 × wid2)→ delay (in[1] to out[1])

3. (wid1 × wid2)→ slope (out[1])

where:
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• wid1 is the size of the external gate driving path input in[1].

• wid2 is the size of the external gate driven by path output out[1].

• slope(in[1]) is the input transition slope, a.k.a. input slew time, as denoted by the

time difference (tin2−tin1) from time tin1 when a rising input transition on in[1]

passes the 20% supply voltage point to time tin2 when it passes the 80% voltage

point — and vice versa for a falling input transition.

• delay(in[1] to out[1]) is the input-to-output transition delay time (tout−tin) from

time tin when the input transition on in[1] passes the 50% supply voltage point to

time tout when the output transition on out[1] passes the 50% supply point.

• slope(out[1]) is the output transition slope, a.k.a. output slew, as for instance

denoted by the time difference (tout2 − tout1) from time tout1 when a falling

output transition on out[1] passes the 80% supply voltage point to time tout2

when it passes the 20% point — and vice versa for a rising output transition.

The two-dimensional search key (wid1 × wid2) in our look up tables is different than

the (input slope × capacitive output load) indexing key used by standard static timing

analysis tools like PrimeTime of Synopsys. We use sizing information instead of input

slopes and output loads, because it allows us to use the theory of Logical Effort [32]

in both the design and the characterization of our circuits. We feel that this brings

the characterization process closer to the designer’s world, which — in our opinion —

makes the characterization process less artificial and more realistic. To accommodate

standard STA tools, we measure the input slopes for a given drive size and we have

methods to translate a driven output size into an output load.

Section 5.2.1 shows how we translate our index key wid1 into an index for input slope.

Section 5.2.2 shows how we translate our index key wid2 into an index for output load.

Section 5.2.3 analyzes the plausibility of the resulting PrimeTime look up tables.
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5.2.1 From Input Driver Size to Input Transition Slope

In Chapter 4 we needed a total of five look up tables to cover the loop-less sub-paths

in relative timing constraints RT1 to RT4. We refrained from generating look up tables

for the paths crossing single-track wire L2. We left the timing measurements associated

with L2 to static timing analysis (STA) with back-annotated wire information from the

final layout results. We will come back to this in Chapter 6, where we use the L2 timing

results from [18] to bring the timing information for L2 back into the STA validation for

RT1 to RT4 of Figure 2.2, page 13. We copied the five look up tables that we generated

in Chapter 4 as the top look up tables in Figure 5.3 to Figure 5.7 below.

We will use Figure 5.3 to explain the organization of each table. External driver size

wid1 acts as the column index, and size wid2 of the external load acts as the row index.

The timing information stored at table index (wid1 × wid2) is as indicated: input slope,

input-to-output delay, and output slope — all in picoseconds (ps). The numbers match

those in the SPICE output files in Appendices C–G, but we display them here with a

more realistic precision to only a tenth of a picosecond.

The middle of the three look up tables in Figure 5.3 is a translation of the top table: we

replaced column index wid1 by the average input slope produced by driver size wid1.

The calculations for the average input slope per wid1 size are shown in the top table.

We also calculated the relative difference between the average input slope and the input

slope that we measured for driver size wid1 under the various load sizes wid2. To be

precise, we calculated:

%Diff = 100 × (average-input-slope − measured-input-slope) / (average-input-slope)
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The relative differences for all five look up tables in Figure 5.3 to Figure 5.7 vary from

0% to less than 25%. This is fine, because it’s the path delay that we’re interested in,

and the input slope turns out to matter a lot less to the total path delay than the output

load. We already elaborated on this in Section 3.7 of Chapter 3. We will come back to

this again in Section 5.2.3, where we analyze the input-to-output (path) delay landscapes

captured by the final translated look up tables.

To summarize: we translated the top look up tables in Figure 5.3–5.7 of the form:

• (wid1 × wid2)→ slope (in[1]) , delay (in[1] to out[1]), slope (out[1])

into the middle look up tables, which use the form:

• (slope(in[1] × wid2)→ delay (in[1] to out[1]), slope (out[1])

This brings our SPICED look up tables one step closer to the look up table format needed

in PrimeTime. Follow-up Section 5.2.2 completes the translation.

5.2.2 From Output Load Size to Output Load Capacitance

The solid red graph in Figure 5.2 below shows the relationship between the size wid2

of an external load inverter (horizontal axis), and the capacitive load that it represents

(vertical axis). It is a linear relationship, as one would expect it to be. The ten dots on

the graph show the 90nm CMOS SPICE simulation results for the ten load inverter sizes

wid2 that we used in our look up tables. The simulation setup is shown in Figure 5.1.

The top setup is similar to the simulation setup that we defined earlier in our library

characterization approach in Chapter 3 and hence also similar to the setups that we used

in Chapter 4 for generating the look up tables in Figure 5.3 to Figure 5.7. In a nutshell:

the setup follows the step-up of 3 Logical Effort design strategy, where each gate drives

three times its own load; the source inverter guarantees a decent driver input slope; the

Miller inverter is there to give the load inverter a realistic load profile.
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CLOAD

in1 out1

millerout1

in2
out2

X=wid1=(wid2)/3X=wids=(wid2)/9 X=widM=3*(wid2)

Driver Source

Pulse

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

DelayTime=0s

PulsePeriod=4ns

Driver Source

Load 

FallTime=50ps

InitialVoltage=0v
PulseVoltage=1v

PulseWidth=2ns
RiseTime=50ps

DelayTime=0s

PulsePeriod=4ns

Pulse X=wid1=(wid2)/3X=wids=(wid2)/9

Miller

X=wid2

Figure 5.1 Simulation setup for translating load size into load capacitance. The load
size is represented by (1) the value of wid2 in the top configuration and (2) the load
circuitry consisting of a wid2-size load inverter followed by a (3×wid2)-size Miller
inverter. The load capacitance is represented by the value of the load capacitor CLOAD
in the bottom configuration. The values for wid2 and CLOAD go together if the average
delay of a rising and falling transition from in1 to out1 in the top configuration matches
the average delay of a rising and falling transition from in2 to out2 in the bottom one.
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We are interested in finding the capacitive load of the wid2 load inverter in the top

schematics of Figure 5.1, for a range of sizes wid2. We find the equivalent capacitance

through a dual sweep process. First, we select a sweep value for wid2 and we measure

the average delay of a rising and falling transition from in1 to out1 through the driver

inverter. We use this average delay to start a goal-driven sweep for the bottom simula-

tion setup in Figure 5.1, where we have replaced the load circuitry by a load capacitor.

We sweep the capacitor value until we measure an average delay from in2 to out2 that

(closely) matches the average delay from in1 to out1 that we just measured for the top

simulation setup.

The SPICE netlist, simulation, and output files can be found in Appendix I. The SPICE

output file maps the ten red dots to the following (wid2 × CLOAD) values:

Size wid2 10 33 40 56 78 100 130 220 310 400

CLOAD [fF] 4.6 15.0 18.2 25.5 35.5 45.6 59.3 101.4 142.8 185.1

In addition to the red-colored solid-line graph in Figure 5.2, which we annotated with

the text ‘with Miller inverter’, there is a black-colored dotted-line graph, annotated

with the text ‘no Miller inverter’. The dotted-line graph is the result of a re-simulation

of Figure 5.1 with a top configuration that lacks a Miller inverter following the load

inverter. Without the Miller inverter, the wid2-size load inverter is perceived to have

a higher capacitive load, as one would expect, but the difference is very small for the

simulated wid2 range.
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Figure 5.2 Graphical representation of the relationship between the size wid2 of the
load inverter in the top configuration of Figure 5.1 and the load capacitance CLOAD
in the bottom configuration of Figure 5.1, as perceived by the driver inverter. The red
solid-line graph shows the relationship for Figure 5.1 as is. The black dotted-line graph
shows the relationship for Figure 5.1 without the Miller inverter in the top configuration.

We used the red solid-line graph in Figure 5.2 to translate the look up tables in the

middle of Figure 5.3–5.7, which are of the form:

• (slope(in[1] × wid2)→ delay (in[1] to out[1]), slope (out[1])

into the bottom look up tables, which use the form:

• (slope(in[1] × cload(out[1]))→ delay (in[1] to out[1]), slope (out[1])

This completes the reformatting of our SPICED look up table for use in PrimeTime.
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wid2 \ wid1 10 8 6 3

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

0 11.5 -0.9% 60.3 8.0 12.4 -2.5% 60.8 8.5 13.1 0.0% 61.1 8.3 17.9 -2.9% 63.2 8.4
40 11.4 0.0% 62.1 9.9 12.2 -0.8% 62.4 9.9 13.3 -1.2% 62.8 10.1 17.6 -1.1% 64.7 9.6
130 11.3 0.9% 65.9 13.8 12.1 0.2% 66.1 13.8 13.4 -2.1% 66.6 13.9 17.6 -0.9% 68.3 14.0
220 11.1 2.6% 69.3 18.3 11.6 4.2% 69.5 18.4 13.2 -0.4% 69.9 18.4 16.3 6.6% 71.7 18.6
310 11.4 0.0% 72.3 22.7 12.2 -1.2% 72.6 22.6 12.5 5.0% 73.1 22.3 17.6 -1.4% 74.8 22.0
400 11.5 -0.9% 75.1 27.1 12.2 -0.8% 75.4 27.3 13.1 0.2% 75.9 27.4 17.6 -1.0% 77.7 27.3

Average
input slope 11.4 0.0% 12.1 0.0% 13.1 0.0% 17.4 0.0%

wid2 \ input-slope1 [ps] 11.4 12.1 13.1 17.4

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0 60.3 8.0 60.8 8.5 61.1 8.3 63.2 8.4
40 62.1 9.9 62.4 9.9 62.8 10.1 64.7 9.6
130 65.9 13.8 66.1 13.8 66.6 13.9 68.3 14.0
220 69.3 18.3 69.5 18.4 69.9 18.4 71.7 18.6
310 72.3 22.7 72.6 22.6 73.1 22.3 74.8 22.0
400 75.1 27.1 75.4 27.3 75.9 27.4 77.7 27.3

output-load2 [fF] \ input-slope1 [ps] 11.4 12.1 13.1 17.4

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0.0 60.3 8.0 60.8 8.5 61.1 8.3 63.2 8.4
18.2 62.1 9.9 62.4 9.9 62.8 10.1 64.7 9.6
59.3 65.9 13.8 66.1 13.8 66.6 13.9 68.3 14.0

101.4 69.3 18.3 69.5 18.4 69.9 18.4 71.7 18.6
142.8 72.3 22.7 72.6 22.6 73.1 22.3 74.8 22.0
185.1 75.1 27.1 75.4 27.3 75.9 27.4 77.7 27.3

Replace Driver size wid1 by the  Average input slope that it produces 

Replace Load size wid2 by its equivalent Load capacitance

LUTblue:PREDi-FIREi- 

Figure 5.3 SPICE to PrimeTime look up table for LUTblue:PREDi−FIREi−.
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Replace Driver size wid1 by the Average input slope that it produces 

Replace Load size wid2 by its equivalent Load capacitance

wid2 \ wid1 20 16 10 6

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

0 15.3 -7.7% 35.8 8.8 17.7 -17.2% 36.3 8.6 15.9 2.5% 37.4 8.5 21.7 -1.4% 39.2 8.3

40 14.9 -4.9% 37.7 10.0 15.3 -1.3% 38.0 10.1 15.8 3.1% 39.3 9.6 20.8 2.8% 40.8 10.8

130 15.1 -6.3% 41.6 13.8 14.5 4.0% 41.9 14.2 15.8 3.1% 43.0 13.9 21.6 -0.9% 44.7 13.9

220 13.0 8.5% 45.0 18.0 14.1 6.6% 45.3 18.0 16.0 1.8% 46.3 18.3 21.3 0.5% 48.1 18.2

310 13.2 7.0% 48.0 22.8 13.7 9.3% 48.4 22.5 16.5 -1.2% 49.3 22.8 21.5 -0.5% 51.2 22.7

400 13.9 2.1% 50.9 26.9 15.0 0.7% 51.2 27.0 17.6 -8.0% 52.1 27.1 21.3 0.5% 54.0 27.0

Average
input slope 

14.2 0.0% 15.1 0.0% 16.3 0.0% 21.4 0.0%

wid2 \ input-slope1 [ps] 14.2 15.1 16.3 21.4

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0 35.8 8.8 36.3 8.6 37.4 8.5 39.2 8.3

40 37.7 10.0 38.0 10.1 39.3 9.6 40.8 10.8

130 41.6 13.8 41.9 14.2 43.0 13.9 44.7 13.9

220 45.0 18.0 45.3 18.0 46.3 18.3 48.1 18.2

310 48.0 22.8 48.4 22.5 49.3 22.8 51.2 22.7

400 50.9 26.9 51.2 27.0 52.1 27.1 54.0 27.0

output-load2 [fF] \ input-slope1 [ps] 14.2 15.1 16.3 21.4

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0.0 35.8 8.8 36.3 8.6 37.4 8.5 39.2 8.3

18.2 37.7 10.0 38.0 10.1 39.3 9.6 40.8 10.8

59.3 41.6 13.8 41.9 14.2 43.0 13.9 44.7 13.9

101.4 45.0 18.0 45.3 18.0 46.3 18.3 48.1 18.2

142.8 48.0 22.8 48.4 22.5 49.3 22.8 51.2 22.7

185.1 50.9 26.9 51.2 27.0 52.1 27.1 54.0 27.0

LUTblue:SUCCi+FIREi- 

Figure 5.4 SPICE to PrimeTime look up table for LUTblue:SUCCi+FIREi−.
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Replace Driver size wid1 by the Average input slope that it produces 

Replace Load size wid2 by its equivalent Load capacitance

wid2 \ wid1 8 6 4 3

slope
% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

0 11.6 0.0% 20.5 21.0 12.4 0.0% 20.9 21.5 14.4 0.0% 21.7 21.5 14.7 0.0% 22.3 21.7

Average
input slope 

11.6 0.0% 12.4 0.0% 14.4 0.0% 14.7 0.0%

wid2 \ input-slope1 [ps] 11.6 12.4 14.4 14.7

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0 20.5 21.0 20.9 21.5 21.7 21.5 22.3 21.7

11.6 12.4 14.4 14.7

20.5 21.0 20.9 21.5 21.7 21.5 22.3 21.7

output-load2 [fF] \ input-slope1 [ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0.0

LUTblue:FIREi-Douti+ 

Figure 5.5 SPICE to PrimeTime look up table for LUTblue:FIREi−Douti+.
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wid2 \ wid1 8 6 4 3

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

0 10.7 10.1% 26.3 12.2 12.2 3.2% 26.7 12.5 14.4 4.6% 27.6 12.7 16.6 3.5% 28.5 12.9
10 11.7  1.7% 28.9 15.2 12.7 -0.8% 29.0 14.9 15.4 -2.0% 30.0 15.4 17.2 0.0% 30.9 16.0
33 11.7 1.7% 33.1 20.7 12.7 -0.8% 33.7 20.8 15.2 -0.7% 34.7 21.3 17.4 -1.2% 35.6 21.4
56 11.2 5.9% 37.1 27.0 12.7 -0.8% 37.8 27.4 15.2 -0.7% 38.8 27.6 17.5 -1.7% 39.9 27.7
78 11.5 3.4% 41.0 34.1 12.6 0.0% 41.6 33.9 15.3 -1.3% 42.4 34.0 17.1 0.6% 43.4 34.0
100 14.5 -21.8% 44.3 40.5 12.7 -0.8% 45.3 40.4 14.9 1.3% 46.4 40.4 17.4 -1.2% 47.2 41.0

Average
input slope 11.9 0.0% 12.6 0.0% 15.1 0.0% 17.2 0.0%

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0 26.3 12.2 26.7 12.5 27.6 12.7 28.5 12.9
10 28.9 15.2 29.0 14.9 30.0 15.4 30.9 16.0
33 33.1 20.7 33.7 20.8 34.7 21.3 35.6 21.4
56 37.1 27.0 37.8 27.4 38.8 27.6 39.9 27.7
78 41.0 34.1 41.6 33.9 42.4 34.0 43.4 34.0
100 44.3 40.5 45.3 40.4 46.4 40.4 47.2 41.0

wid2 \ input-slope1 [ps] 11.9 12.6 15.1 17.2

output-load2 [fF] \ input-slope1 [ps] 11.9 12.6 15.1 17.2

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0.0 26.3 12.2 26.7 12.5 27.6 12.7 28.5 12.9
4.6 28.9 15.2 29.0 14.9 30.0 15.4 30.9 16.0
15.0 33.1 20.7 33.7 20.8 34.7 21.3 35.6 21.4
25.5 37.1 27.0 37.8 27.4 38.8 27.6 39.9 27.7
35.5 41.0 34.1 41.6 33.9 42.4 34.0 43.4 34.0
45.6 44.3 40.5 45.3 40.4 46.4 40.4 47.2 41.0

LUTred/blue:FIREi+SUCCi+ 

Replace Driver size wid1 by the Average input slope that it produces 

Replace Load size wid2 by its equivalent Load capacitance

Figure 5.6 SPICE to PrimeTime look up table for LUTred/blue:FIREi+SUCCi+.
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LUTblue/green:FIREi+PREDi- 

Replace Driver size wid1 by the Average input slope that it produces 

Replace Load size wid2 by its equivalent Load capacitance

wid2 \ input-slope1 [ps] 10.4 10.8 11.2 11.9 20.1

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0 3.7 5.2 3.6 5.5 3.7 5.6 3.4 6.0 3.8 8.5
10 4.6 7.5 4.7 7.6 5.0 7.8 5.7 7.5 6.8 10.5
33 8.1 10.9 8.3 11.0 9.1 10.7 9.1 11.7 11.1 14.5
56 11.2 15.1 11.4 15.2 11.9 15.0 12.2 15.5 14.9 18.4
78 14.2 19.1 14.4 19.0 14.4 19.6 15.1 20.0 18.0 22.7
100 16.6 24.0 17.0 24.1 17.3 24.0 17.9 24.4 20.9 27.4

output-load2 [fF] \ input-slope1 [ps] 10.4 10.8 11.2 11.9 20.1

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

delay
[ps]

output
slope
[ps]

0.0 3.7 5.2 3.6 5.5 3.7 5.6 3.4 6.0 3.8 8.5
4.6 4.6 7.5 4.7 7.6 5.0 7.8 5.7 7.5 6.8 10.5
15.0 8.1 10.9 8.3 11.0 9.1 10.7 9.1 11.7 11.1 14.5
25.5 11.2 15.1 11.4 15.2 11.9 15.0 12.2 15.5 14.9 18.4
35.5 14.2 19.1 14.4 19.0 14.4 19.6 15.1 20.0 18.0 22.7
45.6 16.6 24.0 17.0 24.1 17.3 24.0 17.9 24.4 20.9 27.4

wid2 \ wid1 40 31 22 13 4

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

input
slope
[ps]

% Diff
to Avg

delay
[ps]

output
slope
[ps]

0 10 3.8% 3.7 5.2 11.6 -7.4% 3.6 5.5 12.3 -9.8% 3.7 5.6 12.2 -2.5% 3.4 6.0 21.7 -8.0% 3.8 8.5
10 10.8 -3.8% 4.6 7.5 11.2 -3.7% 4.7 7.6 11.8 -5.4% 5.0 7.8 11.8 0.8% 5.7 7.5 21.5 -7.0% 6.8 10.5
33 11.1 -6.7% 8.1 10.9 11.3 -4.6% 8.3 11.0 11.2 0.0% 9.1 10.7 12.4 -4.2% 9.1 11.7 20.6 -2.5% 11.1 14.5
56 10.6 -1.9% 11.2 15.1 10.8 0.0% 11.4 15.2 10.4 7.1% 11.9 15.0 12.0 -0.8% 12.2 15.5 19.0 5.5% 14.9 18.4
78 9.7 6.7% 14.2 19.1 10.0 7.4% 14.4 19.0 10.8 3.6% 14.4 19.6 12.0 -0.8% 15.1 20.0 19.3 4.0% 18.0 22.7
100 10.3 1.0% 16.6 24.0 10.1 6.5% 17.0 24.1 10.5 6.2% 17.3 24.0 11.2 5.9% 17.9 24.4 18.5 8.0% 20.9 27.4

Average
input slope 10.4 0.0% 10.8 0.0% 11.2 0.0% 11.9 0.0% 20.1 0.0%

Figure 5.7 SPICE to PrimeTime look up table for LUTblue/green:FIREi+PREDi−.
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5.2.3 A Quick Sanity Check of the PrimeTime Look Up Tables

Figure 5.8 and Figure 5.9 below jointly show five pairs of landscape graphs with the

delay and output slope information from the five look up tables displayed in Figure 5.3

to Figure 5.7. Both the absolute numbers in picoseconds and the relative changes in the

landscape elevations are plausible for the given range of input slopes and output loads

and the given paths in the 6-4 GasP circuit.

We normalized the vertical axes to enable apples-to-apples comparisons between the

paths: delays go from 0ps to 80ps, with a color distinction every 10ps, and output slopes

go from 0ps to 45ps, with a color distinction every 5ps.

Figure 5.8 (continues in Figure 5.9) Landscape graphs with the delay and output slope
information from the five look up tables in Figure 5.3 to Figure 5.7. We normalized
the vertical axes to enable apples-to-apples comparisons between the paths: delays go
from 0ps to 80ps with a color distinction every 10ps, and output slopes from 0ps to
45ps with a color distinction every 5ps. We dropped the index ‘i’ from the path names,
because the paths are all contained within a 6-4 GasP module. For instance, we use
LUTblue:PRED−FIRE− instead of the indexed name LUTblue:PREDi−FIREi−.
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Figure 5.9 Landscape graphs with delay and output slope information — continued.
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5.3 STEP 2: From 6-4 GasP Module to PrimeTime Black Box

We now get to the USC part of the static timing analysis flow. In his Master of Science

thesis [2, 3], Prasad Joshi presents a 6-4 GasP black box solution approach that solves

the issues that PrimeTime has with bi-directional pins and combinational loops. He

splits each bi-directional pin into separate input and output pins. He cuts combinational

loops by unrolling them and by renaming the loop-back pins as additional pseudo-pins.

He calls his black box model a ‘Split Pin Architecture’.

Figure 5.10 shows the split pin architecture for GasP modules M1 and M2 in Figure 2.1,

with its black box icon in the top-right corner. PrimeTime sees only the black box

name, which is ‘GasP’, and its pins: split pins PRED OUT and PRED IN, split pins

SUCC OUT and SUCC IN, pin FIRE and its pseudo-pin FIRE PS, and pin Dout. The

internal circuitry is invisible to PrimeTime. Prasad’s version does not use the pin Dout.

We have added Dout to our black box model because our versions of the relative timing

constraints for 6-4 GasP are more detailed and more accurate than those used by Prasad.

GASP

FIRE FIRE_PS

PRED_IN

PRED_OUT SUCC_IN

SUCC_OUT

20
1

1

1

1

20

PRED_IN SUCC_IN

FIRE

PRED_OUT

SUCC_OUT

30

80

5

2

4

2

10

Dout

Dout

FIRE_PS

Figure 5.10 Split pin architecture of a basic 6-4 GasP module with its black box icon.

105



M2

FIRE_PS2FIRE2FIRE1 FIRE_PS1

M1

PRED_IN

PRED_OUT

PRED_IN1

PRED_OUT1
PRED_IN2

PRED_OUT2

SUCC_OUT

SUCC_IN

SUCC_OUT2

SUCC_IN2

SUCC_OUT1

SUCC_IN1 GasPGasP

Dout2Dout1

L2_M1to2

L2_M2to1

Figure 5.11 PrimeTime view of the two-stage FIFO in Figure 2.1, page 11. The two
6-4 GasP modules M1 and M2 have each been replaced by the black box icon from
Figure 5.10. The bi-directional wire for single-track channel L2 has been replaced by
two uni-directional wires going in opposite directions.

Figure 5.11 shows what the two-stage FIFO of Figure 2.1 on page 11 looks like when

we replace the 6-4 GasP modules M1 and M2 by their black box icons. This is how

PrimeTime gets to see Figure 2.1 . We will use Verilog to describe the corresponding

netlist configuration in Figure 5.11. The netlist can be found in Appendix J.

5.4 STEP 3: Create a Library File with SPICED Look Up Tables

We continue with the USC part of the static timing analysis flow by constructing a

PrimeTime library file with the timing information for the 6-4 GasP black box. Most

of the groundwork has been done by Prasad Joshi in [2, 3]. Our contribution consists

of replacing Prasad’s fictitious one-dimensional look up tables with the real, SPICE-

simulated, two-dimensional versions in Figures 5.3–5.7. There is one caveat: the look

up tables in Figures 5.3–5.7 were generated for the GasP schematics in Figure 2.1 on

page 11, and not for the split pin versions in Figures 5.10–5.11. So, our first task is

to map the original path name associated with each look up table to the PrimeTime

path name for the black box split pin architecture. In Section 5.4.1 we translate the

original names for our look up tables into PrimeTime names. In Section 5.4.2, we use

the PrimeTime names to create a library file for the two-stage FIFO in Figure 5.11.
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5.4.1 STEP 3.1: Rename Look Up Tables to Match Black Box Names

This section discusses our approach in renaming the input and output signal names and

relative timing paths in the original two-stage GasP FIFO in Figure 2.1, page 11, to the

corresponding names and paths in the new two-stage black box FIFO in Figure 5.11,

with the black box as defined in Figure 5.10. Our renaming follows the renaming that

Prasad took in his Master of Science thesis [2]. Nevertheless, we would like to explicitly

emphasize the renaming part, because it is less trivial than one might think. The crux

in making a valid renaming for signal names is to make it valid for what we do with

PrimeTime and for what PrimeTime does with these names.

We use PrimeTime to validate the relative timing constraints RT1 to RT4 of Figure 2.2,

page 13. This means that we instruct PrimeTime to compare the timing results of the red

and the blue paths in RT1 in Figure 2.2(a), and to validate that the delay of the red path

is less than that of the blue path. It also means that we instruct PrimeTime to compare

the timing results of the green and the blue paths in RT3 in Figure 2.2(c), and to validate

that the delay of the green path is less than that of the blue path. We instruct PrimeTime

to do similar comparisons for RT2 and RT4 – see Figure 2.2 for details. PrimeTime

may use only the input and output signals names that the black box icon allows it to

see. It uses these names to construct a path through the circuit, to time this path, and to

compare the timing information of this particular path to that of other paths. PrimeTime

can connect black box signal names in precisely two ways. It connects the signal names

if either the netlist or a look up table connects them.

For a valid renaming, the connectivity that PimeTime sees must match the connectivity

in Figure 2.2. One way to achieve this is to redraw Figure 2.2 with black box signal

names, and to make sure that the connectivity matches that of the original Figure 2.2.
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The result follows below in Figure 5.12. Note that we cut off the ‘nodrive’ paths end-

ings at Dout1 for Figure 5.12(a)–(b) and at FIRE PS2 for Figure 5.12(c)–(d). This is

consistent with the partitioned relative timing paths in Figures 4.3–4.6, pages 42–45,

from which we generated the look up tables in Figures 5.3–5.7.

PRED_OUT2-

FIRE2+
FIRE_PS2-

A

B

C

X

SUCC_IN1-

F

(d) RT4 or RT(L2)TrfB-RstB :  green path < blue path

L2

D

FIRE1+
FIRE_PS1-

A

B

C Dout1

E

D
M1 M2

(b) RT2 or RT(L2)TrfF-RstF :  red path < blue path

A

B

C

FIRE2+
FIRE_PS2-

PRED_OUT2- SUCC_OUT2+

X
E

D

SUCC_IN1-

(c) RT3 or RT(L2)TrfB-RstF :  green path < blue path

L2

FIRE1+
FIRE_PS1-

PRED_OUT1- SUCC_OUT1+

A

B

C

X

F

E

D

D

Dout1
PRED_IN2+

M1 M2

M1 M2M1 M2

(a) RT1 or RT(L2)TrfF-RstB :  red path < blue path

L2
SUCC_OUT1+ PRED_IN2+

L2

Figure 5.12 PrimeTime version of Figure 2.2, page 13. The pin names for RT1 in (a),
RT2 in (b), RT3 in (c), and RT4 in (d) match with the names of the split pin architecture
of the 6-4 GasP black box of Figure 5.10. The blue, red and green paths go through the
same gates as the original blue, red and green paths in Figure 2.2, with one exception:
the ‘nodrive’ endings now end in Dout1 or FIRE PS2. This is consistent with the Dout1
or FIRE2 path endings for the look up tables in Figure 5.3 to Figure 5.7, pages 98–102.
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At the beginning of this section, we mentioned that the renaming is less trivial than

one might think. The reason is that the renaming is not determined by the input or

output direction of a pin, which is a typical first guess. Rather it’s determined by the

connectivity of the blue, red and green relative timing paths. Take for instance the RT2

blue path in Figure 2.2(b). As a first guess, looking at input-to-output path directions

and ignoring path continuity, one is tempted to map the individual sub-paths as follows:

Wrong signal name mapping:

1. FIRE1+ to SUCC1+ → FIRE1+ to SUCC OUT1+

2. SUCC1+ to FIRE1− → SUCC IN1+ to FIRE PS1−

3. FIRE1− to Dout1+ (to SUCC1nodrive) → FIRE1− to Dout1+

This mapping would kill PrimeTime’s ability to correctly time the self-resetting loop.

Connecting the loop now requires a path extension from SUCC OUT1+ to SUCC IN1+

and from FIRE PS1− to FIRE1−. The two extensions are non-existent in Figure 5.11.

As a result, PrimeTime will not be able to construct RT2’s blue path. But even if the

extensions would exist, the resulting loop would very likely go through more gates than

the original self-resetting loop in Figure 2.2(b). To correctly map the self-resetting loop,

we must mimic its connectivity and continuity, as we do in Figure 5.12(b):

Correct signal name mapping:

1. FIRE1+ to SUCC1+ → FIRE1+ to SUCC OUT1+

2. SUCC1+ to FIRE1− → SUCC OUT1+ to FIRE PS1−

3. FIRE1− to Dout1+ (to SUCC1nodrive) → FIRE PS1− to Dout1+
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The table in Figure 5.13 shows the new PrimeTime names for the look up tables in

Figure 5.3 –5.7, pages 98–102. The names are based on the signal names used in Fig-

ure 5.12, and include the (output load × input slope) table size information to facilitate

readability and validation of the table contents. Their syntax is compatible with the

Synopsys Liberty library naming conventions [33]. Each new name maintains the tim-

ing information embedded in the original name and reflects the size of the table.

Original name PrimeTime name
LUTblue:PREDi−FIREi− LUTblue:PREDOUTi f FIREPSi f 6x4
LUTblue:SUCCi+FIREi− LUTblue:SUCCOUTi r FIREPSi f 6x4
LUTblue:FIREi− Douti+ LUTblue:FIREPSi f Douti r 1x4
LUTred/blue:FIREi+SUCCi+ LUTredblue:FIREi r SUCCOUTi r 6x4
LUTred/blue:FIREi+PREDi− LUTbluegreen:FIREi r PREDOUTi f 6x4

Figure 5.13 Renaming of our SPICED look up tables into PrimeTime look up table
names that reflect the black box pin names in Figure 5.10. Notice that we replaced the
‘+’ and ‘−’ signs for rising and falling transitions by the letters ‘r’ and ‘f ’ respectively.

5.4.2 STEP 3.2: Create a Library File with SPICED Look Up Tables

The USC flow for static timing analysis of asynchronous circuits in [21, 22, 2, 3] uses

a Synopsys Liberty file format for its PrimeTime library [33]. The library contains the

timing information of all the cells used in the PrimeTime netlist. The netlist for the two-

stage GasP FIFO in Figure 5.11 contains two 6-4 GasP black boxes and the two wire

connections between them. The timing information of a 6-4 GasP black box is fully

captured in look up tables. The look up tables are split into two parts. The first part

simply defines the name of the look up table and the template with the index variables

and their range. For instance, look up table LUTblue:PREDOUTi f FIREPSi f 6x4,

which corresponds to the look up table in Figure 5.3 on page 98 gets as its first part:
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lu_table_template(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0,18.2,59.3,101.4,142.8,185.1");
index_2 ("11.4,12.1,13.1,17.4");
}

It uses variable 1, total output net capacitance, for the (external) load capacitance on

FIRE PSi, and it uses variable 2, input net transition, for the falling input slope on

PRED OUTi. Just as in the look up table in Figure 5.3, page 98, capacitive load in-

dex 1 ranges from 0.0–185.1 fF, and input slope index 2 ranges from 11.4–17.4 ps.

The second part refers to the first part by name, and contains the timing information

measured per table entry. This part of the table is moved into the cell definition for the

6-4 GasP black box, where it is stored under the output pin of the path for which the

look up table was created. In the case of LUTblue:PREDOUTi f FIREPSi f 6x4, the

corresponding output pin is FIRE PS. The table contents, captured in Figure 5.3, are

distributed over two tables: one with the falling input to falling output delays, called

cell fall, and one with the falling output transition time, called fall transition. The two-

dimensional table is copied row by row, top row first, each row copied from left to right:

pin (FIRE_PS) { /* output pin of relative timing path */
direction : output;
timing() {
related_pin : "PRED_OUT"; /* path input */
timing_type : combinational_fall; /* falling output transition */
timing_sense : positive_unate; /* transition directions match */
/* delay values */
cell_fall(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
values("60.3,60.8,61.1,63.2","62.1,62.4,62.8,64.7",\
"65.9,66.1,66.6,68.3","69.3,69.5,69.9,71.7","72.3,72.6,73.1,74.8",\
"75.1,75.4,75.9,77.7");
}
/* output transition values */
fall_transition(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
values("8.0,8.5,8.3,8.4","9.9,9.9,10.1,9.6","13.8,13.8,13.9,14.0",\
"18.3,18.4,18.4,18.6","22.7,22.6,22.3,22.0","27.1,27.3,27.4,27.3");
}

The complete library file and additional explanations follow in Appendix K.
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5.5 STEP 4: Create Commands for Relative Timing Validation

We continue with the USC part of the static timing analysis flow by creating the com-

mands for validating the four relative timing constraints, RT1 to RT4 of Figure 5.12,

page 108, which are the black box versions of the original relative timings of Figure 2.2,

page 13. We follow the command scheme set up by Mallika Prakash [21] and tuned to

6-4 GasP by Prasad Joshi [2]. Our contribution is that we validate two extra relative tim-

ing constraints, namely RT2 and RT4. Prasad ignored these two constraints because the

initial 6-4 GasP studies used the lumped wire capacitance model to time L2, and RT2

and RT4 are automatically satisfied by this model [4, 15]. Our latest GasP studies use

a distributed RC model to time L2. With a distributed RC wire model, none of the four

relative timing constraints RT1 to RT4 are automatically satisfied by either the model or

the design [18]. All four need explicit validation via static timing analysis.

Here is the command scheme for validating RT2 of Figure 5.12(b), which requires that

‘the forward transfer delay (in red) beats the forward self-resetting loop delay (in blue)’

— see Chapter 2 for a textual and graphical explanation:
#RT2 or RT(L2)TrfF-RstF
set_disable_timing -from PRED_OUT -to FIRE_PS { M1 M2}
create_clock -period 400 M1/FIRE
set_annotated_transition -rise 12.0 [get_pins M1/FIRE]
set_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout -setup 0.0
report_timing -from M1/FIRE > RT2_TrfF-RstF.txt
remove_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout
remove_clock -all
remove_disable_timing -from PRED_OUT -to FIRE_PS { M1 M2 }

This reads as follows:

1. To avoid interference from the backward self-resetting loop, we disable any timing

paths from Mi/PRED OUT to Mi/FIRE PS, i=1,2 (disabling M1 suffices).

2. We create a pulse generator with a sufficiently large period on the start signal,
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a.k.a. ‘Point of Divergence’, for the blue and the red paths in RT2, i.e. on

M1/FIRE. We are interested in the rising transition on M1/FIRE, which we de-

fine to be a nominal 20%-80% rise time of 12ps.

3. We request PrimeTime to validate that the delay of the forward transfer from

M1/FIRE to M2/PRED (the red path), is smaller than the delay of the forward

self-resetting loop from M1/FIRE to M1/Dout (the blue path) with a minimum

slack of 0.0ps, and to report the timing results to output file ‘RT2 TrfF-RstF.txt’.

4. We clean up any side effects, so the next command scheme starts from scratch.

The full command file can be found in Appendix L.

5.6 STEP 5: Run and Inspect Timing Reports

The PrimeTime run commands follow in the introduction of Appendix M. The output

files with the timing reports for the four relative timing constraints RT1 to RT4 follow in

Appendices M.1–M.4. We verified that the delay times generated by PrimeTime can be

generated using linear interpolation and linear extrapolation on the look up table entries

in Figure 5.3–5.7, pages 98–102, using the look up table re-naming in Figure 5.13 on

page 110. As an example, we will show how we verified the PrimeTime delays for RT2:

1. RT2 red and blue path, from M1/FIRE+ to M1/SUCC OUT+

• M1/FIRE receives a rising transition with a rise time of 12ps, measured from

when the signal voltage passes 20% VDD to when it reaches 80% VDD. Our

simulation setup uses a default external output load of 0fF for this path.

• A table entry with an input slope of 12ps and output load of 0fF falls within

the look up table range for LUTredblue:FIREi r SUCCOUTi r 6x4, which

translates to the look up table name LUTred/blue:FIREi+SUCCi+ with ta-

ble entries in Figure 5.6 (bottom), page 101.
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• In Figure 5.6 (bottom), the non-existent entry (0.0fF,12ps) falls between the

existing entry (0.0fF,11.9ps), which has a delay of 26.3ps and an output slope

of 12.2ps, and the existing entry (0.0fF,12.6ps), which has a delay of 26.7ps

and an output slope of 12.5ps. Linear interpolation thus gives:

delay(0.0fF,12ps) = 26.3ps + ((12-11.9)/(12.6-11.9))×0.4ps = 26.36ps

output slope(0.0fF,12ps) = 12.2 + ((12-11.9)/(12.6-11.9))×0.3 = 12.24ps

• The delay number matches exactly with the delay given by PrimeTime.

2. RT2 red path, from M1/SUCC OUT+ to M2/PRED IN+ via L2

• This path has no timing information. PrimeTime correctly gives 0.0ps delay.

3. RT2 blue path, from M1/SUCC OUT+ to M1/FIRE PS-

• The predecessor blue path in item 1 ended with an output slope of 12.24ps,

which becomes the input slope for this path. Our simulation setup uses a

default external output load of 0fF for this path.

• A table entry with an input slope of 12.24ps and output load of 0fF falls out-

side the look up table range for LUTblue:SUCCOUTi r FIREi f 6x4, which

translates to the look up table name LUTblue:SUCCi+FIREi− with table

entries in Figure 5.4 (bottom), page 99.

• In Figure 5.4 (bottom), non-existent entry (0.0fF,12.24ps) falls beyond the

existing entry (0.0fF,14.2ps), which has a delay of 35.8ps and an output slope

of 8.8ps, and beyond the existing entry (0.0fF,15.1ps),which has a delay of

36.3ps and an output slope of 8.6ps. Linear extrapolation thus gives:

delay(0.0fF,12.24ps)= 35.8ps - ((14.2-12.24)/(15.1-14.2))×0.5ps = 34.71ps

output slope(0.0fF,12.24ps)= 8.8 + ((14.2-12.24)/(15.1-14.2))×0.2= 9.24ps

• The delay number matches exactly with the delay given by PrimeTime.
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4. RT2 blue path, from M1/FIRE PS- to M1/Dout+

• The predecessor blue path in item 3 ended with an output slope of 9.24ps,

which becomes the input slope for this path. Our simulation setup uses a

default external output load of 0fF for this path.

• A table entry with an input slope of 9.24ps and an output load of 0fF falls

outside the look up table range for LUTblue:FIREPSi f Douti r 1x4. This

table name translates to the look up table name LUTblue:FIREi−Douti+

with table entries in Figure 5.5 (bottom), page 100.

• In Figure 5.5 (bottom), the non-existent entry (0.0fF, 9.24ps) falls beyond the

existing entries (0.0fF, 11.6ps) and (0.0fF, 12.4ps), which have delays 20.5ps

respectively 20.9ps. The output slope is irrelevant in this case, because the

RT blue path ends here. Linear extrapolation thus gives:

delay(0.0fF, 9.24ps) = 20.5ps - ((11.6-9.24)/(12.4-11.6))*0.4ps = 19.32ps

• The delay number matches exactly with the delay given by PrimeTime.

5. RT2 Slack calculation

• The total delay of the red path in RT2 is the sum of items 1–2 = 26.36ps.
• The total delay of the blue path is the sum of items 1, 3, and 4 = 80.39ps.

• The slack or (total blue path delay − total red path delay) is thus 54.03ps.

• This is exactly what PrimeTime reports as slack for RT2.

In summary: PrimeTime’s delay calculation for RT2 is based on linear interpolation and

linear extrapolation of the table entries in our look up tables. This is also true for the

PrimeTime delay calculations of the three other relative timing constraints, RT1, RT3,

and RT4.
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RT2 has a reported slack of 54.03ps. The reason why this slack is so large is because

the L2 wire delay for the red path takes 0ps in the current simulation setup, as can

be seen in item 2 in the above validation reasoning for RT2. This implies that the

delay for a rising transition from the near end of L2 (M1/SUCC OUT) to the far end of

L2 (M2/PRED IN) can take up to 54.03ps. A delay beyond 54.03ps invalidates RT2.

Invalidating RT2 amounts to M1 stopping its drive before M2 sees the transition. This

does not immediately invalidate the circuit operation, as we demonstrate in [18], but it

makes the circuit less robust and more noise sensitive. In Chapter 6 we will compare the

PrimeTime results to the results of our short-to-medium-to-long wire study in [18].

5.7 Conclusion and Future Work for Chapter 5

Chapter 5 is the “proof of the pudding” as we call it in the the conclusion sections of

Chapters 3 and 4. It concludes our quest to create a flow for library characterization and

static timing analysis of single-track circuits in GasP.

In Chapter 3, we showed how SPICE can be used to generate the timing information

of a simple circuit without loops and without single-track communication wires, and

to capture that information in look up tables. Our quest in Chapter 3 was more of a

warming-up quest to understand enough of the design environment in Electric and of

the simulation environment in SPICE to make things work.

The real quest came in Chapter 4, where we showed how to partition the circuit and

the timing constraints that it needs to make the SPICE approach of Chapter 3 work for

full-fledged GasP circuits with loops and single-track communication wires. Our timing

characterization flow in Chapter 4 is new, as far as we know.
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In Chapter 5, we took the look up tables that we generated in Chapter 4, and fed them

to a standard static timing analysis (STA) flow, namely PrimeTime of Synopsys. The

STA flow is not new: it was specifically created for asynchronous or self-timed circuits

at the University of Southern California (USC), by Mallika Prakash and Prasad Joshi —

two former Master of Science students in the research group of Professor Peter Beerel.

Having access to the USC STA flow for asynchronous circuits was a major help in

completing our quest. It limited the final stretch of our quest to (1) importing our look

up tables into PrimeTime and (2) validating the timing reports and comparing them to

the results of our earlier studies published in [18]. Chapter 5 is primarily about (1) and

(2), but it also fills in and explains the connections to the USC flow.

Last but not least: not only did we (1) generate and (2) explain a timing validation flow

for single-track circuits in 6-4 GasP but we also (3) used this flow and we (4) validated

its results. The many files in Appendices A–M in this thesis bear witness to this. For

truly: the proof of the pudding is in the eating.

As far as future work goes, we covered most of it in the conclusions of Chapters 3–4.

Key to static timing analysis are: flow automation and wire delay models.
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Chapter 6

SUMMARY AND DISCUSSION OF TIMING RESULTS

The slack timings computed by PrimeTime and reported in Appendices M.1–M.4 are

between 50.29ps and 57.66ps. RT2, for instance, has a reported slack of 54.03ps. The

reason why this slack is so large is because the L2 wire delay for the red path takes

0ps in the current simulation setup — as we can see in item 2 for the R2 validation

reasoning of the PrimeTime results in Section 5.6. The implication of this is that the

delay for a rising transition from the near end of L2 (M1/SUCC OUT) to the far end of

L2 (M2/PRED IN) can take up to 54.03ps. A delay beyond 54.03ps invalidates RT2.

Invalidating RT2 amounts to M1 stopping its drive before M2 sees the transition. This

does not immediately invalidate the circuit operation, as we demonstrate in [18], but it

makes the circuit less robust and more noise sensitive.

The 54.03ps slack that PrimeTime reports for RT2 is 20–25% smaller than the slack

that we reported in [18]. The reason for this 20-25% difference is that our PrimeTime

simulations use 0fF external output loads, whereas the simulations in [18] use realistic

output loads. The difference in slack between the red and blue paths (ignoring L2) comes

from four gates in the blue path: gates A, B, C, and D in Module M1 of Figure 2.1,

page 11. The outputs of gates A, B and D are internal to the circuit, but the output of
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gate C is external. The Primetime delays for gates A, B and D are correctly simulated,

but the delay for gate C is simulated with 0fF load. As a result, the slack is off for up to

1 out of 4 gates. All GasP gates are sized to have about the same delay under realistic

external load conditions. So, we may expect that the RT2 slack reported by PrimeTime

is off by up to 1/4-th or 25% over the slack reported in [18].

The same is true for the other relative timing constraints: all have a slack 20–25%

smaller than the slack reported in [18].

The slack can be translated in terms of wire length. The interesting question to ask is:

“How long can we make L2 until the relative timing constraints break?”

Figure 6.1 shows the simulation results for the forward and the reverse transfer delays

over L2 as reported in [18]. It relates wire delay to wire length. More precisely: it relates

the near-end delay for a transition over L2 and the far-end delay for that transition to the

wire length of L2. The top graph in Figure 6.1 shows these relations for a forward rising

transition over L2, and the bottom graph does the same for a falling transition over L2

in the reverse direction. The delay numbers in Figure 6.1 use the process-normalized

time metric tau (τ ) rather than the absolute metric of picoseconds (ps). Tau is about 8ps

for the 90nm CMOS process that we used in [18]. We use the same process here. A

slack of 54.03ps from the near end to the far end of L2 thus corresponds to a slack of

about 6.75τ . In Figure 6.1, the grey graph with near-end delays and the black graph with

far-end delays reach a difference of 6.75τ when the wire length is about 12500λ long.
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Figure 6.1 Excerpt taken from Figure 4 in [18] showing simulated delays for rising
and falling transitions at the near and far end of a given state wire L2 in a ten-stage
FIFO ring, for various lengths of that state wire. The FIFO design was done in the
same 90nm CMOS process used throughout all the 6-4 GasP studies in [2, 3, 4, 15, 16,
17, 18, 19] and in this thesis. The top window shows the near- and far-end delays for
a forward transfer over L2, with one empty space (bubble) in the ring — the worst-
case scenario for a forward transfer. The bottom window shows the near- and far-end
delays for a transfer over L2 in the reverse direction, with one data item in the ring,
which is the worst-case scenario for the reverse transfer. Wire length and time are
measured in lambda (λ) and tau (τ ), which for this 90nm process translate to 50nm and
8ps respectively.
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With the help of Figure 6.1, we can map all four PrimeTime generated slack numbers

for RT1 to RT4 into wire lengths and obtain a maximum allowable wire length for L2

below which RT1 to RT4 hold and beyond which at least one of the constraints fails:

• RT1 has a slack of 50.29ps, i.e. 6.29τ , and holds for an L2 length ≤12000λ.

• RT2 has a slack of 54.03ps, i.e. 6.75τ , and holds for an L2 length ≤12500λ.

• RT3 has a slack of 57.66ps, i.e. 7.21τ , and holds for an L2 length ≤14000λ.

• RT4 has a slack of 56.46ps, i.e. 7.06τ , and holds for an L2 length ≤13500λ.

So, in summary: the maximum allowable wire length for L2 is 12000λ.

As mentioned earlier, 12000λ is about 25% shorter than the maximum allowable wire

length reported in Figure 6.1, which is 16000λ. To put these numbers in perspective

and to fuel a discussion on how to extend our static timing analysis flow with wire delay

models, we end with a so-called ‘Distance Constraint Graph’. A Distance Constraint

Graph is a graphical representation that Swetha developed in [15] and which shows how

relative timing assumptions constrain the distances between 6-4 GasP modules.

Figure 6.2 shows the Distance Constraint Graph for 6-4 GasP that we constructed from

the results of our short-to-medium-to-long wire study in [18]. The graph contains four

different regions, colored white, light grey, dark grey, and black.

Our current PrimeTime calculations aim for the white region in Figure 6.2. This is the

region where the state of single-track wire L2 is either driven high or driven low or

maintained by one of the two half-keepers — see Chapter 2 and Figure 2.1, page 11. In

the white region of Figure 6.2, all L2 wires have wire lengths ranging from 0λ to 16000λ

(this would be 0λ to 12000λ in the PrimeTime-equivalent version of Figure 6.2). The

white region uses a distributed RC wire model, similar to the wire model for the given

90nm CMOS manufacturing process that we use in our schematics design environment.
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Figure 6.2 Copy of Figure 7 in our short-to-medium-to-long wire study published
in [18], showing the Distance Constraint Graph for 6-4 GasP in 90nm CMOS. The graph
shows how the distance L2pred from a given module to its predecessor, and likewise
L2succ from the module to its successor, are constrained. The white area is the domain of
the relative timing constraints under a distributed RC wire model; the constraints RT1,
RT2, RT3 and RT4 hold for distances up to 16000 lambda. The light-grey area is the
domain of charge relaxation; the relative timing constraints no longer hold, but the 6-4
Gasp design still functions correctly. The white, light-grey and dark-grey areas together,
i.e. the non-black areas, form the domain of the relative timing constraints under a
lumped capacitance wire model. For a lumped capacitance wire model, the constraints
are predicted to hold when L2pred and L2succ differ by less than 37000 lambda.

The light-grey region is the surprise in Figure 6.2 and the surprise of our long-wire

study. It shows that 6-4 GasP keeps working correctly for L2 wire lengths up to 24000λ,

beyond the validity of relative timing constraints and despite drift periods in L2. The

light-grey region works on charge relaxation, as we explain in detail in [18].

To fuel the discussion on how to extend our static timing analysis (STA) flow with

wire delay models, here is the question we would like to see answered: “How can STA

capture the white and the light-grey regions in Figure 6.2?”
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Chapter 7

COMPARISON TO RELATED WORK

Our research builds upon prior research work presented and published by Mallika

Prakash [21, 22] and Prasad Joshi [2, 3] — two former Master of Science students in the

research group of Professor Peter Beerel at the University of Southern California (USC).

Mallika investigated and developed a library characterization and static timing analysis

flow for asynchronous circuits with uni-directional communication channels. Her work

covers power as well as timing characterization. Prasad extended Mallika’s static tim-

ing analysis solution to circuits with bi-directional channels. Specifically, he covered

the bi-directional communication mechanism for single-track handshaking that we use

in 6-4 GasP. Prasad did not extend Mallika’s look up table characterization approach to

6-4 GasP — the look up tables in his work are fictional.

The look up table generation approach that we present in Chapters 3–4 differs from

Mallika’s approach in two major ways:

• Mallika’s thesis partly covers single-track circuits. She presents a simulation envi-

ronment that simulates the asynchronous circuit in its entirety to characterize for-

ward and reverse latencies for various input slopes and output loads. This suffices

to characterize the throughput of the circuit, but is insufficient for characterizing
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and validating the circuit’s relative timing constraints, i.e. timing assumptions on

which the correct operation of the circuit depends. To generate look up tables

for validating relative timing constraints in GasP, we must open up the circuit

and simulate specific internal paths. The library characterization method that we

created and which we describe in Chapters 3–4 does exactly that.

• The asynchronous circuits investigated by Mallika are all two-ported devices:

there is a data input side and a data output side. GasP is a three-ported device.

Module M1 in Figure 2.1 has a predecessor input, PRED1, a FIRE1 signal to cap-

ture the data, and a successor output, SUCC1. As a result, the approach to look

up table generation for Mallika is a straightforward two-dimensional simulation

process from (input-drive× output-load)→ timing. In contrast, GasP requires:

1. either a table for (input-drive× load-on-FIRE1 × output-load)→ timing,

which is a three-dimensional look up table,

2. or a partitioning into two-dimensional look up tables,

3. or a pre-defined single-rail datapath design with a fixed load on FIRE1, to

turn GasP into a two-ported device with two-dimensional look up tables.

Lacking a fixed load on FIRE1, we present a solution in the style of item 2 above,

because this requires fewer simulations than a solution approach based on item 1.

An additional difference between the USC flow and our version that is worth mentioning

is the way that wires are modeled. In the USC flow, the wires are included with a

lumped capacitance model. In contrast, we separate the wire models from our look up

table generation process, and make them a plug-and-play object that we can insert later

when we run static timing analysis. Our motivation to do so comes from the short-to-

medium-to-long wire studies that we did for 6-4 GasP and which we published in [18].
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The results of these wire studies show that there are two crucial ingredients that make a

good sender-receiver wire model:

1. The capacitive load at the near end of the wire, as seen by the sender, as a function

of the wire length, width, spacing, and the load capacitance at the wire’s far-end:

• For GasP, this information will be used to simulate the relative timing paths

related to the blue-colored self-resetting loops in Figures 2.1, 2.2, and 5.12

on pages 11, 13 and 108 respectively.

2. Wire resistance and capacitive wire load as seen by the receiver — again as a

function of wire length, width, spacing, and the capacitive load at the far-end:

• For GasP, this information will be used to simulate the relative timing paths

related to the forward red-colored arrows and reverse green-colored arrows

in Figures 2.1 and 2.2 and 5.12 on pages 11, 13 and 108 respectively.
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Chapter 8

CONCLUSION AND FUTUREWORK

In this thesis, I have created a timing validation flow for single-track circuits in 6-4 GasP.

The flow consists of two parts: library characterization and static timing analysis (STA).

The library characterization part is new. The STA part ties into an existing STA flow for

asynchronous circuits from the University of Southern California.

I have applied this flow to validate the four relative timing constraints that are key to

single-track communication. I have validated the results by comparing them to the

timing results obtained in an earlier and independent study. The results — obtained

in different ways and for different purposes — are compatible.

The three conclusion sections of Chapter 3, Chapter 4 and Chapter 5, on pages 33, 85

and 116, give an excellent overview of work done and work still outstanding.

Key topics for future work are flow automation and wire delay models.
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Appendix A

SPICE FILES FOR SPICE SWEEPS

The files in Appendix A.1 to Appendix A.6 below are generated in Sections 3.2 to 3.7
of Chapter 3. For generation details, see these sections.

A.1 SPICE Netlist Generated by Electric

We generated the following SPICE netlist from the design schematics in Electric. The
file extension is ‘.spi’. Inverters with size parameters wid1 and wid2 receive erroneous
‘null’ values. We will correct the erroneous text segments in Appendix A.4.

*** SPICE deck cell LUt_B_Blackbox1{sch} from library LUT_PartA_90nm
*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Sun Aug 01, 2010 18:26:48

*** Written on Sun Aug 01, 2010 19:34:16 by Electric VLSI Design ,
*version 9.00d

*** Layout tech: mocmos, foundry MOSIS
*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE

* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header.hsp’

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT PMOS-X_10 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_10 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’60*(1+ABP/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(60*2)’
.ENDS PMOS-X_10
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*** SUBCIRCUIT inv-X_10 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_10 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_10
XPMOS@0 out in vdd PMOS-X_10
.ENDS inv-X_10

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-X_10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-X_10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-X_10

*** SUBCIRCUIT LUT_A_halfGasP FROM CELL LUT_A_halfGasP{sch}
.SUBCKT LUT_A_halfGasP fire pred
** GLOBAL gnd

** GLOBAL vdd
Xinv@2 pred net@9 inv-X_10
Xinv@3 net@77 net@80 inv-X_10
Xinv@4 net@80 fire inv-X_10
Xnor2n@0 gnd net@9 net@77 nor2-X_10

* Spice Code nodes in cell cell ’LUT_A_halfGasP{sch}’
.ic net@69=0v
.ENDS LUT_A_halfGasP

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’null*(1+ABN/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0N/sqrt(null*null)’
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.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’null*(1+ABP/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0P/sqrt(null*null)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’null*(1+ABN/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0N/sqrt(null*null)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’null*(1+ABP/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0P/sqrt(null*null)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’null*(1+ABN/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0N/sqrt(null*null)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s

** GLOBAL vdd
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MPMOSf@0 d g s vdd pch W=’null*(1+ABP/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0P/sqrt(null*null)’
.ENDS PMOS-X_widM

*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’null*(1+ABN/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0N/sqrt(null*null)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’null*(1+ABP/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0P/sqrt(null*null)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: LUt_B_Blackbox1{sch}
XLUT_A_ha@0 out[1] in[1] LUT_A_halfGasP
VPulse@0 net@139 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@139 Din[1] inv-X_wids
Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_trailer.hsp’
.END
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A.2 SPICE Simulation Set-Up File: HEADER
Here is the basic file with default simulation parameters. Its extension is ‘.hsp’. It
contains a pointer to the 90nm CMOS process models for our design. Note that we use
typical (TT) Process, Voltage, and Temperature (PVT) corners.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models

*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist

****************************************************************

A.3 SPICE Simulation Set-Up File: TRAILER
Below follows the so-called trailer file with the analysis details of the SPICE simulation.
Its extension is ‘.hsp’. We will modify this file in Appendix A.5, where we add sweep
commands and measurement statements.

****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns
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A.4 Modified SPICE Netlist, Ready for Sweep
In Appendix A.4, we modify the incorrect SPICE netlist from Appendix A.1 by replac-
ing all formulas with ‘null’ by the correct sweep parameter formulas.
As example, we show how the ‘null’-s in the NMOS transistor of the source inverter are
replaced by formulas using (wid1)/3, which is the size of the source inverter:

(before)
MNMOSf@0 d g s gnd nch W=’null*(1+ABN/sqrt(null*null))’ L=’null’
+DELVTO=’AVT0N/sqrt(null*null)’

(after)
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’L=’2’
+DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’

The changes for the PMOS transistor and for transistors in the driver, load and Miller
inverters are similar. The modified netlist from the first change onwards is as follows:

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’
+L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
.ENDS NMOS-X_wids
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*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*(1+ABP/sqrt(2*3*
+(wid1/3)*2))’L=’2’ DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*3*wid2*(1+ABN/sqrt(3*3*wid2*2))’L=’2’
+DELVTO=’AVT0N/sqrt(3*3*wid2*2)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*3*wid2*(1+ABP/sqrt(2*3*3*wid2*2))
+’L=’2’ DELVTO=’AVT0P/sqrt(2*3*3*wid2*2)’
.ENDS PMOS-X_widM

*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*(1+ABN/sqrt(3*wid2*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*(1+ABP/sqrt(2*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
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.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: LUt_B_Blackbox1{sch}
XLUT_A_ha@0 out[1] in[1] LUT_A_halfGasP
VPulse@0 net@139 gnd pulse 0 ’1v’ ’20ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@139 Din[1] inv-X_wids
Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_partA1.hsp’
.END
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A.5 Modified SPICE TRAILER File, Ready for Sweep
The transient analysis command ‘.tran’ of the trailer file in Appendix A.3 is modified to
include the .DATA sweep command for sweeping the driver and load sizes wid1, wid2.
For an explanation on the .DATA sweep command below, see Section 3.5.2, page 25.
For more details on .DATA sweep commands, see the HSPICE reference manual [34],
Chapter 2: HSPICE and HSPICE RF Netlist Commands, pages 60–66.
We also added .MEASUREMENT statements to measure signal transition and path de-
lays. Again, for a quick explanation, see Section 3.5.2. For more details, see [34],
Chapter 2, pages 162–165.

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
.tran 1ps 100ns sweep data=mysweep

.data mysweep wid1 wid2
9 5
12 5
20 5

9 20
12 20
20 20

9 40
12 40
20 40

9 50
12 50
20 50
.enddata

.measure tfall_i_1
+ trig v(in[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(in[1]) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_1
+ trig v(out[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.2*SUPPLY’ fall=3

.measure tf_delay
+ trig v(in[1]) val=’0.5*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.5*SUPPLY’ fall=3

***********************
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A.6 SPICE Output File
Below is the SPICE output file with the look up table results. Its file extension is ‘.mt0’.
For an explanation of the output format, see Section 3.6, page 26. These results belong
to the schematics in Figure 3.1–Figure 3.2 and were obtained by doing the simulation
sweep in SPICE. In Section 3.7, Figure 3.8, we validate these results against the results
obtained for the schematics in Figure 3.7 where the sweep happens in the design space.
Specifically: we validated the simulation results for run index 1, 4, 8, 12.
$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’

index wid1 wid2 tfall_i_1
tfall_o_1 tf_delay temper
alter#

1.0000 9.0000 5.0000 1.403e-11
6.999e-12 4.809e-11 25.0000

1.0000
2.0000 12.0000 5.0000 1.280e-11

7.369e-12 4.741e-11 25.0000
1.0000

3.0000 20.0000 5.0000 1.073e-11
6.986e-12 4.685e-11 25.0000

1.0000
4.0000 9.0000 20.0000 1.429e-11

1.239e-11 5.232e-11 25.0000
1.0000

5.0000 12.0000 20.0000 1.285e-11
1.243e-11 5.167e-11 25.0000

1.0000
6.0000 20.0000 20.0000 1.073e-11

1.252e-11 5.102e-11 25.0000
1.0000

7.0000 9.0000 40.0000 1.412e-11
2.022e-11 5.748e-11 25.0000

1.0000
8.0000 12.0000 40.0000 1.273e-11

2.026e-11 5.689e-11 25.0000
1.0000

9.0000 20.0000 40.0000 1.117e-11
2.036e-11 5.621e-11 25.0000

1.0000
10.0000 9.0000 50.0000 1.394e-11

2.466e-11 6.005e-11 25.0000
1.0000

11.0000 12.0000 50.0000 1.283e-11
2.444e-11 5.934e-11 25.0000

1.0000
12.0000 20.0000 50.0000 1.078e-11

2.435e-11 5.865e-11 25.0000
1.0000
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Appendix B

SPICE FILES FOR SWEEPS IN THE DESIGN SPACE

Appendix B shows the files that we used for the reference design in Figure 3.7, page 31,
where we did the sweep in Electric’s design space rather than in SPICE. Appendix B.1
shows the SPICE netlist generated from Electric, Appendix B.2 has the SPICE simula-
tion trailer file, and Appendix B.3 shows the SPICE output file.

B.1 SPICE Netlist for Reference Design

Here is the netlist for Figure 3.7, page 31, with four simulation environments in parallel:

*** SPICE deck for cell LUt_B_BB1_validate{sch} from
*** library LUT_PartA_90nm created on Wed Jul 21, 2010 21:21:49

*** Last revised on Sat Sep 04, 2010 19:27:55

*** Written on Sat Sep 04, 2010 19:28:03 by Electric VLSI Design
*** System, version 9.00d

*** Layout tech: mocmos, foundry MOSIS
*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE

* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header.hsp’

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT PMOS-X_10 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_10 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’60*(1+ABP/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(60*2)’
.ENDS PMOS-X_10
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*** SUBCIRCUIT inv-X_10 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_10 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_10
XPMOS@0 out in vdd PMOS-X_10
.ENDS inv-X_10

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-X_10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-X_10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-X_10

*** SUBCIRCUIT LUT_A_halfGasP FROM CELL LUT_A_halfGasP{sch}
.SUBCKT LUT_A_halfGasP fire pred
** GLOBAL gnd

** GLOBAL vdd
Xinv@2 pred net@9 inv-X_10
Xinv@3 net@77 net@80 inv-X_10
Xinv@4 net@80 fire inv-X_10
Xnor2n@0 gnd net@9 net@77 nor2-X_10

* Spice Code nodes in cell cell ’LUT_A_halfGasP{sch}’
.ic net@69=0v
.ENDS LUT_A_halfGasP

*** SUBCIRCUIT NMOS-X_20 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_20 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’60*(1+ABN/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(60*2)’
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.ENDS NMOS-X_20

*** SUBCIRCUIT inv-X_20 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_20 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_20
XPMOS@0 out in vdd PMOS-X_20
.ENDS inv-X_20

*** SUBCIRCUIT NMOS-X_6_33 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_6_33 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’18.99*(1+ABN/sqrt(18.99*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(18.99*2)’
.ENDS NMOS-X_6_33

*** SUBCIRCUIT PMOS-X_6_33 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_6_33 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’37.98*(1+ABP/sqrt(37.98*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(37.98*2)’
.ENDS PMOS-X_6_33

*** SUBCIRCUIT inv-X_6_33 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_6_33 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_6_33
XPMOS@0 out in vdd PMOS-X_6_33
.ENDS inv-X_6_33

*** SUBCIRCUIT NMOS-X_150 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_150 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’450*(1+ABN/sqrt(450*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(450*2)’
.ENDS NMOS-X_150

*** SUBCIRCUIT PMOS-X_150 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_150 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’900*(1+ABP/sqrt(900*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(900*2)’
.ENDS PMOS-X_150

*** SUBCIRCUIT inv-X_150 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_150 in out

** GLOBAL gnd
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** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_150
XPMOS@0 out in vdd PMOS-X_150
.ENDS inv-X_150

*** SUBCIRCUIT NMOS-X_50 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_50 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’150*(1+ABN/sqrt(150*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(150*2)’
.ENDS NMOS-X_50

*** SUBCIRCUIT PMOS-X_50 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_50 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’300*(1+ABP/sqrt(300*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(300*2)’
.ENDS PMOS-X_50

*** SUBCIRCUIT inv-X_50 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_50 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_50
XPMOS@0 out in vdd PMOS-X_50
.ENDS inv-X_50

*** SUBCIRCUIT NMOS-X_12 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_12 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’36*(1+ABN/sqrt(36*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(36*2)’
.ENDS NMOS-X_12

*** SUBCIRCUIT PMOS-X_12 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_12 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’72*(1+ABP/sqrt(72*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(72*2)’
.ENDS PMOS-X_12

*** SUBCIRCUIT inv-X_12 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_12 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_12
XPMOS@0 out in vdd PMOS-X_12
.ENDS inv-X_12
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*** SUBCIRCUIT NMOS-X_4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_4 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’12*(1+ABN/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(12*2)’
.ENDS NMOS-X_4

*** SUBCIRCUIT PMOS-X_4 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_4 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’24*(1+ABP/sqrt(24*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(24*2)’
.ENDS PMOS-X_4

*** SUBCIRCUIT inv-X_4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_4 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_4
XPMOS@0 out in vdd PMOS-X_4
.ENDS inv-X_4

*** SUBCIRCUIT NMOS-X_120 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_120 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’360*(1+ABN/sqrt(360*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(360*2)’
.ENDS NMOS-X_120

*** SUBCIRCUIT PMOS-X_120 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_120 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’720*(1+ABP/sqrt(720*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(720*2)’
.ENDS PMOS-X_120

*** SUBCIRCUIT inv-X_120 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_120 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_120
XPMOS@0 out in vdd PMOS-X_120
.ENDS inv-X_120

*** SUBCIRCUIT NMOS-X_40 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_40 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’120*(1+ABN/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(120*2)’
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.ENDS NMOS-X_40

*** SUBCIRCUIT PMOS-X_40 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_40 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’240*(1+ABP/sqrt(240*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(240*2)’
.ENDS PMOS-X_40

*** SUBCIRCUIT inv-X_40 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_40 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_40
XPMOS@0 out in vdd PMOS-X_40
.ENDS inv-X_40

*** SUBCIRCUIT NMOS-X_9 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_9 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’27*(1+ABN/sqrt(27*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(27*2)’
.ENDS NMOS-X_9

*** SUBCIRCUIT PMOS-X_9 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_9 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’54*(1+ABP/sqrt(54*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(54*2)’
.ENDS PMOS-X_9

*** SUBCIRCUIT inv-X_9 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_9 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_9
XPMOS@0 out in vdd PMOS-X_9
.ENDS inv-X_9

*** SUBCIRCUIT NMOS-X_3 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_3 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’9*(1+ABN/sqrt(9*2))’
+L=’2’ DELVTO=’AVT0N/sqrt(9*2)’
.ENDS NMOS-X_3

*** SUBCIRCUIT PMOS-X_3 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_3 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’18*(1+ABP/sqrt(18*2))’ L=’2’
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+DELVTO=’AVT0P/sqrt(18*2)’
.ENDS PMOS-X_3

*** SUBCIRCUIT inv-X_3 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_3 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_3
XPMOS@0 out in vdd PMOS-X_3
.ENDS inv-X_3

*** SUBCIRCUIT NMOS-X_60 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_60 d g s** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’180*(1+ABN/sqrt(180*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(180*2)’
.ENDS NMOS-X_60

*** SUBCIRCUIT PMOS-X_60 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_60 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’360*(1+ABP/sqrt(360*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(360*2)’
.ENDS PMOS-X_60

*** SUBCIRCUIT inv-X_60 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_60 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_60
XPMOS@0 out in vdd PMOS-X_60
.ENDS inv-X_60

*** SUBCIRCUIT NMOS-X_15 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_15 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’45*(1+ABN/sqrt(45*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(45*2)’
.ENDS NMOS-X_15

*** SUBCIRCUIT PMOS-X_15 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_15 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’90*(1+ABP/sqrt(90*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(90*2)’
.ENDS PMOS-X_15

*** SUBCIRCUIT inv-X_15 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_15 in out

** GLOBAL gnd
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** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_15
XPMOS@0 out in vdd PMOS-X_15
.ENDS inv-X_15

*** SUBCIRCUIT NMOS-X_5 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_5 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’15*(1+ABN/sqrt(15*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(15*2)’
.ENDS NMOS-X_5

*** SUBCIRCUIT PMOS-X_5 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_5 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’30*(1+ABP/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(30*2)’
.ENDS PMOS-X_5

*** SUBCIRCUIT inv-X_5 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_5 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_5
XPMOS@0 out in vdd PMOS-X_5
.ENDS inv-X_5

.global gnd vdd

*** TOP LEVEL CELL: LUt_B_BB1_validate{sch}
XLUT_A_ha@0 out1 in1 LUT_A_halfGasP
XLUT_A_ha@1 out2 in2 LUT_A_halfGasP
XLUT_A_ha@2 out3 in3 LUT_A_halfGasP
XLUT_A_ha@3 out4 in4 LUT_A_halfGasP
VPulse@1 net@140 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@2 net@141 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@3 net@142 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@4 net@143 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@5 Din4 in4 inv-X_20
Xinv@6 net@140 Din4 inv-X_6_33
Xinv@7 net@82 inv@7_out inv-X_150
Xinv@8 out4 net@82 inv-X_50
Xinv@9 Din3 in3 inv-X_12
Xinv@10 net@141 Din3 inv-X_4
Xinv@11 net@100 inv@11_out inv-X_120
Xinv@12 out3 net@100 inv-X_40
Xinv@13 Din2 in2 inv-X_9
Xinv@14 net@142 Din2 inv-X_3
Xinv@15 net@118 inv@15_out inv-X_60
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Xinv@16 out2 net@118 inv-X_20
Xinv@17 Din1 in1 inv-X_9
Xinv@18 net@143 Din1 inv-X_3
Xinv@19 net@136 inv@19_out inv-X_15
Xinv@20 out1 net@136 inv-X_5

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_partA2.hsp’
.END
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B.2 SPICE TRAILER File for Reference Design

The trailer file includes measurement statements to obtain the input and output transition
slopes and the input-to-output delays for the four parallel simulation environments in
Figure 3.7, page 31:

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models
****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns

.measure tfall_i_1
+ trig v(in1) val=’0.8*SUPPLY’ fall=3
+ targ v(in1) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_1
+ trig v(out1) val=’0.8*SUPPLY’ fall=3
+ targ v(out1) val=’0.2*SUPPLY’ fall=3

.measure tf_delay_1
+ trig v(in1) val=’0.5*SUPPLY’ fall=3
+ targ v(out1) val=’0.5*SUPPLY’ fall=3
***********************
.measure tfall_i_2
+ trig v(in2) val=’0.8*SUPPLY’ fall=3
+ targ v(in2) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_2
+ trig v(out2) val=’0.8*SUPPLY’ fall=3
+ targ v(out2) val=’0.2*SUPPLY’ fall=3

.measure tf_delay_2
+ trig v(in2) val=’0.5*SUPPLY’ fall=3
+ targ v(out2) val=’0.5*SUPPLY’ fall=3

***********************
.measure tfall_i_3
+ trig v(in3) val=’0.8*SUPPLY’ fall=3
+ targ v(in3) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_3
+ trig v(out3) val=’0.8*SUPPLY’ fall=3
+ targ v(out3) val=’0.2*SUPPLY’ fall=3
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.measure tf_delay_3
+ trig v(in3) val=’0.5*SUPPLY’ fall=3
+ targ v(out3) val=’0.5*SUPPLY’ fall=3

***********************
.measure tfall_i_4
+ trig v(in4) val=’0.8*SUPPLY’ fall=3
+ targ v(in4) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_4
+ trig v(out4) val=’0.8*SUPPLY’ fall=3
+ targ v(out4) val=’0.2*SUPPLY’ fall=3

.measure tf_delay_4
+ trig v(in4) val=’0.5*SUPPLY’ fall=3
+ targ v(out4) val=’0.5*SUPPLY’ fall=3

***********************
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B.3 SPICE Output File for Reference Design

Here are the results of the reference design experiment in Figure 3.7, page 31, with
the slope and delay times for a falling input-to-output transition in each of the four
simulation environments:

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ ***spice deck lut_b1_validate{sch}, library lut_parta’
tfall_i_1 tfall_o_1 tf_delay_1 tfall_i_2
tfall_o_2 tf_delay_2 tfall_i_3 tfall_o_3
tf_delay_3 tfall_i_4 tfall_o_4 tf_delay_4
temper alter#
1.382e-11 6.864e-12 4.793e-11 1.382e-11
1.229e-11 5.217e-11 1.247e-11 1.976e-11
5.680e-11 1.110e-11 2.411e-11 5.866e-11
25.0000 1.0000

**************************************
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Appendix C

SPICE FILES FOR FIGURE 4.8 AND LUTblue:PREDi−FIREi−

C.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the details
of all the components and devices used in the schematics of Figure 4.12, page 67, and in
the black box schematics of Figure 4.8, page 57. The black box schematics belongs to
relative timing path LUTblue:PREDi−FIREi−. The sweep parameters wid1 and wid2
are the sizes of the driver and load inverters. The file extension is ‘.spi’.

*** SPICE deck for cell RT1_LUTblue_PredFire{sch} from library
*LookUpTable_Thesis

*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Tue Aug 03, 2010 20:00:26
*** Written on Tue Aug 03, 2010 20:03:17 by Electric

*** VLSI Design System, version 9.00d
*** Layout tech: mocmos, foundry MOSIS

*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE
* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header_ARC.hsp’

*** SUBCIRCUIT NMOS-X_20 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_20 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’60*(1+ABN/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(60*2)’
.ENDS NMOS-X_20

*** SUBCIRCUIT PMOS-X_1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’6*(1+ABP/sqrt(6*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(6*2)’
.ENDS PMOS-X_1
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*** SUBCIRCUIT NMOS-X_30 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_30 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’90*(1+ABN/sqrt(90*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(90*2)’
.ENDS NMOS-X_30

*** SUBCIRCUIT PMOS-X_30 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_30 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’180*(1+ABP/sqrt(180*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(180*2)’
.ENDS PMOS-X_30

*** SUBCIRCUIT inv-X_30 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_30 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_30
XPMOS@0 out in vdd PMOS-X_30
.ENDS inv-X_30

*** SUBCIRCUIT NMOS-X_80 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_80 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’240*(1+ABN/sqrt(240*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(240*2)’
.ENDS NMOS-X_80

*** SUBCIRCUIT PMOS-X_80 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_80 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’480*(1+ABP/sqrt(480*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(480*2)’
.ENDS PMOS-X_80

*** SUBCIRCUIT inv-X_80 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_80 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_80
XPMOS@0 out in vdd PMOS-X_80
.ENDS inv-X_80

*** SUBCIRCUIT NMOS-X_5 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_5 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’15*(1+ABN/sqrt(15*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(15*2)’
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.ENDS NMOS-X_5

*** SUBCIRCUIT PMOS-X_5 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_5 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’30*(1+ABP/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(30*2)’
.ENDS PMOS-X_5

*** SUBCIRCUIT inv-X_5 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_5 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_5
XPMOS@0 out in vdd PMOS-X_5
.ENDS inv-X_5

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd

156



MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-X_10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-X_10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-X_10

*** SUBCIRCUIT LUTblue_RT1_path FROM CELL LUTblue_RT1_path{sch}
.SUBCKT LUTblue_RT1_path fire pred
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 NMOS@0_d fire gnd NMOS-X_20
XPMOS@0 net@57 net@2 vdd PMOS-X_1
XPMOS@1 net@57 fire net@4 PMOS-X_1
EVCVS@0 net@13 gnd vcvs net@9 gnd 1 max=’10V’ min=’-10V’
Xinv@0 net@20 net@19 inv-X_30
Xinv@1 net@19 fire inv-X_80
Xinv@2 pred net@9 inv-X_5
Xinv@4 net@4 net@2 inv-X_2
Xnor2n@0 net@13 net@9 net@20 nor2-X_10

* Spice Code nodes in cell cell ’LUTblue_RT1_path{sch}’
.ic succ=0v net@68=1v
.ENDS LUTblue_RT1_path

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’
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+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*
+(1+ABN/sqrt(3*(wid1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*(1+ABP/sqrt(2*3*
+(wid1/3)*2))’ L=’2’ DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*3*wid2*
+ (1+ABN/sqrt(3*3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*3*wid2*2)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*3*wid2*
+(1+ABP/sqrt(2*3*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*3*wid2*2)’
.ENDS PMOS-X_widM
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*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*
+(1+ABN/sqrt(3*wid2*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*
+(1+ABP/sqrt(2*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: RT1_LUTblue_PredFire{sch}
XLUTblue_@0 out[1] in[1] LUTblue_RT1_path
VPulse@0 net@67 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@67 Din[1] inv-X_wids
Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_ARC_1.hsp’
.END
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C.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************
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C.3 SPICE Simulation Setup File: TRAILER

Below follows the SPICE trailer file with the .DATA sweep, transient analysis, and
measurement details for the simulation environment in Figure 4.12, page 67, and the
black box schematics of Figure 4.8, page 57. We are generating look up tables for
relative timing path LUTblue:PREDi−FIREi−. To do so, we sweep driver size wid1
and load size wid2, and we measure voltage levels on in[1] and out[1].

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models
*
****************************************************************
* Power Supply
****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns sweep data=mysweep
.data mysweep wid1 wid2

10 40
8 40
6 40
3 40

10 130
8 130
6 130
3 130

10 220
8 220
6 220
3 220

10 310
8 310
6 310
3 310

10 400
8 400
6 400
3 400

.enddata
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.measure tfall_i_1
+ trig v(in[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(in[1]) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_1
+ trig v(out[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.2*SUPPLY’ fall=3

.measure tf_delay
+ trig v(in[1]) val=’0.5*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.5*SUPPLY’ fall=3

***********************

162



C.4 SPICE Output File
Below is the SPICE output file with the look up table results for relative timing path
LUTblue:PREDi−FIREi−, as measured for the schematic of Figure 4.12, page 67, and
the black box schematics of Figure 4.8, page 57. The file extension is ‘.mt0’.
The file contains the 4×5 wid1×wid2 sweep index, i.e. index 1 through 20. Per sweep,
it shows the sizes of sweep variables wid1 and wid2, and the measured timing results in
seconds. We measure the following timing information:

• tfall i 1, the transition fall time, a.k.a. slope or slew time, on input in[1]
• tfall o 1, the transition fall time, a.k.a. slope or slew time, on output out[1]
• tf delay, the input-to-output delay for the falling transition from in[1] to out[1]

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell rt1_predfire{sch} from library’
index wid1 wid2 tfall_i_1

tfall_o_1 tf_delay temper
alter#

1.0000 10.0000 40.0000 1.144e-11
9.980e-12 6.211e-11 25.0000

1.0000
2.0000 8.0000 40.0000 1.215e-11

9.877e-12 6.236e-11 25.0000
1.0000

3.0000 6.0000 40.0000 1.326e-11
1.008e-11 6.277e-11 25.0000

1.0000
4.0000 3.0000 40.0000 1.759e-11

9.605e-12 6.468e-11 25.0000
1.0000

5.0000 10.0000 130.0000 1.132e-11
1.382e-11 6.590e-11 25.0000

1.0000
6.0000 8.0000 130.0000 1.207e-11

1.381e-11 6.611e-11 25.0000
1.0000

7.0000 6.0000 130.0000 1.337e-11
1.390e-11 6.655e-11 25.0000

1.0000
8.0000 3.0000 130.0000 1.756e-11

1.404e-11 6.834e-11 25.0000
1.0000

9.0000 10.0000 220.0000 1.112e-11
1.831e-11 6.931e-11 25.0000

1.0000

163



10.0000 8.0000 220.0000 1.159e-11
1.842e-11 6.954e-11 25.0000

1.0000
11.0000 6.0000 220.0000 1.315e-11

1.838e-11 6.990e-11 25.0000
1.0000

12.0000 3.0000 220.0000 1.625e-11
1.856e-11 7.169e-11 25.0000

1.0000

13.0000 10.0000 310.0000 1.140e-11
2.265e-11 7.231e-11 25.0000

1.0000
14.0000 8.0000 310.0000 1.224e-11

2.259e-11 7.257e-11 25.0000
1.0000

15.0000 6.0000 310.0000 1.245e-11
2.234e-11 7.308e-11 25.0000

1.0000
16.0000 3.0000 310.0000 1.756e-11

2.200e-11 7.476e-11 25.0000
1.0000

17.0000 10.0000 400.0000 1.153e-11
2.714e-11 7.513e-11 25.0000

1.0000
18.0000 8.0000 400.0000 1.220e-11

2.728e-11 7.539e-11 25.0000
1.0000

19.0000 6.0000 400.0000 1.308e-11
2.736e-11 7.591e-11 25.0000

1.0000
20.0000 3.0000 400.0000 1.758e-11

2.734e-11 7.769e-11 25.0000
1.0000

****************************************************************
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Appendix D

SPICE FILES FOR FIGURE 4.9 AND LUTblue:SUCCi+FIREi−

D.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the details
of all the components and devices used in the schematics of Figure 4.13, page 69, and in
the black box schematics of Figure 4.9, page 58. The black box schematics belongs to
relative timing path LUTblue:SUCCi+FIREi−. The sweep parameters wid1 and wid2
are the sizes of the driver and load inverters. The file extension is ‘spi’.

*** SPICE deck for cell RT2_LUTblue_SuccFire{sch} from library
*LookUpTable_Thesis

*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Tue Aug 03, 2010 20:00:40
*** Written on Tue Aug 03, 2010 20:07:49 by Electric

*** VLSI Design System, version 9.00d
*** Layout tech: mocmos, foundry MOSIS

*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE
* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header_ARC.hsp’

*** SUBCIRCUIT NMOS-X_20 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_20 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’60*(1+ABN/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(60*2)’
.ENDS NMOS-X_20

*** SUBCIRCUIT PMOS-X_1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’6*(1+ABP/sqrt(6*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(6*2)’
.ENDS PMOS-X_1
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*** SUBCIRCUIT NMOS-X_30 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_30 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’90*(1+ABN/sqrt(90*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(90*2)’
.ENDS NMOS-X_30

*** SUBCIRCUIT PMOS-X_30 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_30 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’180*(1+ABP/sqrt(180*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(180*2)’
.ENDS PMOS-X_30

*** SUBCIRCUIT inv-X_30 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_30 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_30
XPMOS@0 out in vdd PMOS-X_30
.ENDS inv-X_30

*** SUBCIRCUIT NMOS-X_80 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_80 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’240*(1+ABN/sqrt(240*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(240*2)’
.ENDS NMOS-X_80

*** SUBCIRCUIT PMOS-X_80 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_80 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’480*(1+ABP/sqrt(480*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(480*2)’
.ENDS PMOS-X_80

*** SUBCIRCUIT inv-X_80 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_80 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_80
XPMOS@0 out in vdd PMOS-X_80
.ENDS inv-X_80

*** SUBCIRCUIT NMOS-X_5 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_5 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’15*(1+ABN/sqrt(15*2))’L=’2’
+DELVTO=’AVT0N/sqrt(15*2)’
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.ENDS NMOS-X_5

*** SUBCIRCUIT PMOS-X_5 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_5 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’30*(1+ABP/sqrt(30*2))’L=’2’
+DELVTO=’AVT0P/sqrt(30*2)’
.ENDS PMOS-X_5

*** SUBCIRCUIT inv-X_5 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_5 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_5
XPMOS@0 out in vdd PMOS-X_5
.ENDS inv-X_5

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd

167



MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-X_10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-X_10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-X_10

*** SUBCIRCUIT LUTblue_RT2_path FROM CELL LUTblue_RT2_path{sch}
.SUBCKT LUTblue_RT2_path fire succ
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 NMOS@0_d fire gnd NMOS-X_20
XPMOS@0 net@57 net@2 vdd PMOS-X_1
XPMOS@1 net@57 fire net@4 PMOS-X_1
EVCVS@0 net@9 gnd vcvs succ gnd 1 max=’10V’ min=’-10V’
Xinv@0 net@20 net@19 inv-X_30
Xinv@1 net@19 fire inv-X_80
Xinv@2 inv@2_in net@9 inv-X_5
Xinv@4 net@4 net@2 inv-X_2
Xnor2n@0 succ net@9 net@20 nor2-X_10

* Spice Code nodes in cell cell ’LUTblue_RT2_path{sch}’
.ic succ=0v net@85=1v
.ENDS LUTblue_RT2_path

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’
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+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*
+(1+ABP/sqrt(2*3*(wid1/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*3*wid2*(1+ABN/sqrt(3*3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*3*wid2*2)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*3*wid2*
+(1+ABP/sqrt(2*3*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*3*wid2*2)’
.ENDS PMOS-X_widM
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*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*(1+ABN/sqrt(3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*
+(1+ABP/sqrt(2*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: RT2_LUTblue_SuccFire{sch}
XLUTblue_@5 out[1] in[1] LUTblue_RT2_path
VPulse@0 net@139 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@139 Din[1] inv-X_wids
Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_ARC_2.hsp’
.END
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D.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************

171



D.3 SPICE Simulation Setup File: TRAILER
Below follows the SPICE trailer file with the .DATA sweep, transient analysis, and
measurement details for the simulation environment in Figure 4.13, page 69, and the
black box schematics of Figure 4.9, page 58. We are generating look up tables for
relative timing path LUTblue:SUCCi+FIREi−. To do so, we sweep driver size wid1
and load size wid2, and we measure voltage levels on in[1] and out[1].

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns sweep data=mysweep

.data mysweep wid1 wid2

20 40
16 40
10 40
6 40

20 130
16 130
10 130
6 130

20 220
16 220
10 220
6 220

20 310
16 310
10 310
6 310

20 400
16 400
10 400
6 400

.enddata
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.measure trise_i_1
+ trig v(in[1]) val=’0.2*SUPPLY’ rise=3
+ targ v(in[1]) val=’0.8*SUPPLY’ rise=3

.measure tfall_o_1
+ trig v(out[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.2*SUPPLY’ fall=3

.measure TpHL_1
+ trig v(in[1]) val=’0.5*SUPPLY’ rise=3
+ targ v(out[1]) val=’0.5*SUPPLY’ fall=3

***********************
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D.4 SPICE Output File

Below is the SPICE output file with the look up table results for relative timing path
LUTblue:SUCCi+FIREi−, as measured for the schematics of Figure 4.13, page 69,
and the black box schematics of Figure 4.9, page 58. The file extension is ‘.mt0’.
The file contains the 4×5 wid1×wid2 sweep index, i.e. index 1 through 20. Per sweep,
it shows the sizes of sweep variables wid1 and wid2, and the measured timing results in
seconds. We measure the following timing information:

• trise i 1, the transition rise time, a.k.a. slope or slew time, on input in[1]
• tfall o 1, the transition fall time, a.k.a. slope or slew time, on output out[1]
• tphl 1, input-to-output delay for the high to low transition from in[1] to out[1]

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell rt2_succfire{sch} from library’
index wid1 wid2 trise_i_1

tfall_o_1 tphl_1 temper
alter#

1.0000 20.0000 40.0000 1.485e-11
1.003e-11 3.772e-11 25.0000

1.0000
2.0000 16.0000 40.0000 1.531e-11

1.006e-11 3.807e-11 25.0000
1.0000

3.0000 10.0000 40.0000 1.584e-11
9.611e-12 3.932e-11 25.0000

1.0000
4.0000 6.0000 40.0000 2.078e-11

1.082e-11 4.078e-11 25.0000
1.0000

5.0000 20.0000 130.0000 1.509e-11
1.375e-11 4.156e-11 25.0000

1.0000
6.0000 16.0000 130.0000 1.448e-11

1.416e-11 4.194e-11 25.0000
1.0000

7.0000 10.0000 130.0000 1.581e-11
1.385e-11 4.303e-11 25.0000

1.0000
8.0000 6.0000 130.0000 2.158e-11

1.389e-11 4.473e-11 25.0000
1.0000

9.0000 20.0000 220.0000 1.301e-11
1.787e-11 4.496e-11 25.0000

1.0000
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10.0000 16.0000 220.0000 1.411e-11
1.797e-11 4.531e-11 25.0000

1.0000
11.0000 10.0000 220.0000 1.596e-11

1.827e-11 4.631e-11 25.0000
1.0000

12.0000 6.0000 220.0000 2.132e-11
1.815e-11 4.808e-11 25.0000

1.0000

13.0000 20.0000 310.0000 1.321e-11
2.284e-11 4.799e-11 25.0000

1.0000
14.0000 16.0000 310.0000 1.373e-11

2.250e-11 4.836e-11 25.0000
1.0000

15.0000 10.0000 310.0000 1.652e-11
2.280e-11 4.930e-11 25.0000

1.0000
16.0000 6.0000 310.0000 2.149e-11

2.268e-11 5.115e-11 25.0000
1.0000

17.0000 20.0000 400.0000 1.390e-11
2.688e-11 5.091e-11 25.0000

1.0000
18.0000 16.0000 400.0000 1.504e-11

2.709e-11 5.121e-11 25.0000
1.0000

19.0000 10.0000 400.0000 1.755e-11
2.714e-11 5.212e-11 25.0000

1.0000
20.0000 6.0000 400.0000 2.129e-11

2.703e-11 5.403e-11 25.0000
1.0000

*****************************************************************
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Appendix E

SPICE FILES FOR FIGURE 4.7(b) AND LUTblue:FIREi−Douti+

E.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the details
of all the components and devices used in the schematics of Figure 4.14, page 70, and in
the black box schematics of Figure 4.7(b), page 51. The black box schematics belongs
to relative timing path LUTblue:FIREi−Douti+. Sweep parameters wid1 is the size of
the driver inverter. The file extension is ‘.spi’.

*** SPICE deck for cell RT4_LUTred_FireDout{sch} from library
*LookUpTable_Thesis

*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Tue Aug 03, 2010 20:01:01
*** Written on Tue Aug 03, 2010 20:12:05 by Electric VLSI

*** Design System, version 9.00d
*** Layout tech: mocmos, foundry MOSIS

*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE
* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header_ARC.hsp’

*** SUBCIRCUIT NMOS-X_1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(1+ABN/sqrt(3*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*2)’
.ENDS NMOS-X_1

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20
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*** SUBCIRCUIT NMOS-X_4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_4 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’12*(1+ABN/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(12*2)’
.ENDS NMOS-X_4

*** SUBCIRCUIT PMOS-X_4 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_4 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’24*(1+ABP/sqrt(24*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(24*2)’
.ENDS PMOS-X_4

*** SUBCIRCUIT inv-X_4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_4 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_4
XPMOS@0 out in vdd PMOS-X_4
.ENDS inv-X_4

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’ L=’2’
+ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
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.ENDS NMOS-X_10

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-10

*** SUBCIRCUIT LUTblue_RT4_path FROM CELL LUTblue_RT4_path{sch}
.SUBCKT LUTblue_RT4_path dout fire
** GLOBAL gnd

** GLOBAL vdd
XNMOS@1 net@64 net@1 gnd NMOS-X_1
XNMOS@2 net@64 dout net@3 NMOS-X_1
XPMOS@2 net@3 dout vdd PMOS-X_20
Xinv@0 fire dout inv-X_4
Xinv@1 net@3 net@1 inv-X_2
Xnor2n@0 net@3 nor2n@0_inb nor2n@0_out nor2-10
.ENDS LUTblue_RT4_path

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’
+L=’2’ DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
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XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*
+(1+ABP/sqrt(2*3*(wid1/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

.global gnd vdd

*** TOP LEVEL CELL: RT4_LUTred_FireDout{sch}
XLUTblue_@7 out[1] in[1] LUTblue_RT4_path
VPulse@0 net@139 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@139 Din[1] inv-X_wids
* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_ARC_4.hsp’
.END
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E.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************
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E.3 SPICE Simulation Setup File: TRAILER
Below follows the SPICE trailer file with the .DATA sweep, transient analysis, and
measurement details for the simulation environment in Figure 4.14, page 70, and the
black box schematics of Figure 4.7(b), page 51. We are generating look up tables for
relative timing path LUTblue:FIREi−Douti+. To do so, we sweep driver size wid1, and
we measure voltage levels on in[1] and out[1].

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns sweep data=mysweep

8 6 4 3

.enddata

.measure tfall_i_1
+ trig v(in[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(in[1]) val=’0.2*SUPPLY’ fall=3

.measure trise_o_1
+ trig v(out[1]) val=’0.2*SUPPLY’ rise=3
+ targ v(out[1]) val=’0.8*SUPPLY’ rise=3

.measure TpLH_delay
+ trig v(in[1]) val=’0.5*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.5*SUPPLY’ rise=3

***********************
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E.4 SPICE Output File
Below is the SPICE output file with the look up table results for relative timing path
LUTblue:FIREi−Douti+, as measured for the schematic of Figure 4.14, page 70, and
the black box schematics of Figure 4.7(b), page 51. The file extension is ‘.mt0’.
The file contains the 4×1 wid1×wid2 sweep index, i.e. index 1 through 4. There is just
one wid2 value, because Douti is an internal signal without external load, i.e. wid2=0.
Per sweep, the file shows the sizes of sweep variable wid1 and the measured timing
results in seconds. We measure the following timing information:

• tfall i 1, the transition fall time, a.k.a. slope or slew time, on input in[1]
• trise o 1, the transition rise time, a.k.a. slope or slew time, on output out[1]
• tplh delay, input-to-output delay for the low to high transition from in[1] to out[1]

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell rt4_firedout{sch} from library’

index wid1 tfall_i_1 trise_o_1
tplh_delay temper alter#

1.0000 8.0000 1.157e-11 2.104e-11
2.048e-11 25.0000 1.0000

2.0000 6.0000 1.242e-11 2.153e-11
2.090e-11 25.0000 1.0000

3.0000 4.0000 1.438e-11 2.153e-11
2.168e-11 25.0000 1.0000

4.0000 3.0000 1.473e-11 2.167e-11
2.226e-11 25.0000 1.0000
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Appendix F

SPICE FILES FOR FIGURE 4.10 AND LUTred/blue:FIREi+SUCCi+

Ideally, the SPICE simulations for Figure 4.15 on page 72 will run the red path for max-
imum delay conditions by using slow PVT library settings, and they will run the blue
path for minimum delay conditions by using fast settings. We show only one simulation
(covering both paths) using typical Process, Voltage, Temperature (PVT) settings.

F.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the details
of all the components and devices used in the schematics of Figure 4.15, page 72, and
in the black box schematics of Figure 4.10, page 61. The black box schematics belongs
to relative timing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+. The
sweep parameters wid1 and wid2 are the sizes of the driver and load inverters. This
configuration has two pulse generators, one for signal FIREi to start each measurement,
one for signal FIRE CSi to reset the output signal SUCCi prior to the next measurement.
The file extension is ‘.spi’.

*** SPICE deck for cell RT3_LUTred_FireSucc{sch} from library
*** LookUpTable_Thesis

*** Created on Wed Jul 21, 2010 21:21:49
*** Last revised on Mon Aug 09, 2010 17:12:58

*** Written on Mon Aug 09, 2010 17:13:14 by Electric

*** VLSI Design System, version 9.00d
*** Layout tech: mocmos, foundry MOSIS

*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE
* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header_ARC.hsp’

*** SUBCIRCUIT NMOS-X_1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(1+ABN/sqrt(3*2))’
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+L=’2’ DELVTO=’AVT0N/sqrt(3*2)’
.ENDS NMOS-X_1

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT NMOS-X_4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_4 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’12*(1+ABN/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(12*2)’
.ENDS NMOS-X_4

*** SUBCIRCUIT PMOS-X_4 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_4 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’24*(1+ABP/sqrt(24*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(24*2)’
.ENDS PMOS-X_4

*** SUBCIRCUIT inv-X_4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_4 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_4
XPMOS@0 out in vdd PMOS-X_4
.ENDS inv-X_4

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out

** GLOBAL gnd
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** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_10 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2
** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-10 ina inb out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-10

*** SUBCIRCUIT LUTblue_RT3_path_vcvs

*** FROM CELL LUTblue_RT3_path_vcvs{sch}
.SUBCKT LUTblue_RT3_path_vcvs fire succ

** GLOBAL gnd

** GLOBAL vdd
VAmmeter@0 succ net@146 DC 0
XNMOS@1 net@64 net@1 gnd NMOS-X_1
XNMOS@2 net@64 net@54 succ NMOS-X_1
XPMOS@2 succ net@54 vdd PMOS-X_20
VPulse@0 net@205 gnd pulse ’0v’ ’1.1v’ ’30ns’
+’50ps’ ’50ps’ ’3ns’ ’4ns’
GVCCS@1 net@146 gnd vccs succ net@205 0.1 max=1 min=0
Xinv@0 fire net@54 inv-X_4
Xinv@1 succ net@1 inv-X_2
Xnor2n@0 succ nor2n@0_inb nor2n@0_out nor2-10

* Spice Code nodes in cell cell ’LUTblue_RT3_path_vcvs{sch}’
.ic succ=0v
.ENDS LUTblue_RT3_path_vcvs

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
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.SUBCKT NMOS-X_wid1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’
+ L=’2’DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*
+(1+ABP/sqrt(2*3*(wid1/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*3*wid2*(1+ABN/sqrt(3*3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*3*wid2*2)’
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.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*3*wid2*
+(1+ABP/sqrt(2*3*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*3*wid2*2)’
.ENDS PMOS-X_widM

*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*(1+ABN/sqrt(3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*
+(1+ABP/sqrt(2*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: RT3_LUTred_FireSucc{sch}
XLUTblue_@7 in[1] out[1] LUTblue_RT3_path_vcvs
VPulse@2 net@164 gnd pulse ’0v’ ’1v’ ’30.5ns’
+ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@164 Din[1] inv-X_wids
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Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_ARC_3.hsp’
.END
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F.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************
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F.3 SPICE Simulation Setup File: TRAILER
Below follows the SPICE trailer file with the .DATA sweep, transient analysis, and
measurement details for the simulation environment in Figure 4.15, page 72, and in the
black box schematics of Figure 4.10, page 61. We generate look up tables for relative
timing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+. To do so, we
sweep driver size wid1 and load size wid2 we measure the voltage on in[1], out[1].

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 100ns sweep data=mysweep

.data mysweep wid1 wid2

8 10
6 10
4 10
3 10

8 33
6 33
4 33
3 33

8 56
6 56
4 56
3 56

8 78
6 78
4 78
3 78

8 100
6 100
4 100
3 100

.enddata
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.measure trise_i_1
+ trig v(in[1]) val=’0.2*SUPPLY’ rise=3
+ targ v(in[1]) val=’0.8*SUPPLY’ rise=3

.measure trise_o_1
+ trig v(out[1]) val=’0.2*SUPPLY’ rise=3
+ targ v(out[1]) val=’0.8*SUPPLY’ rise=3

.measure tr_delay
+ trig v(in[1]) val=’0.5*SUPPLY’ rise=3
+ targ v(out[1]) val=’0.5*SUPPLY’ rise=3

***********************
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F.4 SPICE Output File
Below is the SPICE output file with the look up table results for the two relative tim-
ing paths LUTred:FIREi+SUCCi+ and LUTblue:FIREi+SUCCi+, as measured for the
schematic of Figure 4.15, page 72, and the black box schematics of Figure 4.10, page 61.
The file extension is ‘.mt0’.
The file contains the 4×5 wid1×wid2 sweep index, i.e. index 1 through 20. Per sweep,
the file shows the sizes of sweep variables wid1 and wid2 and the measured timing
results in seconds. We measure the following timing information:

• trise i 1, the transition rise time, a.k.a. slope or slew time, on input in[1]
• trise o 1, the transition rise time, a.k.a. slope or slew time, on output out[1]
• tr delay, input-to-output delay for the rising transition from in[1] to out[1]

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell rt3_firesucc{sch} from library’
index wid1 wid2 trise_i_1

trise_o_1 tr_delay temper
alter#

1.0000 8.0000 10.0000 1.171e-11
1.517e-11 2.892e-11 25.0000

1.0000
2.0000 6.0000 10.0000 1.269e-11

1.488e-11 2.896e-11 25.0000
1.0000

3.0000 4.0000 10.0000 1.538e-11
1.540e-11 2.997e-11 25.0000

1.0000
4.0000 3.0000 10.0000 1.720e-11

1.602e-11 3.095e-11 25.0000
1.0000

5.0000 8.0000 33.0000 1.173e-11
2.065e-11 3.313e-11 25.0000

1.0000
6.0000 6.0000 33.0000 1.268e-11

2.082e-11 3.366e-11 25.0000
1.0000

7.0000 4.0000 33.0000 1.521e-11
2.126e-11 3.473e-11 25.0000

1.0000
8.0000 3.0000 33.0000 1.739e-11

2.140e-11 3.561e-11 25.0000
1.0000

9.0000 8.0000 56.0000 1.124e-11
2.696e-11 3.710e-11 25.0000

1.0000
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10.0000 6.0000 56.0000 1.268e-11
2.742e-11 3.778e-11 25.0000

1.0000
11.0000 4.0000 56.0000 1.521e-11

2.756e-11 3.877e-11 25.0000
1.0000

12.0000 3.0000 56.0000 1.745e-11
2.773e-11 3.987e-11 25.0000

1.0000
13.0000 8.0000 78.0000 1.151e-11

3.414e-11 4.101e-11 25.0000
1.0000

14.0000 6.0000 78.0000 1.256e-11
3.388e-11 4.158e-11 25.0000

1.0000
15.0000 4.0000 78.0000 1.528e-11

3.399e-11 4.236e-11 25.0000
1.0000

16.0000 3.0000 78.0000 1.712e-11
3.404e-11 4.338e-11 25.0000

1.0000
17.0000 8.0000 100.0000 1.454e-11

4.048e-11 4.425e-11 25.0000
1.0000

18.0000 6.0000 100.0000 1.267e-11
4.038e-11 4.528e-11 25.0000

1.0000
19.0000 4.0000 100.0000 1.486e-11

4.043e-11 4.636e-11 25.0000
1.0000

20.0000 3.0000 100.0000 1.740e-11
4.095e-11 4.724e-11 25.0000

1.0000

*********************************************************
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Appendix G

SPICE FILES FOR FIGURE 4.11 AND LUTblue/green:FIREi+PREDi−

Ideally, the SPICE simulations for Figure 4.18 on page 77 will run the green path for
maximum delay conditions by using slow PVT library setting, and they wil run the blue
path for minimum delay conditions by using fast settings. We show only one simulation
(covering both paths) using typical Process, Voltage, Temperature (PVT) settings.

G.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the details
of all the components and devices used in the schematics of Figure 4.18 on page 77
and in the black box schematics of Figure 4.11 on page 63. The black box belongs to
relative timing paths LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−. The
sweep parameters wid1 and wid2 are the sizes of the driver and load inverters. This
configuration has two pulse generators, one for signal FIREi to start each measurement,
one for signal FIRE CSi to reset the output signal PREDi prior to the next measurement.
The file extension is ‘.spi’.

*** SPICE deck for cell RT5_LUTred_FirePred{sch} from library

*LookUpTable_Thesis
*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Mon Aug 09, 2010 17:16:40
*** Written on Mon Aug 09, 2010 17:16:46 by Electric

*** VLSI Design System, version 9.00d

*** Layout tech: mocmos, foundry MOSIS
*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE

* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header_ARC.hsp’

*** SUBCIRCUIT NMOS-X_20 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_20 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’60*(1+ABN/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(60*2)’
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.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_1 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’6*(1+ABP/sqrt(6*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(6*2)’
.ENDS PMOS-X_1

*** SUBCIRCUIT NMOS-X_5 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_5 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’15*(1+ABN/sqrt(15*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(15*2)’
.ENDS NMOS-X_5

*** SUBCIRCUIT PMOS-X_5 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_5 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’30*(1+ABP/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(30*2)’
.ENDS PMOS-X_5

*** SUBCIRCUIT inv-X_5 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_5 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_5
XPMOS@0 out in vdd PMOS-X_5
.ENDS inv-X_5

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out

** GLOBAL gnd

** GLOBAL vdd
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XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT LUTblue_RT5_path FROM CELL LUTblue_RT5_path{sch}
.SUBCKT LUTblue_RT5_path fire pred
** GLOBAL gnd

** GLOBAL vdd
VAmmeter@0 pred net@70 DC 0
XNMOS@0 pred fire gnd NMOS-X_20
XPMOS@0 net@48 net@46 vdd PMOS-X_1
XPMOS@1 net@48 PMOS@1_g pred PMOS-X_1
VPulse@0 net@106 gnd pulse ’1v’ ’-0.5v’ ’30ns’ ’50ps’
+ ’50ps’ ’3ns’ ’4ns’
GVCCS@0 net@70 gnd vccs pred net@106 0.1 max=0 min=-1
Xinv@2 pred inv@2_out inv-X_5
Xinv@5 pred net@46 inv-X_2

* Spice Code nodes in cell cell ’LUTblue_RT5_path{sch}’
.ic net@83=1v
.ENDS LUTblue_RT5_path

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid1*(1+ABN/sqrt(3*wid1*2))’
+ L=’2’DELVTO=’AVT0N/sqrt(3*wid1*2)’
.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid1*(1+ABP/sqrt(2*3*wid1*2))’
+ L=’2’DELVTO=’AVT0P/sqrt(2*3*wid1*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(wid1/3)*(1+ABN/sqrt(3*(wid1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(wid1/3)*2)’
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.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(wid1/3)*
+(1+ABP/sqrt(2*3*(wid1/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(wid1/3)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*3*wid2*(1+ABN/sqrt(3*3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*3*wid2*2)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*3*wid2*
+(1+ABP/sqrt(2*3*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*3*wid2*2)’
.ENDS PMOS-X_widM

*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*(1+ABN/sqrt(3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2

*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
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.SUBCKT PMOS-X_wid2 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*
+(1+ABP/sqrt(2*3*wid2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

.global gnd vdd

*** TOP LEVEL CELL: RT5_LUTred_FirePred{sch}
XLUTblue_@7 in[1] out[1] LUTblue_RT5_path
VPulse@1 net@156 gnd pulse ’0v’ ’1v’ ’30.5ns’
+’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@1 Din[1] in[1] inv-X_wid1
Xinv@2 net@156 Din[1] inv-X_wids
Xinv@3 net@64 inv@3_out inv-X_widM
Xinv@4 out[1] net@64 inv-X_wid2
* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_ARC_5.hsp’
.END
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G.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************
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G.3 SPICE Simulation Setup File: TRAILER
Below follows the SPICE trailer file with the .DATA sweep, transient analysis, and
measurement details for the simulation environment in Figure 4.18 on page 77 and for
the black box schematics of Figure 4.11 on page 63. We are generating look up tables
for relative timing paths LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−.
To do so, we sweep driver size wid1 and load size wid2, and we measure the voltage
levels on in[1] and out[1].

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’
************************
* Step size and run time
.tran 1ps 100ns sweep data=mysweep
.data mysweep wid1 wid2
40 10
31 10
22 10
13 10
4 10

40 33
31 33
22 33
13 33
4 33

40 56
31 56
22 56
13 56
4 56

40 78
31 78
22 78
13 78
4 78

40 100
31 100
22 100
13 100
4 100
.enddata
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.measure trise_i_1
+ trig v(in[1]) val=’0.2*SUPPLY’ rise=3
+ targ v(in[1]) val=’0.8*SUPPLY’ rise=3

.measure tfall_o_1
+ trig v(out[1]) val=’0.8*SUPPLY’ fall=3
+ targ v(out[1]) val=’0.2*SUPPLY’ fall=3

.measure TpHL
+ trig v(in[1]) val=’0.5*SUPPLY’ rise=3
+ targ v(out[1]) val=’0.5*SUPPLY’ fall=3
***********************
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G.4 SPICE Output File
Below is the SPICE output file with the look up table results for the two relative timing
paths LUTblue:FIREi+PREDi− and LUTgreen:FIREi+PREDi−, as measured for the
schematic of Figure 4.18 on page 77 and the black box schematics of Figure 4.11 on
page 63. The file extension is ‘.mt0’.
The file contains the 5×5 wid1×wid2 sweep index, i.e. index 1-25. We have 25 sweeps
because Figure 4.18 is the only configuration where the minimum source and driver
sizes fit the Logical Effort step-up-of-3 design strategy for the simulation environment.
Per sweep, the file shows the sizes of sweep variables wid1 and wid2 and the measured
timing results in seconds. We measure the following timing information:

• trise i 1, the transition rise time, a.k.a. slope or slew time, on input in[1]
• tfall o 1, the transition fall time, a.k.a. slope or slew time, on output out[1]
• tphl, the input-to-output delay for the high to low transition from in[1] to out[1]

Note: the additional process parameters temper and alter# can be ignored.
$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell rt5_firepred{sch} from library’
index wid1 wid2 trise_i_1

tfall_o_1 tphl temper
alter#

1.0000 40.0000 10.0000 1.078e-11
7.457e-12 4.580e-12 25.0000

1.0000
2.0000 31.0000 10.0000 1.115e-11

7.618e-12 4.742e-12 25.0000
1.0000

3.0000 22.0000 10.0000 1.184e-11
7.818e-12 4.979e-12 25.0000

1.0000
4.0000 13.0000 10.0000 1.182e-11

7.469e-12 5.703e-12 25.0000
1.0000

5.0000 4.0000 10.0000 2.147e-11
1.045e-11 6.805e-12 25.0000

1.0000
6.0000 40.0000 33.0000 1.106e-11

1.088e-11 8.104e-12 25.0000
1.0000

7.0000 31.0000 33.0000 1.128e-11
1.104e-11 8.261e-12 25.0000

1.0000
8.0000 22.0000 33.0000 1.123e-11

1.069e-11 9.067e-12 25.0000
1.0000

9.0000 13.0000 33.0000 1.238e-11
1.171e-11 9.103e-12 25.0000
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1.0000
10.0000 4.0000 33.0000 2.060e-11

1.452e-11 1.111e-11 25.0000
1.0000

11.0000 40.0000 56.0000 1.063e-11
1.514e-11 1.117e-11 25.0000

1.0000
12.0000 31.0000 56.0000 1.078e-11

1.516e-11 1.135e-11 25.0000
1.0000

13.0000 22.0000 56.0000 1.043e-11
1.498e-11 1.187e-11 25.0000

1.0000
14.0000 13.0000 56.0000 1.201e-11

1.554e-11 1.220e-11 25.0000
1.0000

15.0000 4.0000 56.0000 1.896e-11
1.837e-11 1.486e-11 25.0000

1.0000
16.0000 40.0000 78.0000 9.690e-12

1.913e-11 1.422e-11 25.0000
1.0000

17.0000 31.0000 78.0000 9.993e-12
1.904e-11 1.437e-11 25.0000

1.0000
18.0000 22.0000 78.0000 1.079e-11

1.963e-11 1.442e-11 25.0000
1.0000

19.0000 13.0000 78.0000 1.201e-11
1.998e-11 1.505e-11 25.0000

1.0000
20.0000 4.0000 78.0000 1.930e-11

2.269e-11 1.801e-11 25.0000
1.0000

21.0000 40.0000 100.0000 1.030e-11
2.398e-11 1.659e-11 25.0000

1.0000
22.0000 31.0000 100.0000 1.005e-11

2.408e-11 1.700e-11 25.0000
1.0000

23.0000 22.0000 100.0000 1.053e-11
2.400e-11 1.730e-11 25.0000

1.0000
24.0000 13.0000 100.0000 1.121e-11

2.437e-11 1.791e-11 25.0000
1.0000

25.0000 4.0000 100.0000 1.852e-11
2.740e-11 2.093e-11 25.0000

1.0000
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Appendix H

SPICE FILES FOR FIGURE 4.22 WITH ZERO EXTERNAL LOADS

Appendix H.1 below contains the netlist for Figure 4.22 on page 84. Appendices H.2
and H.3 contain the SPICE HEADER and the SPICE TRAILER simulation files with
the sweep, analysis, and measurement statements. Appendix H.4 contains the SPICE
output file with the look up tables containing the propagation delays, and input and
output slopes under the given input sweep and zero-output-load simulation conditions.

H.1 SPICE Netlist
The SPICE netlist file generated from the design schematics in Electric has the
details of all the components and devices used in the schematics of Figure 4.22
on page 84. Specifically, it contains the details of the sub-circuits for the sim-
ple paths LUTblue:PREDi−FIREi−, LUTblue:SUCCi+FIREi−, the pair of paths
LUTred/blue:FIREi+SUCCi+, and the pair of paths LUTblue/green:FIREi+PREDi.
Sweep parameters widd1, widd2, widd3, widd4 are the sizes of the driver inverters of
the four sub-circuits. File suffix is ‘.spi’.

*** SPICE deck for cell LUT_Noload_figure22{sch} from library

*LookUpTable_Thesis
*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Wed Sep 22, 2010 16:59:42
*** Written on Wed Sep 22, 2010 17:01:03 by Electric

*** VLSI Design System, version 9.00d

*** Layout tech: mocmos, foundry MOSIS
*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE

* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_90nm_header.hsp’

*** SUBCIRCUIT NMOS-X_20 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_20 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’60*(1+ABN/sqrt(60*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(60*2)’
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.ENDS NMOS-X_20

*** SUBCIRCUIT PMOS-X_1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_1 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’6*(1+ABP/sqrt(6*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(6*2)’
.ENDS PMOS-X_1

*** SUBCIRCUIT NMOS-X_30 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_30 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’90*(1+ABN/sqrt(90*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(90*2)’
.ENDS NMOS-X_30

*** SUBCIRCUIT PMOS-X_30 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_30 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’180*(1+ABP/sqrt(180*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(180*2)’
.ENDS PMOS-X_30

*** SUBCIRCUIT inv-X_30 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_30 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_30
XPMOS@0 out in vdd PMOS-X_30
.ENDS inv-X_30

*** SUBCIRCUIT NMOS-X_80 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_80 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’240*(1+ABN/sqrt(240*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(240*2)’
.ENDS NMOS-X_80

*** SUBCIRCUIT PMOS-X_80 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_80 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’480*(1+ABP/sqrt(480*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(480*2)’
.ENDS PMOS-X_80

*** SUBCIRCUIT inv-X_80 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_80 in out

** GLOBAL gnd

** GLOBAL vdd
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XNMOS@0 out in gnd NMOS-X_80
XPMOS@0 out in vdd PMOS-X_80
.ENDS inv-X_80

*** SUBCIRCUIT NMOS-X_5 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_5 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’15*(1+ABN/sqrt(15*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(15*2)’
.ENDS NMOS-X_5

*** SUBCIRCUIT PMOS-X_5 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_5 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’30*(1+ABP/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(30*2)’
.ENDS PMOS-X_5

*** SUBCIRCUIT inv-X_5 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_5 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_5
XPMOS@0 out in vdd PMOS-X_5
.ENDS inv-X_5

*** SUBCIRCUIT NMOS-X_2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’6*(1+ABN/sqrt(6*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(6*2)’
.ENDS NMOS-X_2

*** SUBCIRCUIT PMOS-X_2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’12*(1+ABP/sqrt(12*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(12*2)’
.ENDS PMOS-X_2

*** SUBCIRCUIT inv-X_2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_2 in out

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_2
XPMOS@0 out in vdd PMOS-X_2
.ENDS inv-X_2

*** SUBCIRCUIT NMOS-X_10 FROM CELL redSix:NMOS{sch}
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.SUBCKT NMOS-X_10 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’30*(1+ABN/sqrt(30*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(30*2)’
.ENDS NMOS-X_10

*** SUBCIRCUIT PMOS-X_20 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_20 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’120*(1+ABP/sqrt(120*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(120*2)’
.ENDS PMOS-X_20

*** SUBCIRCUIT pms2-X_10 FROM CELL redSix:pms2{sch}
.SUBCKT pms2-X_10 d g g2

** GLOBAL vdd
XPMOS@0 net@2 g vdd PMOS-X_20
XPMOS@1 d g2 net@2 PMOS-X_20
.ENDS pms2-X_10

*** SUBCIRCUIT nor2-X_10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-X_10 ina inb out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-X_10

*** SUBCIRCUIT LUTblue_RT1_path FROM CELL LUTblue_RT1_path{sch}
.SUBCKT LUTblue_RT1_path fire pred

** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 NMOS@0_d fire gnd NMOS-X_20
XPMOS@0 net@57 net@2 vdd PMOS-X_1
XPMOS@1 net@57 fire net@4 PMOS-X_1
EVCVS@0 net@13 gnd vcvs net@9 gnd 1 max=’10V’ min=’-10V’
Xinv@0 net@20 net@19 inv-X_30
Xinv@1 net@19 fire inv-X_80
Xinv@2 pred net@9 inv-X_5
Xinv@4 net@4 net@2 inv-X_2
Xnor2n@0 net@13 net@9 net@20 nor2-X_10

* Spice Code nodes in cell cell ’LUTblue_RT1_path{sch}’
.ic succ=0v net@68=1v
.ENDS LUTblue_RT1_path

*** SUBCIRCUIT LUTblue_RT2_path FROM CELL LUTblue_RT2_path{sch}
.SUBCKT LUTblue_RT2_path fire succ

** GLOBAL gnd
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** GLOBAL vdd
XNMOS@0 NMOS@0_d fire gnd NMOS-X_20
XPMOS@0 net@57 net@2 vdd PMOS-X_1
XPMOS@1 net@57 fire net@4 PMOS-X_1
EVCVS@0 net@9 gnd vcvs succ gnd 1 max=’10V’ min=’-10V’
Xinv@0 net@20 net@19 inv-X_30
Xinv@1 net@19 fire inv-X_80
Xinv@2 inv@2_in net@9 inv-X_5
Xinv@4 net@4 net@2 inv-X_2
Xnor2n@0 succ net@9 net@20 nor2-X_10

* Spice Code nodes in cell cell ’LUTblue_RT2_path{sch}’
.ic succ=0v net@85=1v
.ENDS LUTblue_RT2_path

*** SUBCIRCUIT NMOS-X_1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(1+ABN/sqrt(3*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*2)’
.ENDS NMOS-X_1

*** SUBCIRCUIT NMOS-X_4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_4 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’12*(1+ABN/sqrt(12*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(12*2)’
.ENDS NMOS-X_4

*** SUBCIRCUIT PMOS-X_4 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_4 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’24*(1+ABP/sqrt(24*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(24*2)’
.ENDS PMOS-X_4

*** SUBCIRCUIT inv-X_4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_4 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_4
XPMOS@0 out in vdd PMOS-X_4
.ENDS inv-X_4

*** SUBCIRCUIT nor2-10 FROM CELL redSix:nor2{sch}
.SUBCKT nor2-10 ina inb out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out ina gnd NMOS-X_10
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XNMOS@1 out inb gnd NMOS-X_10
Xpms2@0 out ina inb pms2-X_10
.ENDS nor2-10

*** SUBCIRCUIT LUTblue_RT3_path FROM CELL LUTblue_RT3_path{sch}
.SUBCKT LUTblue_RT3_path fire succ
** GLOBAL gnd

** GLOBAL vdd
VAmmeter@0 succ net@146 DC 0
XNMOS@1 net@64 net@1 gnd NMOS-X_1
XNMOS@2 net@64 net@54 succ NMOS-X_1
XPMOS@2 succ net@54 vdd PMOS-X_20
VPulse@0 net@205 gnd pulse ’0v’ ’1.5v’
+’30ns’ ’50ps’ ’50ps’ ’3ns’ ’4ns’
GVCCS@1 net@146 gnd vccs succ net@205 0.1 max=1 min=0
Xinv@0 fire net@54 inv-X_4
Xinv@1 succ net@1 inv-X_2
Xnor2n@0 succ nor2n@0_inb nor2n@0_out nor2-10

* Spice Code nodes in cell cell ’LUTblue_RT3_path{sch}’
.ic succ=0v
.ENDS LUTblue_RT3_path

*** SUBCIRCUIT LUTblue_RT5_path FROM CELL LUTblue_RT5_path{sch}
.SUBCKT LUTblue_RT5_path fire pred
** GLOBAL gnd

** GLOBAL vdd
VAmmeter@0 pred net@70 DC 0
XNMOS@0 pred fire gnd NMOS-X_20
XPMOS@0 net@48 net@46 vdd PMOS-X_1
XPMOS@1 net@48 PMOS@1_g pred PMOS-X_1
VPulse@0 net@106 gnd pulse ’1v’ ’-0.5v’ ’30ns’
+’50ps’ ’50ps’ ’3ns’ ’4ns’
GVCCS@0 net@70 gnd vccs pred net@106 0.1 max=0 min=-1
Xinv@2 pred inv@2_out inv-X_5
Xinv@5 pred net@46 inv-X_2

* Spice Code nodes in cell cell ’LUTblue_RT5_path{sch}’
.ic net@83=1v
.ENDS LUTblue_RT5_path

*** SUBCIRCUIT NMOS-X_widd4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widd4 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*widd4*(1+ABN/sqrt(3*widd4*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*widd4*2)’
.ENDS NMOS-X_widd4

*** SUBCIRCUIT PMOS-X_widd4 FROM CELL redSix:PMOS{sch}
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.SUBCKT PMOS-X_widd4 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*widd4*
+(1+ABP/sqrt(2*3*widd4*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*widd4*2)’
.ENDS PMOS-X_widd4

*** SUBCIRCUIT inv-X_widd4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widd4 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widd4
XPMOS@0 out in vdd PMOS-X_widd4
.ENDS inv-X_widd4

*** SUBCIRCUIT NMOS-X_wids4 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids4 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(widd4/3)*
+(1+ABN/sqrt(3*(widd4/3)*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*(widd4/3)*2)’
.ENDS NMOS-X_wids4

*** SUBCIRCUIT PMOS-X_wids4 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids4 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(widd4/3)*
+(1+ABP/sqrt(2*3*(widd4/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(widd4/3)*2)’
.ENDS PMOS-X_wids4

*** SUBCIRCUIT inv-X_wids4 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids4 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids4
XPMOS@0 out in vdd PMOS-X_wids4
.ENDS inv-X_wids4

*** SUBCIRCUIT NMOS-X_widd3 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widd3 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*widd3*(1+ABN/sqrt(3*widd3*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*widd3*2)’
.ENDS NMOS-X_widd3

*** SUBCIRCUIT PMOS-X_widd3 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widd3 d g s

** GLOBAL vdd
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MPMOSf@0 d g s vdd pch W=’2*3*widd3*(1+ABP/sqrt(2*3*widd3*2))’
+ L=’2’DELVTO=’AVT0P/sqrt(2*3*widd3*2)’
.ENDS PMOS-X_widd3

*** SUBCIRCUIT inv-X_widd3 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widd3 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widd3
XPMOS@0 out in vdd PMOS-X_widd3
.ENDS inv-X_widd3

*** SUBCIRCUIT NMOS-X_wids3 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids3 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(widd3/3)*(1+ABN/sqrt(3*(widd3/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(widd3/3)*2)’
.ENDS NMOS-X_wids3

*** SUBCIRCUIT PMOS-X_wids3 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids3 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(widd3/3)*(1+ABP/sqrt(2*3*(widd3/3)*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*(widd3/3)*2)’
.ENDS PMOS-X_wids3

*** SUBCIRCUIT inv-X_wids3 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids3 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids3
XPMOS@0 out in vdd PMOS-X_wids3
.ENDS inv-X_wids3

*** SUBCIRCUIT NMOS-X_widd2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widd2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*widd2*(1+ABN/sqrt(3*widd2*2))’
+ L=’2’DELVTO=’AVT0N/sqrt(3*widd2*2)’
.ENDS NMOS-X_widd2

*** SUBCIRCUIT PMOS-X_widd2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widd2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*widd2*
+(1+ABP/sqrt(2*3*widd2*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*widd2*2)’
.ENDS PMOS-X_widd2

*** SUBCIRCUIT inv-X_widd2 FROM CELL redSix:inv{sch}
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.SUBCKT inv-X_widd2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widd2
XPMOS@0 out in vdd PMOS-X_widd2
.ENDS inv-X_widd2

*** SUBCIRCUIT NMOS-X_wids2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(widd2/3)*
+(1+ABN/sqrt(3*(widd2/3)*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*(widd2/3)*2)’
.ENDS NMOS-X_wids2

*** SUBCIRCUIT PMOS-X_wids2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids2 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(widd2/3)*
+(1+ABP/sqrt(2*3*(widd2/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(widd2/3)*2)’
.ENDS PMOS-X_wids2

*** SUBCIRCUIT inv-X_wids2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids2
XPMOS@0 out in vdd PMOS-X_wids2
.ENDS inv-X_wids2

*** SUBCIRCUIT NMOS-X_widd1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widd1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*widd1*(1+ABN/sqrt(3*widd1*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*widd1*2)’
.ENDS NMOS-X_widd1

*** SUBCIRCUIT PMOS-X_widd1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widd1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*widd1*(1+ABP/sqrt(2*3*widd1*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*widd1*2)’
.ENDS PMOS-X_widd1

*** SUBCIRCUIT inv-X_widd1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widd1 in out

** GLOBAL gnd

** GLOBAL vdd
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XNMOS@0 out in gnd NMOS-X_widd1
XPMOS@0 out in vdd PMOS-X_widd1
.ENDS inv-X_widd1

*** SUBCIRCUIT NMOS-X_wids1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids1 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(widd1/3)*(1+ABN/sqrt(3*(widd1/3)*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*(widd1/3)*2)’
.ENDS NMOS-X_wids1

*** SUBCIRCUIT PMOS-X_wids1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids1 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(widd1/3)*(1+ABP/sqrt(2*3*(widd1/3)*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*(widd1/3)*2)’
.ENDS PMOS-X_wids1
*** SUBCIRCUIT inv-X_wids1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids1 in out

** GLOBAL gnd
** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids1
XPMOS@0 out in vdd PMOS-X_wids1
.ENDS inv-X_wids1

.global gnd vdd

*** TOP LEVEL CELL: LUT_Noload_figure22{sch}
XLUTblue_@0 out1 in1 LUTblue_RT1_path
XLUTblue_@1 out2 in2 LUTblue_RT2_path
XLUTblue_@4 in3 out3 LUTblue_RT3_path
XLUTblue_@5 in4 out4 LUTblue_RT5_path
VPulse@1 net@140 gnd pulse 0 ’1v’ ’30.5ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@2 net@141 gnd pulse 0 ’1v’ ’30.5ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@3 net@142 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@4 net@143 gnd pulse 0 ’1v’ ’0ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@5 Din4 in4 inv-X_widd4
Xinv@6 net@140 Din4 inv-X_wids4
Xinv@9 Din3 in3 inv-X_widd3
Xinv@10 net@141 Din3 inv-X_wids3
Xinv@13 Din2 in2 inv-X_widd2
Xinv@14 net@142 Din2 inv-X_wids2
Xinv@17 Din1 in1 inv-X_widd1
Xinv@18 net@143 Din1 inv-X_wids1
* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/NOLOAD/MOSIS_trailer_nl.hsp’
.END
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H.2 SPICE Simulation Setup File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V

****************************************************************
* Netlist
****************************************************************
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H.3 SPICE Simulation Setup File: TRAILER
Her is the SPICE trailer file with the .DATA sweep, transient analysis, and measurement
details for the simulation environment in Figure 4.22 on page 84. It generates look up
tables for four relative timing paths, by sweeping the driver sizes widd1, widd2, widd3
and widd4. It times and measures the voltage levels on in1 to in4 and out1 to out4.

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
****************************************************************
* Power Supply
****************************************************************
Vdd vdd gnd ’SUPPLY’

************************
* Step size and run time
.tran 1ps 200ns sweep data=mysweep
.data mysweep widd1 widd2 widd3 widd4
10 20 8 40
8 16 6 31
6 10 4 22
3 6 3 13
3 6 3 4
.enddata

.measure tfall_i_1
+ trig v(in1) val=’0.8*SUPPLY’ fall=3
+ targ v(in1) val=’0.2*SUPPLY’ fall=3

.measure tfall_o_1
+ trig v(out1) val=’0.8*SUPPLY’ fall=3
+ targ v(out1) val=’0.2*SUPPLY’ fall=3

.measure tf_delay
+ trig v(in1) val=’0.5*SUPPLY’ fall=3
+ targ v(out1) val=’0.5*SUPPLY’ fall=3
***********************
.measure trise_i_2
+ trig v(in2) val=’0.2*SUPPLY’ rise=3
+ targ v(in2) val=’0.8*SUPPLY’ rise=3

.measure tfall_o_2
+ trig v(out2) val=’0.8*SUPPLY’ fall=3
+ targ v(out2) val=’0.2*SUPPLY’ fall=3

.measure TpHL_2
+ trig v(in2) val=’0.5*SUPPLY’ rise=3
+ targ v(out2) val=’0.5*SUPPLY’ fall=3

***********************
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.measure trise_i_3
+ trig v(in3) val=’0.2*SUPPLY’ rise=3
+ targ v(in3) val=’0.8*SUPPLY’ rise=3

.measure trise_o_3
+ trig v(out3) val=’0.2*SUPPLY’ rise=3
+ targ v(out3) val=’0.8*SUPPLY’ rise=3
.measure tr_delay_3
+ trig v(in3) val=’0.5*SUPPLY’ rise=3
+ targ v(out3) val=’0.5*SUPPLY’ rise=3

***********************
.measure trise_i_4
+ trig v(in4) val=’0.2*SUPPLY’ rise=3
+ targ v(in4) val=’0.8*SUPPLY’ rise=3

.measure tfall_o_4
+ trig v(out4) val=’0.8*SUPPLY’ fall=3
+ targ v(out4) val=’0.2*SUPPLY’ fall=3

.measure TpHL_4
+ trig v(in4) val=’0.5*SUPPLY’ rise=3
+ targ v(out4) val=’0.5*SUPPLY’ fall=3
***********************
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H.4 SPICE Output File
Below follows the SPICE output file with the look up table results for the four
simple relative timing paths LUTblue:PREDi−FIREi−, LUTblue:SUCCi+FIREi−,
LUTred/blue:FIREi+SUCCi+, and LUTblue/green:FIREi+PREDi−, simulated with
zero external output load. The results were generated with the simulation environment
in Figure 4.22 on page 84. The output file extension is ‘.mt0’. Per sweep, the file shows
the sizes of sweep variable widd1, widd2, widd3 and widd4, and the measured timing
information in seconds. We measure:

For LUTblue:PREDi−FIREi−:
• tfall i 1, the transition fall time, a.k.a. slope or slew time, on input in1
• tfall o 1, the transition fall time, a.k.a. slope or slew time, on output out1
• tf delay, the input-to-output delay for the falling transition from in1 to out1

For LUTblue:SUCCi+FIREi−:
• trise i 2, the transition rise time, a.k.a. slope or slew time, on input in2
• tfall o 2, the transition fall time, a.k.a. slope or slew time, on output out2
• tphl 2, input-to-output delay for the high to low transition from in2 to out2

For LUTred/blue:FIREi+SUCCi+:
• trise i 3, the transition rise time, a.k.a. slope or slew time, on input in3
• trise o 3, the transition rise time, a.k.a. slope or slew time, on output out3
• tr delay 3, input-to-output delay for the rising transition from in3 to out3

For LUTblue/green:FIREi+PREDi−:
• trise i 4, the transition rise time, a.k.a. slope or slew time, on input in4
• tfall o 4, the transition fall time, a.k.a. slope or slew time, on output out4
• tphl 4, the input-to-output delay for the high to low transition from in4 to out4

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *** spice deck for cell lut_noload_fig{sch} from library’
index widd1 widd2 widd3

widd4 tfall_i_1 tfall_o_1
tf_delay trise_i_2 tfall_o_2
tphl_2 trise_i_3 trise_o_3
tr_delay_3 trise_i_4 tfall_o_4
tphl_4 temper alter#

1.0000 10.0000 20.0000 8.0000
40.0000 1.146e-11 8.023e-12

6.031e-11 1.527e-11 8.819e-12
3.584e-11 1.070e-11 1.222e-11
2.627e-11 9.991e-12 5.214e-12
3.663e-12 25.0000 1.0000
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2.0000 8.0000 16.0000 6.0000
31.0000 1.236e-11 8.491e-12

6.081e-11 1.766e-11 8.597e-12
3.627e-11 1.223e-11 1.245e-11
2.673e-11 1.159e-11 5.448e-12
3.634e-12 25.0000 1.0000

3.0000 6.0000 10.0000 4.0000
22.0000 1.313e-11 8.300e-12

6.113e-11 1.585e-11 8.464e-12
3.739e-11 1.444e-11 1.271e-11
2.761e-11 1.233e-11 5.582e-12
3.696e-12 25.0000 1.0000

4.0000 3.0000 6.0000 3.0000
13.0000 1.785e-11 8.381e-12

6.319e-11 2.167e-11 8.275e-12
3.918e-11 1.661e-11 1.294e-11
2.852e-11 1.222e-11 5.982e-12
3.380e-12 25.0000 1.0000

5.0000 3.0000 6.0000 3.0000
4.0000 1.785e-11 8.381e-12

6.319e-11 2.167e-11 8.275e-12
3.918e-11 1.692e-11 1.251e-11
2.846e-11 2.167e-11 8.482e-12
3.760e-12 25.0000 1.0000

************************************************************
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Appendix I

TRANSLATING LOAD SIZE INTO LOAD CAPACITANCE

The four appendices below contain the SPICE input and output files for translating the
size of a load inverter into the capacitive load of that inverter. This translation is part of
STEP 1, Section 5.2. The dual or nested sweep optimization process that we need for
this translation differs from the sweeps used in Chapters 3–4. The differences show up
in the SPICE simulation files. The organization of Appendix I is as follows:

• Appendix I.1 contains the SPICE netlist.
• Appendix I.2 contains the SPICE simulation HEADER file.
• Appendix I.2 contains the SPICE simulation TRAILER file.
• Appendix I.4 contains the SPICE output file with the translation information.

I.1 SPICE Netlist

Below follows the SPICE netlist for the simulation setup in Figure 5.1, page 95.

*** SPICE deck for cell Capacitor_sweep_miller{sch} from library
* LookUpTable_Thesis

*** Created on Wed Jul 21, 2010 21:21:49

*** Last revised on Sun Oct 04, 2010 21:02:57
*** Written on Sun Oct 04, 2010 21:04:53 by Electric

*** VLSI Design System, version 9.00d
*** Layout tech: mocmos, foundry MOSIS

*** UC SPICE *** , MIN_RESIST 4.0, MIN_CAPAC 0.1FF
.OPTIONS NOMOD NOPAGE
* Model cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_header_sweep_all.hsp’

*** SUBCIRCUIT NMOS-X_wid1 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid1 d g s

** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*((wid2)/3)*
+(1+ABN/sqrt(3*((wid2)/3)*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*((wid2)/3)*2)’
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.ENDS NMOS-X_wid1

*** SUBCIRCUIT PMOS-X_wid1 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid1 d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*((wid2)/3)*
+(1+ABP/sqrt(2*3*((wid2)/3)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*((wid2)/3)*2)’
.ENDS PMOS-X_wid1

*** SUBCIRCUIT inv-X_wid1 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid1 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid1
XPMOS@0 out in vdd PMOS-X_wid1
.ENDS inv-X_wid1

*** SUBCIRCUIT NMOS-X_wids FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wids d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*((wid2)/9)*
+(1+ABN/sqrt(3*((wid2)/9)*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*((wid2)/9)*2)’
.ENDS NMOS-X_wids

*** SUBCIRCUIT PMOS-X_wids FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wids d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*((wid2)/9)*
+(1+ABP/sqrt(2*3*((wid2)/9)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*((wid2)/9)*2)’
.ENDS PMOS-X_wids

*** SUBCIRCUIT inv-X_wids FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wids in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wids
XPMOS@0 out in vdd PMOS-X_wids
.ENDS inv-X_wids

*** SUBCIRCUIT NMOS-X_wid2 FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_wid2 d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*wid2*(1+ABN/sqrt(3*wid2*2))’
+ L=’2’ DELVTO=’AVT0N/sqrt(3*wid2*2)’
.ENDS NMOS-X_wid2
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*** SUBCIRCUIT PMOS-X_wid2 FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_wid2 d g s

** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*wid2*(1+ABP/sqrt(2*3*wid2*2))’
+ L=’2’ DELVTO=’AVT0P/sqrt(2*3*wid2*2)’
.ENDS PMOS-X_wid2

*** SUBCIRCUIT inv-X_wid2 FROM CELL redSix:inv{sch}
.SUBCKT inv-X_wid2 in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_wid2
XPMOS@0 out in vdd PMOS-X_wid2
.ENDS inv-X_wid2

*** SUBCIRCUIT NMOS-X_widM FROM CELL redSix:NMOS{sch}
.SUBCKT NMOS-X_widM d g s
** GLOBAL gnd
MNMOSf@0 d g s gnd nch W=’3*(3*wid2)*
+(1+ABN/sqrt(3*(3*wid2)*2))’ L=’2’
+DELVTO=’AVT0N/sqrt(3*(3*wid2)*2)’
.ENDS NMOS-X_widM

*** SUBCIRCUIT PMOS-X_widM FROM CELL redSix:PMOS{sch}
.SUBCKT PMOS-X_widM d g s
** GLOBAL vdd
MPMOSf@0 d g s vdd pch W=’2*3*(3*wid2)*
+(1+ABP/sqrt(2*3*(3*wid2)*2))’ L=’2’
+DELVTO=’AVT0P/sqrt(2*3*(3*wid2)*2)’
.ENDS PMOS-X_widM

*** SUBCIRCUIT inv-X_widM FROM CELL redSix:inv{sch}
.SUBCKT inv-X_widM in out
** GLOBAL gnd

** GLOBAL vdd
XNMOS@0 out in gnd NMOS-X_widM
XPMOS@0 out in vdd PMOS-X_widM
.ENDS inv-X_widM

.global gnd vdd

*** TOP LEVEL CELL: Capacitor_sweep_miller{sch}
Ccap@0 out2 gnd ’CLOAD’
VPulse@1 net@222 gnd pulse 0 ’1v’ ’50ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
VPulse@2 net@349 gnd pulse 0 ’1v’ ’50ns’ ’50ps’ ’50ps’ ’2ns’ ’4ns’
Xinv@17 in1 out1 inv-X_wid1
Xinv@18 net@222 in1 inv-X_wids
Xinv@20 out1 net@360 inv-X_wid2
Xinv@21 in2 out2 inv-X_wid1
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Xinv@22 net@349 in2 inv-X_wids
Xinv@23 net@360 outM inv-X_widM

* Trailer cards are described in this file:
.include ’/u/mettalag/models/Models_90nm/MOSIS_trailer_Varcap.hsp’
.END
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I.2 SPICE Simulation File: HEADER
Here is the basic file with default simulation parameters for SPICE. Its extension is
‘.hsp’. It contains a pointer to the 90nm CMOS process models for our GasP designs.
We use the library with typical (TT) Process, Voltage and Temperature (PVT) settings.
The key difference between this header and the one in Chapters 3–4 lies in the lines:

.PARAM CLOAD=OPTC(1fF, 1fF, 1000fF)

.model OPT1 opt

The .PARAM and .MODEL commands here indicate a search for an optimal value for
CLOAD, from 1fF to 1000fF, starting at 1fF. The default step size delta, which has been
left out here, is 1fF. The optimization goal is specified in the simulation trailer file in
Appendix I.3. The .PARAM and .MODEL commands are explained in the HSPICE
reference manual in [34], Chapter 2: HSPICE and HSPICE RF Netlist Commands,
pages 218–221 respectively 198–204.

****************************************************************
* Header File for Simulation with 90nm MOSIS Transistor Models
*
* Header Written by Navaneeth Jamadagni 22 April 2010
****************************************************************

****************************************************************
****************************************************************
.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_2d5_lk_v1d0.l’ TT

*.LIB ’/stash/arc/models/tsmc90/hspice/cmn90g_1d8_3d3_lk_v1d0.l’ TT

****************************************************************
* Options and Parameters
****************************************************************
.OPTION nomod POST
.OPTION SCALE=50n
.OPTION CAPTAB
.PARAM hdifp=0
.PARAM hdifn=0
.PARAM ABN=0
.PARAM ABP=0
.PARAM AVT0P=0
.PARAM AVT0N=0
.PARAM SUPPLY=1V
.PARAM CLOAD=OPTC(1fF, 1fF, 1000fF)
.model OPT1 opt
.PARAM wid2=10

****************************************************************
* Netlist

****************************************************************
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I.3 SPICE Simulation File: TRAILER
Here is the trailer file with a goal-directed optimization for load capacitance CLOAD in
Figure 5.1, page 95. The value for CLOAD increases from 1fF up to 1000fF until the
average delay tdavgc = (tdrc + tdfc)/2 over the driver inverter driving CLOAD matches
the average delay tdavg = (tdr+ tdf)/2 over the driver driving a wid2-size Load inverter.
The sweeps in this case are not encoded as .DATA sweep commands as in Chapters 3–4
but they are encoded as a series of separate .ALTER statements. Each .ALTER statement
starts with a new wid2 sweep value, as indicated, and it performs a new goal-oriented
transient analysis with fresh measurements for the given wid2 value. It repeats the tran-
sient analysis and measurements by sweeping the value of CLOAD until tdavgc=tdavg
or until the difference between the two average delays is at its smallest.
For more details on .ALTER, .TRAN, and goal-oriented .MEASURE commands,
see [34], Chapter 2: HSPICE and HSPICE RF Netlist Commands, pages 29–30, and
288–294, and 162–165 respectively.

****************************************************************
* Trailer File For Simulation with 90nm MOSIS Transistor Models

*
****************************************************************
* Power Supply

****************************************************************
Vdd vdd gnd ’SUPPLY’
************************
* Step size and run time
.tran 1ps 100ns SWEEP OPTIMIZE=optc RESULTS=tdavgc MODEL=OPT1

.measure tdr
+ trig v(in1) val=’0.5*SUPPLY’ fall=3
+ targ v(out1) val=’0.5*SUPPLY’ rise=3

.measure tdf
+ trig v(in1) val=’0.5*SUPPLY’ rise=3
+ targ v(out1) val=’0.5*SUPPLY’ fall=3

.measure tdavg PARAM=’(tdr+tdf)/2’
*******************************
.measure tdrc
+ trig v(in2) val=’0.5*SUPPLY’ fall=3
+ targ v(out2) val=’0.5*SUPPLY’ rise=3

.measure tdfc
+ trig v(in2) val=’0.5*SUPPLY’ rise=3
+ targ v(out2) val=’0.5*SUPPLY’ fall=3

.measure tdavgc PARAM=’(tdrc+tdfc)/2’ GOAL=tdavg
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***************************************
.ALTER
.PARAM wid2=33
.ALTER
.PARAM wid2=40
.ALTER
.PARAM wid2=56
.ALTER
.PARAM wid2=78
.ALTER
.PARAM wid2=100
.ALTER
.PARAM wid2=130
.ALTER
.PARAM wid2=220
.ALTER
.PARAM wid2=310
.ALTER
.PARAM wid2=400

*****************************************
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I.4 SPICE Output File
Here is the output file with the translation from a wid2 load size to a CLOAD load
capacitance, as measured for the simulation setup in Figure 5.1, page 95. SPICE reports:

• wid2, the size of the LOAD inverter in the top schematics of Figure 5.1.
• cload, the capacitive load for CLOAD in the bottom schematics of Figure 5.1.
• tdr, the delay from in1 to out1 in Figure 5.1(top) for a rising transition on out1.
• tdf, the delay from in1 to out1 in Figure 5.1(top) for a falling transition on out1.
• tdavg, the average of tdr and tdf, i.e. (tdr + tdf)/2.
• tdrc, the delay from in2 to out2 in Figure 5.1(bottom) for a rising out2 transition.
• tdfc, the delay from in2 to out2 in Figure 5.1(bottom) for a falling out2 transition.
• tdavgc, the average of tdrc and tdfc, i.e. (tdrc + tdfc)/2.

Note: the additional process parameters temper and alter# can be ignored.

$DATA1 SOURCE=’HSPICE’ VERSION=’C-2009.03 64-BIT’
.TITLE ’ *spice deck for cell capacitor_sweep_miller{sch} from library’

wid2 cload tdr tdf
tdavg tdrc tdfc
tdavgc temper alter#

10 4.586e-15 2.247e-11 2.002e-11
2.124e-11 2.183e-11 2.065e-11
2.124e-11 25.0000 1.0000

33 1.503e-14 2.012e-11 1.860e-11
1.936e-11 1.951e-11 1.921e-11
1.936e-11 25.0000 2.0000

40 1.824e-14 2.003e-11 1.826e-11
1.915e-11 1.943e-11 1.886e-11
1.915e-11 25.0000 2.0000

56 2.553e-14 1.988e-11 1.790e-11
1.889e-11 1.929e-11 1.849e-11
1.889e-11 25.0000 2.0000

78 3.551e-14 1.978e-11 1.783e-11
1.881e-11 1.918e-11 1.844e-11
1.881e-11 25.0000 2.0000

100 4.557e-14 1.975e-11 1.765e-11
1.870e-11 1.916e-11 1.824e-11
1.870e-11 25.0000 2.0000

130 5.925e-14 1.931e-11 1.637e-11
1.784e-11 1.869e-11 1.699e-11
1.784e-11 25.0000 1.0000
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220 1.014e-13 1.918e-11 1.751e-11
1.834e-11 1.853e-11 1.815e-11
1.834e-11 25.0000 1.0000

310 1.428e-13 1.865e-11 1.679e-11
1.772e-11 1.798e-11 1.746e-11
1.772e-11 25.0000 1.0000

400 1.851e-13 1.915e-11 1.675e-11
1.795e-11 1.848e-11 1.741e-11
1.795e-11 25.0000 1.0000
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Appendix J

PRIMETIME NETLIST FOR THE TWO-STAGE GASP FIFO

Verilog netlist file for the two-stage FIFO in Figure 5.11, page 106, where each 6-4 GasP
module is replaced by the black box model shown in Figure 5.10, page 105. Only the
pins of the black box are visible, the internal circuitry is invisible. File extension is ‘.v’.
File name is GASP FIFO2.v.

/* Verilog for ’GASP_FIFO2{sch}’ from library ’LookUpTable_Thesis’*/

module GASP_Module(Dout,FIRE,FIRE_PS,PRED_IN, \
PRED_OUT,SUCC_IN,SUCC_OUT);

output Dout;
output FIRE_PS;
input FIRE;
input PRED_IN;
output PRED_OUT;
input SUCC_IN;
output SUCC_OUT;

endmodule /* GASP_Module*/

module GASP_FIFO2(PRED_IN,PRED_OUT,SUCC_IN,SUCC_OUT);
input PRED_IN;
output PRED_OUT;
input SUCC_IN;
output SUCC_OUT;

wire Dout1, FIRE1, Dout2, FIRE2, FIRE_PS1, FIRE_PS2;
wire L2_M1to2, L2_M2to1;

GASP_Module M1(.Dout(Dout1),.FIRE_PS(FIRE_PS1),.FIRE(FIRE1),
.PRED_IN(PRED_IN),.PRED_OUT(PRED_OUT),.SUCC_IN(L2_M2to1),
.SUCC_OUT(L2_M1to2));

GASP_Module M2(.Dout(Dout2), FIRE_PS(FIRE_PS2),.FIRE(FIRE2),
.PRED_IN(L2_M1to2),.PRED_OUT(L2_M2to1),.SUCC_IN(SUCC_IN),
.SUCC_OUT(SUCC_OUT));

endmodule /* GASP_FIFO2 */
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Appendix K

PRIMETIME LIBRARYWITH SPICED LOOK UP TABLES

The library file below is named ARC typical GasP.lib. It follows the Liberty file format
that PrimeTime uses for its library definitions [33].
The file starts with definitions of the measure points for rise, fall and input-to-output
times. It also indicates the typical Process, Voltage, and Temperature (PVT) conditions
that we’re using for the static timing analysis. These match the operating conditions
that we used in Chapter 4 for generating our look up tables. Except for the 1fF load,
1ps time, and 1V voltage units, we are not specifically using any of this initial setup
information for the PrimeTime run of the two-stage FIFO in Figure 5.11 on page 106.
All the timing information needed for the FIFO is stored in look up tables.
In STEP 3, Section 5.4, we already explained how our look up tables are embedded
in this library file. Table 3.5, page 230 in [33], Liberty Reference Manual Version
2007.12, explains the timing types and timing sense commands used with each look
up table instance. For more details on the syntax and semantics of Liberty commands,
see [33].

library (GasP_Typical) {
technology (cmos) ;
delay_model : table_lookup ;
library_features(report_delay_calculation);
capacitive_load_unit (1.0, ff) ;
time_unit : 1ps ;
voltage_unit : 1V ;
current_unit : 1A ;

input_threshold_pct_rise : 50.0 ;
input_threshold_pct_fall : 50.0 ;
output_threshold_pct_rise : 50.0 ;
output_threshold_pct_fall : 50.0 ;

slew_lower_threshold_pct_rise : 20.0 ;
slew_upper_threshold_pct_rise : 80.0 ;
slew_lower_threshold_pct_fall : 20.0 ;
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slew_upper_threshold_pct_fall : 80.0 ;

pulling_resistance_unit : 1ohm ;
default_fanout_load : 0.0 ;
default_inout_pin_cap : 0.0 ;
default_input_pin_cap : 0.0 ;
default_output_pin_cap : 0.0 ;

operating_conditions (typical) {
voltage : 1.8 ;
temperature : 25.0 ;
process : 1.0 ;
}
default_operating_conditions : typical;

/* look up table definitions global part
lu_table_template(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0,18.2,59.3,101.4,142.8,185.1");
index_2 ("11.4,12.1,13.1,17.4");
}

lu_table_template(LUTblue_SUCCOUTi_r_FIREPSi_f_6x4) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0,18.2,59.3,101.4,142.8,185.1");
index_2 ("14.2,15.1,16.3,21.4");
}

lu_table_template(LUTblue_FIREPSi_f_Douti_r_1x4) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0");
index_2 ("11.6,12.4,14.4,14.7");
}

lu_table_template(LUTredblue_FIREi_r_SUCCOUTi_r_6x4) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0,4.6,15.0,25.5,35.5,45.6");
index_2 ("11.9,12.6,15.1,17.2");
}

lu_table_template(LUTbluegreen_FIREi_r_PREDOUTi_f_6x5) {
variable_1 : total_output_net_capacitance;
variable_2 : input_net_transition;
index_1 ("0.0,4.6,15.0,25.5,35.5,45.6");
index_2 ("10.4,10.8,11.2,11.9,20.1");
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}

/* Black Box pin and timing definitions
cell(GASP_Module) {
cell_leakage_power : 0.0;

pin (PRED_IN) {
direction : input;
}

pin (PRED_OUT) {
direction : output;

/* timing for FIRE to PRED_OUT */
timing() {
related_pin : "FIRE";
timing_type : combinational_fall;
timing_sense : negative_unate;
cell_fall(LUTbluegreen_FIREi_r_PREDOUTi_f_6x5) {
values("3.7,3.6,3.7,3.4,3.8","4.6,4.7,5.0,5.7,6.8",\
"8.1,8.3,9.1,9.1,11.1","11.2,11.4,11.9,12.2,14.9",\
"14.2,14.4,14.4,15.1,18.0","16.6,17.0,17.3,17.9,20.9");
}
fall_transition(LUTbluegreen_FIREi_r_PREDOUTi_f_6x5) {
values("5.2,5.5,5.6,6.0,8.5","7.5,7.6,7.8,7.5,10.5",\
"10.9,11.0,10.7,11.7,14.5","15.1,15.2,15.0,15.5,18.4",\
"19.1,19.0,19.6,20.0,22.7","24.0,24.1,24.0,24.4,27.4");
}
}
}
pin (FIRE_PS) {
direction : output;

/* timing for PRED_OUT to FIRE_PS */
timing() {
related_pin : "PRED_OUT";
timing_type : combinational_fall;
timing_sense : positive_unate;
cell_fall(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
values("60.3,60.8,61.1,63.2","62.1,62.4,62.8,64.7",\
"65.9,66.1,66.6,68.3","69.3,69.5,69.9,71.7",\
"72.3,72.6,73.1,74.8","75.1,75.4,75.9,77.7");
}
fall_transition(LUTblue_PREDOUTi_f_FIREPSi_f_6x4) {
values("8.0,8.5,8.3,8.4","9.9,9.9,10.1,9.6",\
"13.8,13.8,13.9,14.0","18.3,18.4,18.4,18.6",\
"22.7,22.6,22.3,22.0","27.1,27.3,27.4,27.3");
}
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}

/* timing for SUCC_OUT to FIRE_PS */
timing() {
related_pin : "SUCC_OUT";
timing_type : combinational_fall;
timing_sense : negative_unate;
cell_fall(LUTblue_SUCCOUTi_r_FIREPSi_f_6x4) {
values("35.8,36.3,37.4,39.2","37.7,38.0,39.3,40.8",\
"41.6,41.9,43.0,44.7","45.0,45.3,46.3,48.1",\
"48.0,48.4,49.3,51.2","50.9,51.2,52.1,54.0");
}
fall_transition(LUTblue_SUCCOUTi_r_FIREPSi_f_6x4) {
values("8.8,8.6,8.5,8.3","10.0,10.1,9.6,10.8",\
"13.8,14.2,13.9,13.9","18.0,18.0,18.3,18.2",\
"22.8,22.5,22.8,22.7","26.9,27.0,27.1,27.0");
}
}
}

pin (SUCC_IN) {
direction : input;
}

pin (FIRE) {
direction : input;
}

pin (SUCC_OUT) {
direction : output;

/* timing for FIRE to SUCC_OUT */
timing() {
related_pin : "FIRE";
timing_type : combinational_rise;
timing_sense : positive_unate;
cell_rise(LUTredblue_FIREi_r_SUCCOUTi_r_6x4) {
values("26.3,26.7,27.6,28.5","28.9,29.0,30.0,30.9",\
"33.1,33.7,34.7,35.6","37.1,37.8,38.8,39.9",\
"41.0,41.6,42.4,43.4","44.3,45.3,46.4,47.2");
}
rise_transition(LUTredblue_FIREi_r_SUCCOUTi_r_6x4) {
values("12.2,12.5,12.7,12.9","15.2,14.9,15.4,16.0",\
"20.7,20.8,21.3,21.4","27.0,27.4,27.6,27.7",\
"34.1,33.9,34.0,34.0","40.5,40.4,40.4,41.0");
}
}
}
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pin (Dout) {
direction : output;

/* timing for FIRE_PS to Dout */
timing() {
related_pin : "FIRE_PS";
timing_type : combinational_rise;
timing_sense : negative_unate;
cell_rise(LUTblue_FIREPSi_f_Douti_r_1x4) {
values("20.5,20.9,21.7,22.3");
}
rise_transition(LUTblue_FIREPSi_f_Douti_r_1x4) {
values("21.0,21.5,21.5,21.7");
}
}
}

}
}
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Appendix L

PRIMETIME COMMANDS FOR VALIDATING RT1 TO RT4

Below is the command file for validating the four relative timing constraints, RT1 to
RT4 of Figure 5.12 on page 108. It contains a header with links to the netlist and library
files, and it indicates which netlist module we’re targeting: GASP FIFO2 — the two-
stage FIFO. The file extension is ‘.tcl’, and the full name of the file is GasP STA RT.tcl.
Remember that the relative timing constraints in Figure 5.12 are the black box versions
of the original relative timings specified in Figure 2.2 on page 13. We already explained
the syntax and semantics of the validation commands in STEP 4, Section 5.5. Details
on the usage, syntax, and semantics of PrimeTime can be found in [35].
set netlist GASP_FIFO2.v
set top GASP_FIFO2
read_lib ARC_typical_GasP.lib
read_verilog $netlist
set link_path "GasP_Typical $netlist"
link_design -keep_sub_designs $top

#RT1 or RT(L2)TrfF-RstB
set_disable_timing -from SUCC_OUT -to FIRE_PS {M1 M2}
create_clock -period 400 M1/FIRE
set_annotated_transition -rise 12.0 [get_pins M1/FIRE]
set_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout -setup 0.0

report_timing -from M1/FIRE > RT1_TrfF-RstB.txt
remove_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout
remove_clock -all
remove_disable_timing -from SUCC_OUT -to FIRE_PS {M1 M2}

#RT2 or RT(L2)TrfF-RstF
set_disable_timing -from PRED_OUT -to FIRE_PS { M1 M2}
create_clock -period 400 M1/FIRE
set_annotated_transition -rise 12.0 [get_pins M1/FIRE]
set_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout -setup 0.0
report_timing -from M1/FIRE > RT2_TrfF-RstF.txt
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remove_data_check -clock M1/FIRE -rise_to M2/PRED_IN \
-rise_from M1/Dout
remove_clock -all
remove_disable_timing -from PRED_OUT -to FIRE_PS { M1 M2 }

#RT3 or RT(L2)TrfB-RstF
set_disable_timing -from PRED_OUT -to FIRE_PS { M2 M1}
create_clock -period 400 M2/FIRE
set_annotated_transition -rise 12.0 [get_pins M2/FIRE]
set_data_check -clock M2/FIRE -fall_to M1/SUCC_IN \
-fall_from M2/FIRE_PS -setup 0.0
report_timing -from M2/FIRE > RT3_TrfB-RstF.txt
remove_data_check -clock M2/FIRE -fall_to M1/SUCC_IN \
-fall_from M2/FIRE_PS
remove_clock -all
remove_disable_timing -from PRED_OUT -to FIRE_PS {M2 M1}

#RT4 or RT(L2)TrfB-RstB
set_disable_timing -from SUCC_OUT -to FIRE_PS {M2 M1}
create_clock -period 400 M2/FIRE
set_annotated_transition -rise 12.0 [get_pins M2/FIRE]
set_data_check -clock M2/FIRE -fall_to M1/SUCC_IN \
-fall_from M2/FIRE_PS -setup 0.0
report_timing -from M2/FIRE > RT4_TrfB-RstB.txt
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Appendix M

PRIMETIME TIMING REPORTS

To start the timing validation, using the Primetime netlist, library and command files in
Appendix J, K, and L, we execute the following command lines [35]:

set search_path "./"
set link_path "ARC_typical_GasP.lib"
set report_default_significant_digits 2
source GasP_STA_RT.tcl
report_design
report_reference
check_timing

This yields four output files with timing reports, one for each relative timing constraint.
The timing reports are listed in the following four Appendices M.1–M.4. They are
discussed in STEP 5, Section 5.6.
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M.1 Timing Report for RT1 or RT(L2)TrfF−RstB

****************************************
Report : timing

-path_type full
-delay_type max
-max_paths 1

Design : GASP_FIFO2
Version: C-2009.06-SP3
Date : Mon Oct 11 10:28:45 2010

****************************************

Startpoint: M1/FIRE (clock source ’M1/FIRE’)
Endpoint: M2 (rising edge-triggered data to \
data check clocked by M1/FIRE)
Path Group: M1/FIRE
Path Type: max

Point Incr Path
---------------------------------------------------------------
clock M1/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M1/FIRE (GASP_Module) 0.00 0.00 r
M1/SUCC_OUT (GASP_Module) 26.36 26.36 r
M2/PRED_IN (GASP_Module) 0.00 26.36 r
data arrival time 26.36

clock M1/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M1/FIRE (GASP_Module) 0.00 0.00 r
M1/PRED_OUT (GASP_Module) 3.40 3.40 f
M1/FIRE_PS (GASP_Module) 56.46 59.87 f
M1/Dout (GASP_Module) 16.78 76.65 r
data check setup time 0.00 76.65
data required time 76.65
---------------------------------------------------------------
data required time 76.65
data arrival time -26.36
---------------------------------------------------------------
slack (MET) 50.29
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M.2 Timing Report for RT2 or RT(L2)TrfF−RstF

****************************************
Report : timing

-path_type full
-delay_type max
-max_paths 1

Design : GASP_FIFO2
Version: C-2009.06-SP3
Date : Mon Oct 11 10:28:45 2010

****************************************

Startpoint: M1/FIRE (clock source ’M1/FIRE’)
Endpoint: M2 (rising edge-triggered data to data \
check clocked by M1/FIRE)
Path Group: M1/FIRE
Path Type: max

Point Incr Path
---------------------------------------------------------------
clock M1/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M1/FIRE (GASP_Module) 0.00 0.00 r
M1/SUCC_OUT (GASP_Module) 26.36 26.36 r
M2/PRED_IN (GASP_Module) 0.00 26.36 r
data arrival time 26.36

clock M1/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M1/FIRE (GASP_Module) 0.00 0.00 r
M1/SUCC_OUT (GASP_Module) 26.36 26.36 r
M1/FIRE_PS (GASP_Module) 34.71 61.07 f
M1/Dout (GASP_Module) 19.32 80.39 r
data check setup time 0.00 80.39
data required time 80.39
---------------------------------------------------------------
data required time 80.39
data arrival time -26.36
---------------------------------------------------------------
slack (MET) 54.03
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M.3 Timing Report for RT3 or RT(L2)TrfB−RstF

****************************************
Report : timing

-path_type full
-delay_type max
-max_paths 1

Design : GASP_FIFO2
Version: C-2009.06-SP3
Date : Mon Oct 11 10:28:46 2010

****************************************

Startpoint: M2/FIRE (clock source ’M2/FIRE’)
Endpoint: M1 (falling edge-triggered data to data \
check clocked by M2/FIRE)
Path Group: M2/FIRE
Path Type: max

Point Incr Path
---------------------------------------------------------------
clock M2/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M2/FIRE (GASP_Module) 0.00 0.00 r
M2/PRED_OUT (GASP_Module) 3.40 3.40 f
M1/SUCC_IN (GASP_Module) 0.00 3.40 f
data arrival time 3.40

clock M2/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M2/FIRE (GASP_Module) 0.00 0.00 r
M2/SUCC_OUT (GASP_Module) 26.36 26.36 r
M2/FIRE_PS (GASP_Module) 34.71 61.07 f
data check setup time 0.00 61.07
data required time 61.07
---------------------------------------------------------------
data required time 61.07
data arrival time -3.40
---------------------------------------------------------------
slack (MET) 57.66
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M.4 Timing Report for RT4 or RT(L2)TrfB−RstB

****************************************
Report : timing

-path_type full
-delay_type max
-max_paths 1

Design : GASP_FIFO2
Version: C-2009.06-SP3
Date : Mon Oct 11 10:28:46 2010

****************************************

Startpoint: M2/FIRE (clock source ’M2/FIRE’)
Endpoint: M1 (falling edge-triggered data to data \
check clocked by M2/FIRE)
Path Group: M2/FIRE
Path Type: max

Point Incr Path
---------------------------------------------------------------
clock M2/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M2/FIRE (GASP_Module) 0.00 0.00 r
M2/PRED_OUT (GASP_Module) 3.40 3.40 f
M1/SUCC_IN (GASP_Module) 0.00 3.40 f
data arrival time 3.40

clock M2/FIRE (rise edge) 0.00 0.00
clock source latency 0.00 0.00
M2/FIRE (GASP_Module) 0.00 0.00 r
M2/PRED_OUT (GASP_Module) 3.40 3.40 f
M2/FIRE_PS (GASP_Module) 56.46 59.87 f
data check setup time 0.00 59.87
data required time 59.87
---------------------------------------------------------------
data required time 59.87
data arrival time -3.40
---------------------------------------------------------------
slack (MET) 56.46
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Appendix N

BONUS MATERIAL: DISTANCE CONSTRAINT GRAPH

Reprinted with permission from the Asynchronous Research Center (ARC) at Portland
State University, this internal ARC report can be found in the thesis reference list as
reference [15]. The full citation is as follows:

• Swetha Mettala Gilla. Distance Constraint Graph: A Graphical Representation for
6-4 GasP showing how Relative Timings constrain the Module Distances. Tech-
nical Report, ARC2009-smg01, Asynchronous Research Center, Portland State
University, September, 2009.
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ABSTRACT 

This paper follows up on the Festschrift publication in [1]. In [1], Joshi et al. analyze the 
relative timing constraints on which the correct operation of a 6-4 GasP circuit depends. 
They predict correct operation over a wide range of module distances provided the 
difference in the distances to predecessor and successor modules is limited. They 
predict failure if the distances differ by too much. Their analytical prediction is supported 
by experiments on a 90 nanometer test chip called ―Infinity‖ which was built by Sun 
Microsystems and fabricated at TSMC. 

In the present paper, I continue the analysis by Joshi et al. and calculate by how much 
the distances may differ and still maintain the two key relative timing constraints. I 
present this as a two-dimensional graph, which I call the Distance Constraint Graph.  

The Distance Constraint Graph covers a range of wire distances from a given module to 
its predecessor and successor modules. It marks the minimum and maximum allowable 
difference from the equidistance line where the distances to the predecessor and 
successor modules are the same. It does this for the two key relative timing constraints 
and it overlays the results to show the pass-fail regions. Specifically, the graph indicates 
correct operation for all plausible wire lengths that the 90 nanometer Infinity chip would 
use without inserting 6-4 GasP repeater modules. For a quick preview of the Distance 
Constraint Graph, see Figure 3 on page 9 and Figure 4 on page 11. 
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1. Background 

Before I present my analysis results, I will give some background on 6-4 GasP circuits, 
their basic operation, and the two key relative timing assumptions for correct operation. 

1.1. 6-4 GasP Circuits 

Figure 1 shows two control stages, each with a 6-4 GasP circuit. The stages are 
connected in series by a bidirectional state wire L2 

1
 via connection ports SUCC and 

PRED, as shown in Figure 1. The basic operation of each 6-4 GasP circuit is as 
follows. When PRED is high and SUCC is low, signal FIRE rises. FIRE high does three 
things: (1) it clocks the latches to copy the present data (2) it raises SUCC to indicate 
that the data values are on their way, and (3) it lowers PRED to indicate that the data 
have been accepted and there is space again for new data.  

Actions (2) and (3) have the additional side-effect of resetting the FIRE signal to low. 
Either (2) or (3) can do this: gate A synchronizes PRED high and SUCC low as PMOS-
AND function, but either PRED low or SUCC high will trigger the complementary 
NMOS-OR function of gate A. Thus, FIRE high self-resets to FIRE low, and there are 
two self-resetting loops to choose from: one through gates DEABC related to action (2) 
and another through gates XFABC related to action (3). Each one takes 5 gate delays.  

 
Figure 1  (Picture copied from Fig 1 in [1]) The picture shows two stages of 6-4 GasP circuit modules 
connected in series. The forward latency from gate A in the first stage to gate A in the second stage is 6 gate 
delays, and is covered by the path ABCDEF. The backward latency from gate A in the second stage to gate A 
in the first stage is 4 gate delays, and is covered by the path ABCX. This gives a cycle time of 10 gate delays. 
In addition to this global cycle time, each GasP module has two local self-resetting cycles of 5 gate delays 
each: in [1] these are called the successor loop, for ABCDE, and the predecessor loop, for ABCXF. It is these 
two self-resetting loops that incur the two key relative timing assumptions that cause the pass-fail circuit 
behavior that I analyze in this paper. The two relative timings are specified in Section 1.2, Figure 2.  

                                            
1
 In the text of this paper, I loosely use L2 to denote either the state wire itself or its length or its load. I will 

be more precise in the delay calculations and presentation of the distance constraint graph in Section 2. 
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In 6-4 GasP, one can count delay in terms of logic gate delays, because the modules 
are custom-designed using Logical Effort [2]. This means that the transistors in each 
logic gate are sized such that all logic gates have the same delay. Gate sizing takes into 
account the transistor sizes of the gates that it drives and the connecting wire lengths.  

This works as long as one can adequately predict the wire lengths. Gates A, B, D, F in 
Figure 1 each drive a single local gate, and so one may assume that the connecting 
wire lengths are known in advance. The situation for gate C is more complicated: C 
drives two local gates, D and X, and a number of latches with a total latch load of L1, as 
well as a not so local wire between the gates and the latches.  Fortunately, it is possible 
to place the latches near the 6-4 GasP controller, and design a macro module that 
contains both the data and the control and connects these with a fixed wire length.   

The exceptions are gates E and X that drive state wire L2. The length of L2 is 
dependent on the distance between the modules, which is not known until the final 
system layout. If E and X are sized using the wire lengths for A, B, D and F, as was 
done in the Infinity chip, the gate delays for E and X will vary with different module 
distances and the delays of the self-resetting loops through DEABC and XFABC will 
vary correspondingly. If the delays vary by too much then the FIRE signal may self-
reset before action (2) or (3) has completed, and cancel the action prematurely. 

Premature cancellation of action (2) may result in loss of data because the successor 
stage never received the SUCC high indication that new data have arrived. Cancellation 
of action (3) may result in duplicate data because the predecessor stage never received 
the PRED low indicator to go ahead and replace the old data. To avoid this, Joshi et al. 
in [1] limit the delay variations due to module distance by enforcing so-called relative 
timing constraints. This is the topic of the next Section 1.2. 

1.2. Relative Timing (RT) Constraints  

Joshi et al. identified two key relative timing (RT) constraints to limit the delay variation 
between the two self-resetting loops of a GasP module. The two constraints state that 
one loop cannot shut off the other loop prematurely and cancel the associated action to 
the predecessor or successor module. The design and layout of 6-4 GasP circuits must 
maintain these constraints. 

The two RT constraints, RT1 and RT2, are illustrated in Figure 2. Each constraint 
compares two path delays through a two-stage 6-4 GasP design, like Figure 1, and 
demands that one does not exceed the other. The lesser path delay is marked by a 
dotted line and corresponds to a forward or backward action through state wire L2. The 
larger path delay is marked by a solid line and corresponds to the self-resetting loop in 
the reverse direction. The paths are expressed as a sequence of up-going (+) and 
down-going (-) gate output transitions. Figure 2 shows only the transitions for the key 
signals to the latches and neighboring GasP stages: FIRE, PRED and SUCC.  
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                        (a1)                  (a2)                         (b1)                     (b2) 

 
Figure 2   (Adapted from Fig 2 in [1]) The left and right sides show the two key relative timing constraints RT1 
and RT2 for the two-stage 6-4 GasP design in Figure 1: 

 RT1 is illustrated on the left for successive stages (a1)-(a2): the delay of the dotted forward path from 
FIRE+ to SUCC+ to PRED+ through gates DE in (a1) and up to (a2) must equal or be below the solid path 
delay for the self-resetting predecessor loop from FIRE+ to PRED- to FIRE- through gates XFABC in (a1). 

 RT2 is illustrated on the right for successive stages (b1)-(b2): the delay of the dotted backward path from 
FIRE+ to PRED- to SUCC- through gate X in (b2) and up to (b1) must equal or be below the solid path 
delay for the self-resetting successor loop from FIRE+ to SUCC+ to FIRE- through gates DEABC in (b2). 

Note that RT1 and RT2 use a different starting point for the self-resetting loops than the definitions in Figure 1: 
they starts from FIRE instead of from an input to gate A, but cover the same 5 gates — which is what matters. 

 

The first timing constraint RT1 is illustrated for the left stage pair (a1)-(a2) of Figure 2. 
It states that PRED of the successor stage goes high before FIRE self-resets to low. In 
terms of the circuit diagram of Figure 1 this more-or-less translates to: gates DE drive 
PRED of the successor stage high through state wire L2 before the self-resetting path 
through gates XFABCD shuts off  gate E and stops it from driving PRED.  

I emphasized that this translation ―more-or-less‖ expresses what follows. This is 
because the RT1 expression in terms of FIRE, PRED and SUCC is slightly coarser: it 
stops at the FIRE input to gate D. The RT1 expression in Figure 2 factually translates 
to: the path delay through DE does not exceed that of XFABC. This makes RT1 more 
conservative than is intended. I will come back to this in Section 2.1, when I present 
the pass-fail regions for both the conservative and the intended RT1 versions. 

The second timing constraint RT2 is illustrated on the right, for stage pair (b1)-(b2) of 
Figure 2. It states that SUCC of the previous stage goes low before FIRE self-resets to 
low. In terms of the circuit diagram of Figure 1, this exactly translates to: gate X drives 
SUCC of the predecessor stage low through state wire L2 before the self-resetting path 
through gates DEABC shuts off gate X and stops it from driving SUCC.  

Note that timing constraint RT2 can be expressed as intended in terms of transitions 
ending on FIRE, PRED, and SUCC. 

In the following Section 2, I will compute the values for L2 for which RT1 and RT2 hold. 
More precisely, I will compute the range of values for L2PRED and L2SUCC so that the 
gate delays for XPRED driving L2PRED and for ESUCC driving L2SUCC satisfy the RT1 path 
delay equation DESUCC ≤ XPREDFABC. And likewise, I will compute the range of values 
for L2PRED and L2SUCC that satisfy RT2 path delay equation XPRED ≤ DESUCCABC. 
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2. Computing Allowable Module Distances 
 
I use the term allowable module distances to indicate the range of wire lengths between 
6-4-GasP modules that satisfy relative timing constraints RT1 and RT2. RT1 and RT2 
are path-delay constraints; they are computed from the delays of the gates and the 
wires on the corresponding paths. This paper adopts the wire model used by Joshi et al 
in [1]. This means that a wire is modeled as a lumped capacitance, and its delay is 
incorporated into the delay of each gate that drives this lumped capacitance. Delays 
due to wire resistance are ignored.

2
  

 
Joshi et al. built a spreadsheet that calculates the gate delays in a 6-4 GasP module 
using wire loads that are typical for the 90 nanometer chip design of Infinity.

3
 The delay 

calculations are based on the theory of Logical Effort [2]. Their spreadsheet calculations 
are repeated in Table 1 below.  
 
With the help of Table 1 I compute the range of allowable module distances. I will first 
compute the path delays for RT1 and from these the allowable module distances for 
RT1. This is done Section 2.1. In Section 2.2, I do the same for RT2. I combine the 
two results in Section 2.3, where I give the full picture and relate my results back to the 
90 nanometer results of the Infinity test chip presented by Joshi et al. in [1]. 

Table 1  (Adapted from Table 2 in [1]). Below follow the Logical Effort calculations of each gate delay in the 
6-4 GasP module of Figure 1.The three columns with bold numbers for S, P and WL are fixed by design: gate 
size S and its self-delay P follow from the gate implementation and the gate complexity, and wire load WL 
follows from the wire dimensions. Short wires are indicated as `wire’ (values taken from column WL); the long 
wires L1 and L2 are indicated explicitly. Note that the calculation of the self delay P for gates E and X counts 
the diffusion output capacitance of both E and X, because both their outputs connect to the state wire L2. Also 
note that the D2 values for E and X are different for different wire loads of L2. The Table uses the logical effort 
values of Table 1 in [1] (not included) to calculate the load per gate input: IL = (S * logical effort of the gate). 
The formulas for gate delay, wire load delay, and total delay are:  D1 = GL/S, D2 = WL/S, Total = D1 + P + D2.  

Gate 
Name 

Size 
(S) 

Load 
per 

input 
(IL) 

Drives next gates 
and wire 

Next 
gate load 

(GL) 

Delay 
from 
GL  
(D1) 

Self 
delay 

(P) 

Next  
wire 
load 
(WL) 

Delay 
from 
WL 
(D2) 

Total 
delay 
[τ] 

3
 

A 18 30 B+wire 40 2.2 2 9 0.5 4.7 

B 40 40 C+wire 100 2.5 1 20 0.5 4 

C 100 100 D+X+ L1latches + L1wire 20+20+200 2.4 1 100 1 4.4 

D 20 20 E+wire 40 2 1 20 1 4 

F 10 10 A+wire 30 3 1 5 0.5 4.5 

E 
L2=15 

60 40 A+F+L2 30+10 0.67 
with X 

= 1 
15 0.25 1.9 

E 
L2=150 

60 40 A+F+L2 30+10 0.67 
with X 

= 1 
150 2.5 4.2 

X 
L2=15 

60 20 A+F+L2 30+10 0.67 
with E 

= 1 
15 0.25 1.9 

X  
L2=150 

60 20 A+F+L2 30+10 0.67 
with E 

= 1 
150 2.5 4.2 

                                            
2
 Delays due to wire resistance and other long wires effects will be included in a follow-up paper. 

3
 The delay unit here and in [1] is `τ’ (tau): the characteristic delay of an inverter in the given process. 
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2.1. Path Delays and Allowable Module Distances for RT1 

From Figure 2(a1)-(a2) one can see that relative timing constraint RT1 involves both     
state wires at both ends of the 6-4 GasP module: the predecessor state wire          
participates in the solid backward path that self-resets FIRE from FIRE+ to FIRE-; the 
successor state wire participates in the dotted forward path from FIRE+ to PRED+.  

To analyze RT1 it makes sense to distinguish these two state wires. I will use L2PRED to 
denote the state wire that connects the predecessor port PRED of a 6-4 GasP module 
to the previous stage. I will use L2SUCC to denote the state wire that connects the        
successor port SUCC of a 6-4 GasP module to the next stage. This matches with the 
terminology in Figure 1. For convenience, I wish to identify the gates that drive           
L2PRED respectively L2SUCC, so that the name of the gate indicates that the gate delay 
depends on the load value of L2PRED respectively L2SUCC. To this end, I rename gate X       
as XPRED and gate E as ESUCC. 

 
In Section 1.2, I distinguished two RT1 constraints: a conservative version and the 
intended version. The conservative version, which I will call RT1conservative, states that the 
forward path delay from FIRE+ to SUCC+ to PRED+ through D and ESUCC must be less 
than or equal to the backward self-resetting path from FIRE+ to FIRE- through the 
series of gates XPRED, F, A, B and C. The intended RT1 constraint version, which I will 
call RT1intended, is similar, but has one more gate in the backward path: XPREDFABCD.  
 
I use the gate delay calculation procedure in Table 1 to compute the backward self-
resetting path delays for XPREDFABC. For each fixed value of L2PRED, this gives me the 
maximum forward path delay for DESUCC for which RT1conservative holds. Given this, I 
reverse-engineer the calculation procedure in Table 1 to obtain the corresponding 
maximum load value of L2SUCC that satisfies RT1conservative.

4
  

 
The resulting difference in load values L2SUCC-L2PRED between the successor and 
predecessor state wires represents the maximum allowable module distance in terms of 
load capacity. I call this the margin value. L2SUCC-L2PRED values below the margin value 
pass the relative timing constraint, those above fail the constraint.   
 
The computations for the RT1conservative margin values are outlined in Table 2. It turns 
out that the margin value is approximately constant, 816 units of load, over the given 
range of L2PRED state wire loads.

5
  

 
 
 

                                            
4
 The load capacitance unit here and in [1] is `X’: the gate load, or capacitance, of the smallest inverter 

one can build in the given process. 
 
5
 Reminder: I have used a lumped wire load. I ignored long wire delay effects, which are outside the scope 

of this study and which will be included in a follow-up paper. 
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Table 2  (RT1conservative margin) Calculations of the maximum allowable difference between the wire load 
L2SUCC of a given module to its successor module and the wire load L2PRED to its predecessor module. The 
calculations show that differences up to and including 816 units of load satisfy relative timing constraint RT1 of 
Figure 2(a1)-(a2), because DESUCC ≤ XPREDFABC. The calculation procedure is as follows. Given the range of 
L2PRED values, I compute the path delays for XPREDFABC. The computations are based on spreadsheet 
calculations using gate delays from Table 1 and its extension to a wide range of L2 wire loads. The path delay 
of XPREDFABC determines the maximum path delay for DESUCC. Given the maximum delay for DESUCC, I use a 
logarithmic search and additional spreadsheet calculations to get the corresponding maximum load for L2SUCC. 
This gives a maximum allowable difference of 816 units of load from L2SUCC to L2PRED. 

L2PRED  

[X] 
4 

(fixed) 

XPREDFABC  

[τ] 
3 

(computed from Table 1) 

DESUCC   

[τ] 

(set to XPREDFABC value) 

L2SUCC  

[X] 

(computed from DESUCC) 

L2SUCC - L2PRED 

[X] 

10 19.4 19.4 826 816 

200 22.6 22.6 1016 816 

500 27.6 27.6 1316 816 

1000 35.9 35.9 1816 816 

2000 52.6 52.6 2816 816 

10000 185.9 185.9 10816 816 

12000 219.3 219.3 12816 816 

15000 269.3 269.3 15816 816 

 
 
 
The computations for the margin values of RT1intended are similar. The only difference is 
that the backward self-resetting path delay for XPREDFABCD is larger than the previous 
self-resetting path delay for XPREDFABC in Table 2. Specifically, it is larger by a fixed 
amount, namely by the gate delay value of D, which is independent of L2PRED.  
 
From the previous calculations I know that the margin value for RT1conservative is constant 
over the given range of L2PRED load values. This implies that the margin value for 
RT1intended is also constant, and moreover the constant value is larger than 816. Table 3 
gives the computations for the margin value of RT1intended.  It suffices to do these 
computations for one fixed value of L2PRED because I know by now that the margin 
values for L2SUCC-L2PRED are the same for the entire L2PRED range.

5
 

 
 

Table 3 (RT1intended margin) Calculations of the maximum allowable difference between the wire load 
L2SUCC of a given module to its successor module and the wire load L2PRED to its predecessor module. The 
calculations show that differences up to and including 1056 units of load satisfy the intended relative timing 
constraint RT1intended for Figure 2(a1)-(a2), discussed in Section 1.2, because DESUCC ≤ XPREDFABCD. The 
calculation procedure is as in Table 2, but adds a fixed gate delay for gate D. The result is a larger maximum  
allowable difference of 1056 units of load from L2SUCC to L2PRED. 

L2PRED 

[X] 
4 

(fixed) 

XPREDFABCD 

[τ] 
3 

(computed from Table 1) 

DESUCC 

[τ] 

(set to XPREDFABCD value) 

L2SUCC 

[X] 

(computed from DESUCC) 

L2SUCC - L2PRED 

[X] 

10 23.4 23.4 1066 1056 
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2.2. Path Delays and Allowable Module Distances for RT2 

 
The calculations for the margin values for relative timing constraint RT2 follow the same 
procedure as those for RT1conservative and RT1intended in Section 2.1.  
 
I use the gate delay calculation procedure in Table 1 to compute the forward self-
resetting path delays for DESUCCABC. For each fixed value of L2SUCC, this gives me the 
maximum backward path delay for XPRED for which RT2 holds. Given this, I reverse-
engineer the calculation procedure in Table 1 to obtain the corresponding maximum 
load value of L2PRED. The resulting difference in load values L2SUCC-L2PRED between the 
successor and predecessor state wires represents the maximum allowable module 
distance in terms of load capacity for RT2. This is the margin value for RT2, and it is 
negative: L2SUCC-L2PRED values above the margin value pass the relative timing 
constraint, those below fail the constraint.   
 
The computations for the RT2 margin values are outlined in Table 4. Also here, the 
margin value is approximately constant, -1026 load units, over the given range of 
L2SUCC state wire loads.

6
  

 
 

Table 4 (RT2 margin) Calculations of the maximum allowable difference between the wire load L2SUCC of a 
given module to its successor module and the wire load L2PRED to its predecessor module. The calculations 
show that L2SUCC – L2PRED differences down to and including -1026 units of load satisfy relative timing 
constraint RT2 of Figure 2(b1)-(b2), because XPRED ≤ DESUCCABC. The calculation procedure is similar to that 
of Table 2. Given the range of L2SUCC values, I compute the path delays for DESUCCABC. This determines the 
maximum path delay for XPRED. From here, a logarithmic search gives the corresponding maximum load value 
for L2PRED, and a maximum allowable difference down to -1026 units of load from L2SUCC to L2PRED.  

L2SUCC 

[X] 
4 

(fixed) 

DESUCCABC 

[τ] 
3 

(computed from Table 1) 

XPRED 

[τ]
  

(set to ESUCCDABC value) 

L2PRED 

[X]
 

(computed from XPRED) 

L2SUCC - L2PRED 

[X]
 

10 18.9 18.9 1036 -1026 

200 22.1 22.1 1226 -1026 

500 27.1 27.1 1526 -1026 

1000 35.4 35.4 2026 -1026 

1500 43.8 43.8 2526 -1026 

10000 185.4 185.4 11026 -1026 

12000 218.8 218.8 13026 -1026 

15000 268.8 268.8 16026 -1026 

 
 
 

                                            
6
 Reminder: also in the delay calculations for RT2 I have used a lumped wire load. I ignored long wire 

delay effects, which fall outside the scope of this study and will be included in a follow-up paper. 
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2.3. The Full Picture: Distance Constraint Graph  

 
The graph in Figure 3 below helps visualize the result of the previous two Sections. 
This graph — which I call the Distance Constraint Graph — shows the allowable 
distances from a 6-4 GasP module to its predecessor and successor modules. I 
calculated the distance in units of length 

7
 as well as in units of load. The solid and 

dashed blue lines are the margin lines for RT1conservative and RT1intended. The green line is 
the margin line for RT2. Predecessor-successor pairs (L2PRED, L2SUCC) in the top-left 
blue region fail RT1conservative. Those in the bottom-right green region fail RT2. Those in 
the white region in-between satisfy RT1conservative (and hence also RT1intended) and RT2. 

 

 
Figure 3 (Distance  Constraint  Graph) The graph shows the allowable distances from a 6-4 GasP module 

to its predecessor and successor modules. The X-axis shows the distance to the predecessor module, L2PRED. 
The Y-axis shows the distance to the successor module, L2SUCC. Both L2PRED and L2SUCC are expressed in 
units of length as well as in units of load. The conversion is based on the 90 nanometer CMOS technology 
used for Infinity, in which 36 units of length equals 1 unit of load — see also footnotes 4 and 7. The solid and 
dashed blue lines are the margin lines for RT1conservative and RT1intended from Table 2 and Table 3.  The 
Predecessor-successor pairs (L2PRED, L2SUCC) in the blue region above the solid line fail relative timing 
constraint RT1conservative because L2SUCC-L2PRED exceeds 816 units of load (29376 units of length). Those 
above the interrupted blue line also fail RT1intended. The solid green line is the margin line for RT2, as computed 
in Table 4. The predecessor-successor pairs (L2PRED, L2SUCC) in the green region below it fail RT2 because 
L2SUCC-L2PRED is below -1026 units of load (-36936 units of length). The (L2PRED, L2SUCC)-pairs in the white 
region between the blue and green lines satisfy both relative timing constraints RT1conservative and RT2.  

                                            
7
 The length unit here and in [1] is `λ’ (lambda): 1/20-th of a micrometer in the TSMC 90 nanometer 

process used for Infinity.  
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In addition to the allowable module distances and their relation to the key relative timing 
constraints, Figure 3 shows two other interesting facts. 
 

1. The red equidistance line where L2PRED and L2SUCC have the same load and 
length falls in the PASS region, approximately midway between the margin lines 
for RT1intended and RT2. This is good news: it makes designing GasP systems 
easier because the designer can assume equidistant module distances and still 
leave adequate margins to place and route the modules.   

 
2. The orange-striped square box of about 333 x 333 units of load in the bottom-left 

corner of the graph represents the short-to-medium length wire region for the 
TSMC 90 nanometer CMOS manufacturing process that was used for Infinity. In 
this process, 333 units of wire load correspond to approximately 12000 units of 
wire length. This is the comfort region for the lumped capacitance wire model. 
 
The anticipation is that for wires longer than 12000 units, the wire resistance is 
no longer negligible, and neither are the rise and fall times of the wire transitions. 
To mitigate these long wire effects, one can insert extra 6-4 GasP modules, 
called repeater modules, at state wire intervals of 12000 units of length.  
 
Note that the orange-striped box is completely within the white PASS region of 
Figure 3. So, apparently, the repeater constraints to avoid long wires are much 
stricter than the 6-4 GasP relative timing constraints for functional correctness.

8
 

 
 
 

3. Conclusion 
 
The 6-4 GasP modules discussed in this paper are used to route data. The operation of 
each module is limited by relative timing constraints. In [1] Joshi et al. identified two key 
constraints, called RT1 and RT2, that limit the module distance between successive 
GasP modules in the router network. They also set up a framework to validate whether 
the distances from a 6-4 GasP module to its predecessor and successor are allowed. 
 
In this paper, I introduce a new representation, the Distance Constraint Graph, to 
visualize the relation between the allowable module distances and the relative timing 
constraints RT1 and RT2. By looking at the graph one can immediately locate the pass 
and fail regions for each constraint for up to 15000 load units, i.e. 540000 length units.  
 
There is one caveat: my current calculations ignore long wire effects — these will be 
taken into account in a follow-up paper.

9
 

  

                                            
8
 I surely will investigate this further in my long-wire analysis. 

9
 See also footnotes 5, 6 and 8. 
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Using the Distance Constraint Graph, it is immediately clear that the short to medium 
range module distances used in the 90 nanometer Infinity test chip are safe. Infinity 
uses up to 150 units of load, or 5400 units of length. Distances of length 5400 are safe 
regardless of the difference in distances to predecessor and successor modules.   
 
Figure 4 offers an enlarged view of the orange-striped 6-4 GasP operating region from 
Figure 3 with short-to-medium range module distances.  
 
 

 
Figure 4  (Detail of Figure 3) Detailed segment of the Distance Constraint Graph for short-to-medium length 
module distances for 6-4 GasP in TSMC’s 90 nanometer CMOS manufacturing process. The short-to-medium 
length distances are marked by the orange –striped region of 12000x12000 units of wire length. Note that the 
orange-striped region falls completely inside the white (PASS) region.  

 
 
I anticipate that the long wire effect will kick in somewhere near the top and right 
boundaries of the orange-striped region. From there on, the margin lines for RT1 and 
RT2 will likely no longer be constant. My next research topic is to investigate how 
exactly the margin lines will change in relation to the individual module distances and in 
relation to the relative distance between predecessor and successor modules. 
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BONUS MATERIAL: SHORT-TO-MEDIUM-TO-LONGWIRE STUDY

c©2010 IEEE. Reprinted with permission, from the following publication source:

• Swetha Mettala Gilla, Marly Roncken and Ivan Sutherland. Long-Range GasP
with Charge Relaxation. In Proc. IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), pages 185–195, 2010.

This IEEE publication can also be found in the thesis reference list as reference [18].
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Long-Range GasP with Charge Relaxation
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Asynchronous Research Center
Maseeh College of Engineering and Computer Science

Portland State University, Portland, Oregon, USA

Abstract

GasP circuit modules communicate handshake signals in
two directions over a single state wire. The 2008 Infinity test
chip demonstrated GasP in 90 nm CMOS operating at four
giga data items per second, but revealed that state wires
about 5000 lambda long retard operation by about 10%.

Simulations reported in this paper show that GasP mod-
ules will tolerate surprisingly long state wires, albeit at re-
duced throughput. The modules appear to operate correctly
with state wires whose delay exceeds the drive time. With
such long wires, the receiving module waits until passive
distribution of charge brings the wire within range of the
receiver’s switching threshold. Having put enough charge
into the wire, or vice-versa removed enough charge from it,
the sending module may proceed with its next task. This re-
sult applies equally to other single-track signaling methods.

This behavior calls for a new kind of relative timing con-
straint to address when the wire charging or discharging
process may cease rather than when the signal reaches the
far end of the wire.

Keywords: GasP, Infinity chip, long wires, single-track,
on-chip communication, self-timed, asynchronous circuits.

1 Introduction

Since publication of the first GasP family of circuits in
2001 [15] we have built and tested a variety of GasP chips.
One chip experiment, called Infinity, consists of two rings
of 100 GasP modules each that share a common section of
50 modules. The GasP modules in the Infinity test chip,
which includes the Infinity experiment, form the basis of a
wide variety of network-on-chip topologies. A sketch of the
layout of the Infinity experiment appears in Figure 1(a).

Figure 1(b) offers a canopy diagram for separate operation
of the two rings in Infinity. For this experiment data cir-
culate in a single ring, avoiding contention for use of the

50-stage shared section. The work reported in this paper be-
gan with the observation of the flat tops in this (measured)
canopy diagram. The maximum throughput indicated by
the two flat tops is about 10% below the peak throughput in
Figure 1(c) as measured for other GasP rings on the chip.1

Additional experiments traced the 10% loss in throughput
observed in Infinity to the longer state wires that connect the
common ring section in the center column of Figure 1(a) to
the individual ring sections in the side columns. The state
wires from column to column are about 5000 lambda long,
whereas the state wires within each column are only about
500 lambda long. This phenomenon prompted us to study
the effect of wire delays in GasP.

Our first study, published by Joshi et al. in [5], uses a
lumped capacitance model to examine the impact of a long
state wire. It presents a logical effort model to compute the
gate and path delays in GasP operations and to analyze the
relative timing constraints on which the correct operation
of a GasP module depends [16, 12]. We observed that if the
main effect of the long wire is to retard its driver, GasP mod-
ules should operate correctly over a large range of distances.
Our analysis predicts correct operation provided the differ-
ence in the distances to predecessor and successor modules
is limited. It predicts failure if these distances differ by too
much. Moreover, the extra delay computed for the lumped
capacitance model of a 5000 lambda long wire explains the
10% loss in throughput observed in Infinity.

However, the predicted maximum difference in module dis-
tances in the study by Joshi et al. is large enough to cast
doubt on the adequacy of the lumped capacitance wire
model, in particular for wires longer than 5000 lambda.
Therefore, we started a second study that uses better models

1Silicon experiments and simulations in this paper all use a 90 nm
CMOS process by TSMC in which lambda (λ) is 50 nm and tau (τ ) is
about 8 psec. We prefer to use the process-normalized metrics lambda
and tau rather than absolute metrics so as to make our results more readily
applicable to other manufacturing processes.

2010 IEEE Symposium on Asynchronous Circuits and Systems
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Figure 1 (a) Layout sketch of Infinity, and canopy diagrams for (b) Infinity and (c) an 11-stage FIFO ring on the same test chip.
About (a)
The Infinity experiment has two rings of 100 GasP modules each, with a common section of 50 modules. The experiment
is approximately 17500 lambda tall by 15000 lambda wide, an area of about 0.6 mm2. Infinity got its name because its
layout resembles the infinity symbol ∞. The chip was named after the Infinity experiment, which is the largest experiment
on it. Infinity is laid out as three columns about 17500 lambda tall of 50 modules each, as shown. Most modules are about
4608 lambda wide and 288 lambda tall, although some are slightly taller. Each module carries 37 data bits plus 15 address
bits. An addressable branch module B at the bottom end of the center column uses an address bit to steer arriving data
to the left or right. A demand merge module M at the top of the center column accepts data from the side columns on a
first-come-first-served basis. Additional test circuitry, omitted here, enables us to load and unload the rings with data and to
count the number of data elements passing through each ring. A typical experiment involves loading the rings with a chosen
number of data elements, running the circuit for a known time, and then reading the counts and unloading the data for inspection.
Every experiment in the chip has observed flawless retention of data counts, sequence, and content.
About (b)–(c)
The canopy diagrams in (b) and (c) show the throughput of GasP rings in relation to their occupancy i.e. the number of data
elements in the ring. The throughput is the ratio of the count of data elements that passed through the ring to the run time of the
experiment. We have observed maximum throughputs over four giga data items per second (4 GDI/sec). The canopy diagram
for the FIFO ring in (c) shows a peak throughput of 4.2 GDI/sec. The solid- and broken-line canopy diagrams for the individual
ring operations in Infinity in (b) have a flat top at about 3.8 GDI/sec. A canopy diagram with a flat top indicates the presence
of a slower than normal stage. The culprits for the 10% loss of throughput are the relatively long state wires between the side
columns and the center column. The column-to-column state wires are about 5000 lambda long, which is ten times longer than
the 500 lambda long state wires within each column. All state wires are slightly longer than the center-to-center distance between
modules in order to reach multiple connections inside each module. The measurements that identify the long wires as the culprits
can be found in [5], together with a theoretical foundation based on logical effort and a lumped capacitance wire model.

to describe the properties of longer wires. Our second study
uses a distributed RC model [11, 17], capable of distin-
guishing voltage levels at the near and far ends of the state
wire. For GasP, this matters, because the two ends play dif-
ferent roles in the handshake signaling over the state wire.

We were particularly eager to understand not only the im-
pact of different near and far end delays in the state wires of
GasP, but also the implications for the relative timing con-
straints that we must impose on the GasP circuit modules to
ensure their correct operation.

This paper reports the results of our second study. Section 2
introduces the 6-4 GasP family used in Infinity and in our
studies, and explains its communication mechanism. Given

that neither Infinity nor the 6-4 GasP control circuits have
been published before, Section 2 acts more as a tutorial on
GasP than as a description of previously published work.2

Section 3 discusses the key relative timing constraints for
long wire communication in GasP. Section 4 describes our
simulation setup to analyze the potential and limitations
for long-range GasP, and presents the results. Section 5
summarizes the results of both studies. We use a two-
dimensional graph, the Distance Constraint Graph [6], to
help visualize how the results differ. Conclusion and work
in progress follow in Section 6.

2Our previous publication [5] gives a partial description of 6-4 GasP,
focusing only on key facets of its data transfer mechanism and ignoring
keepers and other GasP design aspects presented here.
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2 GasP Modules

Infinity uses 6-4 GasP [14]. The 6-4 GasP family gets its
name from the six logic gates on the path going forward
from one module to the next, path ABCDEF in Figure 2,
and from the four logic gates on the path going backwards,
path ABCX. The longer delay is in the forward direction
because that is the direction in which the data elements are
transferred. Copying data requires action on the part of the
data latches, whereas moving an empty space or “bubble”
backwards to declare the latches empty needs no action.

Figure 2 shows a 2-stage FIFO, with one 6-4 GasP module
per stage. The two stages, M1 and M2, are connected by
a bidirectional state wire L2 via ports SUCC1 and PRED2.
When state wire L2 is high it indicates that M1 has new data
for M2. We will refer to this as L2 being full. When state
wire L2 is low it indicates that M2 has latched the proffered
data and it is safe for M1 to change its data. We will refer
to this as L2 being empty.3

When PRED2 is high and SUCC2 low, meaning M1 has
new data for M2 and M2 has space for it, M2 raises its
signal FIRE2. A high FIRE2 signal starts three parallel ac-
tions: (1) the data latches of stage M2 are enabled to copy
the proffered data, and (2) SUCC2 is raised via gates D and
E to indicate to M2’s successor that new data are available,
and (3) PRED2 is lowered via gate X to declare L2 empty.

Note that for FIRE2 to rise, gate A must synchronize a high
PRED2 signal with a low SUCC2 signal. But to get FIRE2

to fall, either a low PRED2 signal or a high SUCC2 signal
suffices. Hence, actions (2) and (3) each have the additional
side effect of resetting FIRE2.

So, setting FIRE2 high automatically leads to resetting
FIRE2 low, and there is a choice of two self-resetting loops
that automate this: the forward loop DEABC, and the back-
ward loop XFABC. Note that each loop has five gates.

The gate count matters. GasP modules are custom-designed
using logical effort [16]. The transistors in each logic gate
are sized such that all logic gates have approximately the
same delay. Gate sizing takes into account both the transis-
tor sizes of the driven gates and the loads of the connecting
wires. As a result, we can count delay in terms of logic gate
delays and we can compare path delays simply by counting
and comparing the number of gates on each path.

This works as long as we can adequately predict the wire
lengths. Gates A, B, D and F in Figure 2 each drive a single
local gate, and so we may assume that the connecting wire
lengths are known in advance.

3This paper addresses primarily the control portion of 6-4 GasP that
generates the handshake operations between GasP modules. Other than
giving an intuition of the data bundling relation between the handshake
signaling on state wire L2 and the data being transferred, we omit any
further discussion of data validity.

The situation for gate C is more complicated: C drives two
local gates, D and X. In addition, C drives a number of
latches and the not so local wire L1 between gates D and
X and the latches. In Infinity, the data latches are placed
near the 6-4 GasP module that controls them. GasP module
and latches together form a macro module with a fixed wire
length for L1. This solves the gate sizing problem for C.

The exceptions are gates E and X that drive the L2 state
wire. The length of L2 depends on the distance between the
modules, and this is unknown until the system layout has
been finalized. If E and X are sized using the wire lengths
for A, B, D and F, as was done in Infinity, the gate delays
for E and X will vary with different module distances and
the throughput will vary accordingly, as demonstrated by
the canopy diagrams in Figure 1(b)–(c).

So, without further investigation into the effects of long
state wires, all we can say is that, for short state wires,
the maximum throughput of 6-4 GasP is the throughput that
corresponds to a cycle time of 10 gate delays: 6 to forward
the data and 4 to move the empty space backward. The in-
vestigation with long state wires follows in Section 4, and is
easier to understand after reading the design details on state
wires and keepers coming up next.

2.1 State Wires

GasP state wires use a form of forward and back handshake
protocol, called “single-track” signaling [1, 15, 9, 2]. In a
single-track protocol, a single wire carries both the forward
and the backward handshake signals. This is attractive, not
only because a single wire occupies less space, but also be-
cause the handshake consumes minimum energy per cycle.
To handshake, a transition must pass in each direction. The
single wire does exactly that, with automatic return to the
initial state after each pair of handshake signals.

The GasP modules in this paper use single-track handshake
signaling to communicate control information only. They
use single-rail signaling to communicate data, as do the
handshake circuits discussed by van Berkel and Bink in [1].
The single-track designs discussed by Nyström et al. in [9]
combine both the data and the control into a single-track
communication protocol, as do Ferretti and Beerel in [2].

There are various ways to implement single-track signaling;
van Berkel and Bink differentiate between “dynamic” and
“overlapping” protocols [1]. Each participant in a single-
track signaling protocol must cease to drive the state wire
soon enough to make room for the action of the other par-
ticipant. Were one participant to drive the wire for too long,
then both might end up driving it concurrently in opposite
directions, consuming unnecessary energy and producing
an indeterminate logic signal. How is this to be avoided?
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Figure 2 A two-stage FIFO with 6-4 GasP modules M1 and M2 connected by a state wire L2. The picture omits the additional
state wires to the left and right of the modules shown. It also omits the data wires and latches. The transistors in each logic gate are
sized such that all gates have approximately the same delay. The designation ”6-4” refers to the forward-backward latencies. The
forward latency from gate A in M1 to gate A in M2 is 6 gate delays, and is covered by the path ABCDEF. The backward latency
from gate A in M2 to gate A in M1 is 4 gate delays, and is covered by the path ABCX. This gives a cycle time of 10 gate delays.
In addition to this global cycle time, each 6-4 GasP module has two local self-resetting cycles of 5 gate delays: the forward loop
goes through ABCDE and the backward loop through ABCXF. The AND function A acts when (a) the predecessor state wire is
high, indicating a full predecessor state with data, and (b) the successor state wire is low, indicating an empty successor state with
space. The action produces a high pulse on the module’s FIRE signal. The FIRE pulse renders the data latches transparent for a
sufficiently long duration to capture the data. It also renders the predecessor state wire empty via transistor X, and it renders the
successor state wire full via Dout and transistor E. By the latter two actions the FIRE signal shuts itself off, cutting its pulse time
down to 5 gate delays. Half keepers, shown in the white insets, use small transistors to retain the voltage on the state wire when
drivers X and E are off. The distributed RC symbol in the L2 state wire refers to the wire model that we use in this paper [11].

In the overlapping protocol, implemented by van Berkel
and Bink, this is avoided because each participant drives
the wire “long enough” for it to pass some threshold volt-
age that will alert the other participant who then takes
over the driving role. The overlapping protocol fits in the
quasi delay-insensitive design style deployed by Philips and
Handshake Solutions [10].

GasP uses a dynamic implementation, which is simpler but
relies on the relative timing of logic gates to avoid drive con-
flicts at the state wire. In GasP, the sender “briefly” drives
the wire to one logic level, signaling the presence of data on
adjacent data wires. The receiver, noticing the change in the
wire’s state, copies the corresponding data and then briefly
drives the wire to the other logic level to indicate that it has
absorbed the data values.

The single-track advantages in GasP are offset by a timing
requirement inherent in the word “briefly”. Because sender
and receiver drive the shared state wire in opposite direc-
tions, each must take care to cease its drive promptly so that
the other has free use of the wire. For a 6-4 GasP module,
“briefly” means “about 5 gate delays” or half the minimum
cycle time. This is where the local self-resetting loops in
Figure 2 come into play, as will become clear by following
one single-track handshake over state wire L2:

• Sending module M1 drives L2 high via transistor E.
After M1 starts driving, it also promptly ceases driv-
ing via its 5 gate-delay forward self-resetting loop
ABCDE. On the receiving end, it takes at least 5 gate
delays for M2 to sense a high voltage level on L2 and
invert it through FABCX to drive L2 low.
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• After M2 starts driving L2 low via transistor X, it also
promptly ceases driving via its 5 gate-delay backward
self-resetting loop FABCX. On the reverse end, it takes
at least 5 gate delays for M1 to sense a low voltage
level on L2 and invert it via ABCDE to drive L2 high.

• Except for their separation in space, the P and N type
driving transistors E and X act as the two halves of
an inverter. However, the crossover current that ex-
ists when one transistor’s drive turns on and the other’s
turns off is at least as low as that of an inverter with a
shared drive. The crossover current diminishes with
longer state wires, as we will explain from the wave-
forms in Figure 5, later in this paper.

The state wires in GasP carry state: they record the full or
empty state of the communication link. To retain the state
for arbitrary periods of time, e.g. when there is a shortage
of data or of bubbles, there are so-called keepers on the state
wire. These are discussed in Section 2.2.

2.2 Keepers

GasP modules include small keepers to retain the charge on
state wires in the face of noise or leakage. Each module
in Figure 2 includes a half-keeper on each state wire that it
can drive. Each half-keeper will keep its state wire either
only high or only low. It takes two half-keepers working to-
gether to retain the state on the wire. The two half-keepers
involved are always on opposite ends of the state wire. For
instance, the half-keeper that is responsible for keeping L2
low resides in module M1 which drives L2 high. And vice
versa, the half-keeper that is responsible for keeping L2
high resides in module M2 which drives L2 low.

The choice of ”drive one level, keep the other” makes it
easy to shut off the half-keeper right at the start of the drive.
Module M1 uses internal control signal Dout1 to shut off
its half-keeper for L2 while driving the state wire in the op-
posite direction, namely high. At the other end of the state
wire, module M2 uses control signal FIRE2 to shut off its
local half-keeper while driving L2 in the opposite direction,
namely low. Shutting off the half-keeper right at the start of
the drive avoids the energy loss that would occur were state
wire L2 driven high while its half-keeper attempts to hold it
low, or vice versa.

It is a happy result of the “drive high, keep low” and “drive
low, keep high” arrangements in M1 and M2 that the half-
keepers themselves help drive state wire L2 in a useful way.
When module M1 starts to drive L2 high, it immediately
shuts off the half-keeper at its end of the state wire. The
half-keeper in M2 at the other end is also shut off, because
that end of L2 is still low.

Only when the far end of L2 reaches the switching voltage
of the receiving gate does the half-keeper at the far end turn
on, and in doing so assist in driving and ultimately keeping
state wire L2 high. This effect, although weak, is observable
in the waveforms of Figure 5 shown later in this paper.

3 Relative Timing Constraints

The 6-4 GasP circuits in the Infinity test chip were validated
using the SPICE electrical simulation tool. We simulated
the behavior of each and every transistor, wire capacitance,
and logic function. This was a fairly laborious and compute-
intensive process. The results of these simulations showed
proper operation over the range of state wire lengths actu-
ally needed in the test chip. Now that we know that the test
chip works, we want to use the GasP modules in more com-
plex designs. In particular, we want to use standard com-
mercial static timing analysis tools and automatic place-
ment and routing software to inspect timing margins and
to drive the layout. This requires a deeper understanding of
the conditions that make GasP work.

Our new approach to timing validation in GasP is based on
static timing analysis of relative timing constraints [4, 13].
Intuitively, relative timing constraints describe the order in
which two signals must arrive at a point of convergence.

The key relative timing constraints for short to medium to
long wire communication in GasP come from the presence
of the two local self-resetting loops. These loops turn off the
communication drive signal to the state wire and we must
avoid letting them turn the drive off prematurely.

Take for instance module M1 in Figure 2. When gate C rises
to start the FIRE1 pulse, both loops DEABC and XFABC
act to end the FIRE1 pulse and this results in ending the
drive on both M1’s state wires. To guarantee that each state
wire is driven long enough to complete its communication,
we compare the communication delay to the self-resetting
loop delays and require the former to beat the latter. Delays
are counted from the start of the module’s FIRE pulse. This
produces four relative timing constraints per state wire.

For example, state wire L2 in Figure 2 produces the follow-
ing four relative timing constraints:

• RT(L2)TransferForward
ResetForward : The forward transfer delay to

drive both ends of L2 high through DE in module M1

is shorter than the forward self-resetting loop delay
through DEABCDE in M1 to cease the drive.

• RT(L2)TransferForward
ResetBackward : The forward transfer delay to

drive both ends of L2 high through DE in module M1

is shorter than the backward self-resetting loop delay
through XFABCDE in M1 to cease the drive.
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Figure 3 Our long-range GasP simulation set up includes a ring of ten 6-4 GasP modules, M1 to M10, connected by nine short
state wires and one long state wire. The circles with designation E or F indicate the initial states of the state wires: E for empty,
i.e. low, and F for full, i.e. high. The ring in this picture starts with one full state wire. The picture explicitly indicates the GasP
signals PRED1 and FIRE1 of module M1 and SUCC10 and Dout10 of module M10. These are the signals that play a direct role in
the handshake communication over the long wire. The picture omits the corresponding signals for the other 6-4 GasP modules.

• RT(L2)TransferBackward
ResetForward : The backward transfer delay

to drive both ends of L2 low through X in module
M2 is shorter than the forward self-resetting loop delay
through DEABCX in M2 to cease the drive.

• RT(L2)TransferBackward
ResetBackward : The backward transfer delay

to drive both ends of L2 low through X in module M2

is shorter than the backward self-resetting loop delay
through XFABCX in M2 to cease the drive.

The M.Sc. thesis by Prasad Joshi [4] shows how to validate
relative timing constraints for a given GasP design using
PrimeTime, the Synopsys static timing analysis tool.

4 Long-Range GasP Simulations

To develop our understanding of long state wires in GasP
we undertook a series of simulations.

First, we simulated the behavior of isolated long wires us-
ing a distributed RC model. We used four R-C-R sections
for every 100 lambda of wire, matching the corresponding
90 nm TSMC wire resistance and capacitance numbers for
state wires. We simulated the wire delays for wire lengths
ranging from 100 to 60000 lambda. We observed that the
delay in the wire is, as expected, roughly quadratic with
its length. However, for longer wires, the far end of the
wire exhibits very slow rise times which renders the precise
meaning of “wire delay” suspect. We observed reasonable
delays for wires up to 30000 lambda, or 1.5 mm, long.

Armed with these observations, we set up simulations of 6-4
GasP modules separated by long state wires. Each simula-
tion involves a ring of ten 6-4 GasP modules with nine short
and exactly one long state wire. Different initializations of
the state wires permit us to generate a canopy diagram to
exhibit the impact of the long wire on throughput. The two
extreme initializations for data-limited rings, with exactly

one full state wire, and for bubble-limited rings, with ex-
actly one empty state wire, will give us a larger time win-
dow to observe the dynamic aspects of the long wire and
its keepers. Figure 3 shows the simulation set up for the
data-limited case with exactly one full state wire.

We simulated each initial configuration with the long state
wire set at a length of 1000, 4000, 10000, 20000, 24000,
and 30000 lambda. To get reasonable simulation times, we
used three R-C-R sections for every 1000 lambda of wire.
This still produces a sufficiently fine-grained wire model.
All simulated configurations with long state wire lengths up
to and including 24000 lambda run correctly.

For the 30000 lambda long state wire we observed failures
in the two extreme initialization scenarios with (a) exactly
one full state wire and (b) exactly one empty state wire:

(a) When we start with one full state wire, initialized as in
Figure 3, we lose the full state during the first hand-
shake over the 30000 lambda long state wire, because
module M10 shuts off its high drive before the wire has
accumulated enough charge to rise from ground level
to the switching voltage level of M1. The ring, now
completely empty with nothing to work on, deadlocks.

(b) When we start with one empty state wire, or bubble,
we see not a loss of the one and only bubble but the
creation of an extra bubble. This is due to the fact that
we initialized the ring with the empty state at the long
state wire. During the first handshake over the 30000
lambda long state wire, module M10 behaves exactly
like it did in the previous scenario: it shuts off its high
drive before the wire has accumulated enough charge
to rise from ground level to the switching level of M1.
And so, we end up with two bubbles instead of one.
With two bubbles, the round trip delay becomes just
short enough to keep the ring going.
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Figure 4 Simulated delays for rising and falling transitions and their voltage levels at the near and far end of the long state wire.
The top window shows the results for the simulation set up in Figure 3 with one full state wire. We measured the delays and
voltages during a full-to-empty single-track handshake consisting of a rising transition followed by a falling transition in the reverse
direction. The bottom window contains similar measurements for the opposite scenario with one empty state wire. The bottom
measurements track an empty-to-full single-track handshake, consisting of a falling transition followed by a rising transition in
the reverse direction. Notice how the delays and voltage levels at the near and far ends of the wire start to deviate for state wires
longer than 5000 lambda. We measured the voltage levels at the end of the drive pulse, and again after charge relaxation when
both ends have the same voltage. Notice how the 20000 and 24000 long state wires depend on charge relaxation to drive the far
end above (top) or below (bottom) the 50% voltage level and thus complete the first part of the handshake. Longer state wires have
an easier task in completing the second part of the handshake, because there is less charge to take away (top) or add (bottom).

The rest of Section 4 focuses on the correctly functioning
designs with long state wires up to 24000 lambda.

4.1 Simulated Wire Delays and Voltage Levels

We measured delays for rising and falling transitions in the
long state wire at both the near end and the far end of the
wire. The near and far end delays are measured from the
time that the drive signal at Dout10 or FIRE1 reaches 50%
of the supply voltage level to the times that the near and far
ends of the wire reach 50% of the supply voltage level.

In dealing with GasP circuits, we have become accustomed
to measuring time in gate delays. With that in mind, we cal-
ibrated all delays, including the wire delays, in terms of τ ,
the normalized inverter delay with equal rise and fall times.

Figure 4 summarizes the measurement results that we ob-
tained for the extreme simulation scenarios with one full
state wire (top) and one empty state wire (bottom). We be-
lieve that these are the simulation scenarios that stress the
GasP ring operations the most. The left-hand graphs show
the normalized delays for transitions at the near and far ends
of the long state wire. The right-hand graphs show the volt-
age levels at both ends, measured at the end of the drive
pulse and again after charge relaxation.

For state wires up to 5000 lambda, the delays for rising and
falling transitions take 2–4 τ , which is about one FO3 or
FO4 gate delay, and about one gate delay in 6-4 GasP. The
voltage levels change more or less simultaneously at both
wire ends, with rail-to-rail voltage swings. The delay is al-
most entirely in driving the wire. Beyond 5000 lambda, de-
lays and voltage levels start to deviate at the two wire ends.
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Figure 5 Voltage waveforms for the 10-stage GasP ring of Figure 3, with a long state wire of length 24000 lambda, and initialized
with one full state wire (top) and with one empty state wire (bottom). The upper frames of each pair show the voltages to the P
and N type drive transistors of the long state wire, viz. Dout10 and Fire1. The lower frames of each pair show the voltages at
the two ends of the long state wire, viz. SUCC10 and PRED1. For very long state wires, the drive pulse shuts off before the far
end of the wire reaches 50% of the supply voltage level. Thereafter, the near and far ends drift closer to the same voltage as the
charge distributes along the length of the wire and relaxes into equilibrium. The half-keepers at the far-end turn on when the far
end reaches its switching voltage, and in doing so assist in keeping the state wire at or closer to the chosen voltage level.

The delays and voltage levels in Figure 4 characterize the
critical handshake communications over the long wire. The
handshake communication in the top window starts with a
low pulse on Dout10 that drives a rising transition over the
wire, and is followed by a high pulse on FIRE1 that drives
a falling transition back over the wire. The longest delay
belongs to a rising transition over the 24000 lambda long
state wire, and is about 20 τ . This delay is so long because
the transition does not quite make it to the far end of the
wire before the drive pulse turns off. In fact, when the drive
pulse turns off, the far end has risen only to about 30% of
the supply voltage level. After the drive ceases, the charge
in the state wire distributes itself along the length of the wire
and relaxes to reach an equilibrium at about 60% of the sup-
ply voltage level. It is the charge relaxation that completes
the rising transition at the far end of the wire and in doing

so enables the reverse handshake. Because the wire is only
partly charged after the rising transition, the delay for the
following falling transition is significantly shorter: it takes
about 9 τ to pull the far end back down to the 50% level.

The simulation results in the bottom simulation window of
Figure 4 are similar. We expected the results in the top and
bottom windows to be more symmetric. Upon inspection,
we noticed that the gate delays in our 6-4 GasP modules are
not as well matched as is possible with logical effort. The
implications of both simulation results are similar, though.

Figure 5 shows the waveform details for the 24000 lambda
simulations of Figure 4. As before, the top window gives
the details for the simulation scenario with one full state
wire, and the bottom window covers the simulation scenario
with one empty state wire.
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The upper frames in both the top and bottom windows of
Figure 5 show the waveforms for the drive pulses Dout10
and FIRE1. A low pulse on Dout10 briefly drives P type
transistor E in M10 and pulls the long state wire high at
SUCC10. A high pulse on FIRE1 briefly drives N type tran-
sistor X in M1 and pulls the long state wire low at PRED1.
Each drive pulse lasts about 5 gate delays. The waveforms
at the two wire ends follow in the lower frames.

Note that Dout10 is always higher in absolute voltage than
FIRE1. This indicates that transistors E and X are never
both on at the same time. This behavior is characteristic
of GasP circuits, even for short state wires. The result is
that transistors E and X that act as the two halves of an
inverter exhibit a lower crossover current than an inverter
with shared drive. With longer state wires, the crossover
current diminishes further and finally disappears, due to the
extra wire delay that separates the drive pulses. There is no
crossover current between E and X in the long state wire
simulations of Figure 5.

The important message in Figure 5 is that the charge on
the wire continues to distribute throughout the length of the
wire even while the wire is undriven, i.e. even during the
periods marked “drift”. Thus, it suffices, during the avail-
able 5 gate delay period of drive, to insert or remove enough
charge in the wire to ensure that its voltage will be clearly
above or below its chosen threshold after the distribution
finishes. The amount of charge that a long wire can accept
in 5 gate delays is limited by the resistance of the wire rather
than by the size of the driver. This is what limits the wire
lengths of the uniform, minimum-width metal-2 or metal-3
state wires that we used in Infinity and in the simulation
studies reported in this paper. As we pointed out earlier:
this limit is somewhere between 24000 and 30000 lambda.

Charge distribution without drive, or “charge relaxation” as
we call it in the title of this paper, permits GasP modules to
use a single long wire for bi-directional handshake signals.

4.2 Simulated Throughput

The canopy diagrams in Figure 6 show how latency and
throughput are affected by the long state wire.

Latency increases by the delay of the wire. With a longer
wire, data and bubbles take longer for each trip around the
ring because they must pass once through the long state
wire. The increased latency lowers the left and right sides
of the canopy diagram. This effect appears small because
the long wire delay is a relatively small fraction of the total
latency around the ring.

The long wire also limits throughput. The impact on
throughput is pronounced because each and every element
passing through the long wire must use it twice to execute
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Figure 6 Simulated canopy diagrams for the 10-stage
GasP ring of Figure 3 for various lengths of the long state
wire. The lower sides show how longer wires slightly
increase latency. The flat and lower tops show how longer
wires dramatically decrease throughput.

a single-track handshake. Not only is the impact of the
long state wire felt twice, but its effect accumulates because
queued-up data elements and bubbles must wait for earlier
handshakes to complete. This effect shows up dramatically
as the flat and lower tops in the canopy diagrams for the
longer state wires in Figure 6.

Note that the maximum throughput with the long state wire
set to 24000 lambda is about half that of the maximum
throughput with the long state wire set to 1000 lambda.

5 Summary: Distance Constraint Graph

Qualitatively, our simulations show that for sufficiently
short state wires, the main impact of the wire is to retard
the action of its driver. The capacitance of short wires domi-
nates their resistance and so the driver “sees all of the wire”.
For such state wires, a larger driver can succeed in driving
the wire faster. We can use logical effort to size the driver
to provide an acceptable communication delay.

At some medium length of the state wire, however, increas-
ing the wire length fails to retard further the action of its
driver. In this regime, the driver saturates, pinning the near
end of the wire to the power or ground rail. But the resis-
tance of the wire itself limits the speed with which the far
end of the wire can respond. In the 90 nm TSMC CMOS
technology that we use, this regime sets in at 5000 lambda.
In effect, the driver can no longer see the total capacitance
of the wire, but only the capacitance of its near end.
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Figure 7 Distance Constraint Graph (90 nm CMOS),
showing how the distance L2pred from a given 6-4 GasP
module to its predecessor, and likewise L2succ, from the
module to its successor, are constrained according to:
• (white area)
Relative timing under the distributed RC model, which
predicts functionality for distances below 16000 lambda.
• (light-grey area)
Charge relaxation, which predicts functionality for dis-
tances up to 24000 lambda.
• (everywhere except black area)
Relative timing under the lumped capacitance model,
which predicts functionality, i.e. correct operation, when
L2pred and L2succ differ by less than 37000 lambda.

At about 16000 lambda, the delays for rising and falling
transitions to the far end of the wire begin to exceed the
5 gate delay self-resetting loops in the 6-4 GasP module.
This is the point where the relative timing constraints of
Section 3 begin to fail. The wire length is now long enough
that the driver shuts off before the far end of the wire has
risen or fallen to the 50% voltage level. We now enter the
domain of long-range GasP and charge relaxation.

For long state wires, it is the charge on the wire that repre-
sents its state, not the voltage. Though the wire is a passive
component, it acts through its charge, even when undriven.
The charge in the wire distributes itself and relaxes to oc-
cupy the full length of the wire. The driver must put enough
charge into it so that the wire relaxes within the switching
voltage range of the receiver. Our simulations show that the
driver can do this for state wires up to about 24000 lambda.

The above summary captures the results of our second study
of wire delays in GasP. The distributed RC model that we
use for the state wires in our second study significantly re-
duces the maximum module distance suggested by the sim-
ple lumped capacitance model used in our first study [5].4

4The goal of our first study in [5] was to understand the effects of the

In the lumped capacitance model, the delay of a self-
resetting loop depends on the delay of the state wire at-
tached to it. With a lumped capacitance model, the forward
self-resetting loop delay always exceeds the forward trans-
fer delay and the backward self-resetting loop delay always
exceeds the backward transfer delay. Thus, in this model,
a self-resetting loop can never prematurely terminate the
drive of “its own” state wire, but the self-resetting loop’s
partner still can. Therefore, the worst that can happen is that
the delays of the two self-resetting loops in a GasP module
differ enough so that the faster loop terminates prematurely
the drive of the slower state wire. The lumped capacitance
model predicts correct operation provided the difference in
the lengths of the two state wires is below some maximum,
which is 37000 lambda in our technology.

The Distance Constraint Graph [6] in Figure 7 gives a
graphical overview of the results of both studies.

6 Conclusion and Future Work

The need to drive a state wire for “long enough” to deliver
adequate charge presents a new kind of timing constraint.
Unlike most constraints that consider the time of arrival of
two signals, this one considers the shut off time of a drive
signal. Moreover, it is couched not in terms of something
that has happened, but in terms of something that will hap-
pen after the signal ceases.

Knowing the importance of charge gives us a better under-
standing of single-track communication. It is comforting to
know that GasP modules can function, albeit with reduced
throughput, with state wires so long that their internal delay
is nearly a full GasP cycle. Such long wires deliver signals
after their drive has ceased.

One might accommodate longer state wires by extending
the drive period for a longer time. However, because GasP
circuits obtain logical simplicity by representing a send or
receive transaction as a pulse of standard duration, we are
reluctant to make some GasP modules slower than others.

Exploring wire lengths beyond what might be considered
reasonable, and still observing correct GasP functionality,
has taught us that GasP designs offer quite a bit of freedom
to trade off distance and cycle time.

These results apply equally to other single-track handshake
protocols, including [1, 15, 9, 2]. All single-track circuits,
even those that are based on the conservative overlapping
protocol by van Berkel and Bink in [1], cease to charge or

500 versus 5000 lambda long state wires in Infinity. According to the wire
classification in Section 5 these are short wires. The lumped capacitance
model was O.K. to use in the context of our first study. But it is not the
correct model to understand the delay effects of medium and long wires in
GasP, which is why we use a distributed RC model in our second study.
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discharge the wire, or wires in case of [9, 2], based only
on information available at the near end. The present study
extends the operational analysis available for single-track
signaling beyond the lumped capacitance model.

We are currently investigating how to add long wires into
the logical effort models for logic with interconnect [7],
how to support them in our timing analysis tools [4], and
how to engineer them to minimize the loss in latency and
throughput [8].

Perhaps the most important implication of this study is that
one can engineer the wires! Indeed, in the current era of cir-
cuit technology where the properties of wires dominate de-
lay as well as power and area, one should engineer the wires
as well as the transistors. For example, a 50% increase in
the width and spacing allocated for a 6-4 GasP state wire
can improve its delay by a factor of two at an area cost of
less than 1% for a single-rail 64-bit datapath. It is wise to
allocate more space to a single-track state wire that makes
multiple transitions per transaction than to a bundled data
wire that makes only one. Improvement of selected state
wires may further optimize the design at locations where the
bi-directional single-track signaling would otherwise fail to
keep up with the uni-directional data, as for example shown
in [3]. Understanding how to use wire engineering to im-
prove distance and cycle time permits us to reason about
and optimize the insertion and placement of GasP repeaters.

We hope soon to build a next test chip to confirm that real
GasP circuits can indeed operate with long state wires. This
chip will also explore how engineering the wires can im-
prove performance. We hope that measurements from such
a chip will shed light on the speed, the power demand, and
the reliability of long-range GasP circuits.
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