2010 IEEE Symposium on Asynchronous Circuits and Systems

Click Elements

An Implementation Style for Data-Driven Compilation

Ad Peeters, Frank te Beest, Mark de Wit
Philips Incubators
High Tech Campus, 5656 AE Eindhoven, the Netherlands
{ad.peeters,frank.te.beest,mark.de.wit} @philips.com

Abstract—This paper presents a new design template and
design flow for the implementation of data-driven asynchronous
circuits. It relies on the use of edge-triggered flip-flops as the
only storage elements, not only for the datapaths, but also for
the control circuits; latches and C-elements that are common
in many asynchronous circuit design styles are not required.
The design template uses a two-phase handshake protocol for
inter-component communication. In a pipeline structure, these
circuits operate near the speed of Mousetrap circuits, but the
required design-flow is simpler. The implementation style —
which we refer to as Click elements — has been chosen to
resemble synchronous circuits as much as possible. This allows
for the use of conventional optimization and timing tools in the
design flow and for a cheaper design-for-test implementation.
The click templates are well suited for a data-flow driven
compilation flow, which avoids much of the control overhead of
traditional syntax-directed compilation. The two-phase circuits
show a significant improvement in performance and energy
efficiency compared to four-phase single-rail circuits.

Keywords-asynchronous circuits, pipelines, two-phase cir-
cuits, control-data-flow circuits.

I. INTRODUCTION

Syntax-directed compilation of asynchronous circuits has
been established as a practical way of designing robust
asynchronous circuits, with hundreds of millions of ICs in
the market today in the smartcard, identification, and in-
vehicle networking domains. Although this macro-modular
approach has an inherent elegance, it certainly also has its
limitations. Perhaps the strongest point of syntax-directed
compilation is that it allows a modular approach in which
handshake protocols at component interfaces help in local-
izing timing assumptions. Four-phase handshake protocols
appear to lead to the simplest circuits, yet — in combination
with the resulting distributed but interconnected handshake
controllers — this tends to limit the maximum achievable
performance. The performance limitation may not be an
issue for the implementation of reactive state machines and
simple microcontrollers, but it does impact the applicability
in pipelined microprocessors and digital signal processing
functions.

Part of this work has been supported by CATRENE under project CT302
TOETS.

978-0-7695-4032-0/10 $26.00 © 2010 IEEE
DOI 10.1109/ASYNC.2010.11

Willem Mallon
NXP
High Tech Campus, 5656 AE Eindhoven, the Netherlands
w.mallon@nxp.com

Pipelined designs have become ever more important in the
experiments and products we have been involved in. These
designs turned out to hardly benefit from the expressive
power of the design language, since they are based on the
replication of a few simple templates.

Our initial approach to improve pipelined design was to
limit the design to the use of these templates and to provide
an optimized implementation thereof. This however leads to
clumsy and bulky code that is difficult to maintain and in
a way reduces the abstraction level of the source code. The
optimization in case of a syntax-directed compilation not
only requires careful tweaks of the source code, it may even
include setting compiler directives on parts of the design.

To restore a high level of abstraction for pipeline designs,
we moved from syntax-directed compilation to dataflow
compilation. Dataflow techniques are well known in com-
piler design and are now rapidly gaining popularity in
asynchronous circuit design [1], [2], [3], [4].

One of the bottlenecks in the performance optimization
of asynchronous circuits is static timing analysis in the
presence of combinational loops. In order to verify timing
assumptions (such as delay matching and isochronic forks)
in control circuits, static timing analysis needs to be per-
formed at various stages during the optimization and sign-
off. Combinational loops, which for instance exist inside
C-elements and in more global asynchronous control loops,
have to be broken first in order to enable the analysis to be
done. This limits optimization, especially since different set
of timing breaks are needed for different modes of operation
of the circuit (such as initialization, functional, and scan
modes).

A side-effect of the omnipresence of combinational loops
in asynchronous circuits is that it not only complicates
static timing analysis, it also turns out to make performance
estimation by designers a challenge, even when supported
by transparent compilation. Apparently, the plug and play
simplicity of handshake circuits has an associated price in
terms of complexity and performance.

In working with standard (third-party) EDA tools, es-
pecially for physical synthesis and static timing analysis,
we have learned that using flip-flops rather than latches as
state-holding elements greatly simplifies the design flow. In

IEEE
computer
® psouety

aﬁ@'b

a.req b.req
phasen
a.ack b.ack
<—
a.data datay b.data
—

Figure 1. Handshake (top) and signal (bottom) representation of a pipeline
stage, where variables have been indexed with stage number N.

addition, today’s standard-cell libraries have many optimized
implementation for flip-flops and only a few latches, if any.
A third reason to prefer flip-flops over latches in datapaths
is the demand for design-for-test, which is typically im-
plemented using scan test. Scan-testing in the presence of
latches requires the addition of slave latches that add an over-
head that more-than-eliminates any advantage that latches
may have from a functional perspective, in terms of area,
energy-efficiency, and performance. Even optimizations like
L,Lo* testing [5] are not able to completely remove this
overhead.

In this paper we present two contributions, the com-
bination of which is especially interesting. The first is a
new pipeline template named Click based on two-phase
handshake protocols and a circuit implementation that only
uses flip-flops to store state, both for control and data. When
taking design-for-test into account, these circuits are more
efficient than Mousetrap circuits [6]. The second contribu-
tion is a data-driven compiler and associated design flow
that enables high-level design and allows the exploitation of
software compiler technology. The combination of the two
leads to circuits that are faster, are more straightforward for
performance analysis and reduce the burden of the designer
to optimize the source code, when compared to four-phase
single-rail syntax-directed compilation.

II. CLICK ELEMENTS

We use the name Click elements to refer to a data-driven
two-phase implementation of a class of handshake circuits in
which control information is forwarded with the data rather
than via independent control paths. In this implementation,
all input handshakes are passive and all output handshakes
are active. The channels used to connect the elements are
therefore of the push type (or nonput for control only
channels). This makes these elements suitable for use in a
data-driven compilation scheme. We will first introduce the
implementation of a simple pipeline stage before presenting
generalized Click elements.

a.ack -«

a.req ‘ b.ack
J) ‘ oi > breq

a.data — data —— b.data

Figure 2. Click implementation of simple pipeline stage.

A. Simple pipeline stage

The simplest Click element is a pipeline stage with a
single input handshake and a single output handshake, as
shown in Fig. 1. Such a stage element will repeatedly accept
new data from its passive input (denoted by an open circle)
and present this data at its active output (denoted by a filled
dot), acting as a buffer. The critical operation of the stage
is the copying of new data, which is triggered when (i)
new data is available at its input, and (ii) the current data-
item has been accepted at its output, for instance by a next
pipeline stage. This precondition for accepting new data can
be defined precisely if we introduce a state-holding element
that defines the phase of the data, assuming that this will
change at every cycle of operation.

With reference to Fig. 1, the triggering moment and
associated action can be defined as:

if phaseny_1 # phasey and phasenx = phaseni1
then phasey,datay := phasen_1,datay—1

Assuming a two-phase handshake protocol on channels a
and b, this can be implemented as:

if a.req # phasey and phasey = b.ack
then b.req, a.ack, phasey, datay :=
—b.req, a.req, phasen—_1, datay_1

If we then choose a Boolean value for the phase, then we
can select it such that it encodes a.ack, and we arrive at our
Click implementation of such a pipeline stage:

if a.req # a.ack and a.ack = b.ack
then b.req, a.ack, datay := —b.req, a.req, datay—1
The trigger condition is equivalent to:
a.req * —a.ack * —b.ack + —a.req * a.ack * b.ack
Such a stage requires a single control flip-flop to store the

control state (a.ack), as shown in Fig. 2. For the generation
of the next state, this implementation locally inverts the

control signal. Naturally, making a copy of a.req is also
an option, as specified above.
One of the reasons for calling such circuits Click elements
is that the control elements have a precisely defined moment
at which the state is updated, much like in a synchronous
circuit. In contrast, in most asynchronous circuits the control
and datapath states more or less evolve autonomously, albeit
under control of handshake signals.
An important requirement of this circuit is the generation
of a well defined clock pulse for the registers. In the inactive
state, the outputs of both AND gates are zero. The circuit
then waits for changes on the incoming handshake signals.
When this happens, the output of one of the AND gates
goes high and this produces the rising edge of the clock. As
a response to the clock, the registers update their state. For
the control register this inverts the state bit. Now the active
AND gate goes back to zero, the inactive AND gate stays
zero. The result is the falling edge on the clock signal. Two
constraints need to be satisfied for the correct operation of
this circuit.
1) The clock pulse width must be larger than the min-
imum pulse width defined in the technology library.
This can be checked by a static timing analysis tool.

2) During the active phase of the clock, the input hand-
shakes have to remain stable. The handshake signals
can only change after a transition on the corresponding
output handshake signal.

Obviously, glitches on the handshake signals are not
allowed. Since all handshake signals are driven by flip-flops,
these are safe.

The correct operation of the circuit is not dependent on
the potential differences in arrival time of the branches of
the forks driving the AND gates. The AND gates need
three valid inputs to fire. Only one of the AND gates is
‘selected’ by the internal state bit. Transitions on the other
AND gate are masked. Once activated, the state bit changes.
This affects both AND gates, however, since during this time
the handshake signals don’t change, the only possible result
is that both AND gates go back to the zero state.

The implementation of Fig. 2 has also been described
in [7]. We will later introduce a number of generalizations
of this circuit (with multiple inputs, outputs and state vari-
ables) that are not covered by this publication. A dual-rail
version of this circuit has also been used in asynchronous
interconnect design [8], [9]. This version also uses flip-flops
as state-holding elements but requires more XOR gates in
the control logic.

Two-phase control circuits have been introduced before.
In Fig. 3 our circuit is compared to two of these existing
approaches. The simplest control circuit is based on a so-
called Muller pipeline [10], in which a Muller C-element and
inverter together form the control circuit. Sutherland’s Mi-
cropipelines [11] are based on this control circuit. Fig. 3(a)
shows an implementation where the feedback-loop inside

a.req
< b.ack
Majority[D< (a)
a.ack b.req
a.req b.ack
Il (b)
a.ack b.req
a.req
g D b.ack
FO) ———
< (c)
a.ack b.req
Figure 3. Three two-phase pipeline implementations, with feedback-loop

based on C-element (a), latch (b) and flip-flop (c).

the C-element is made explicit by showing a possible
implementation of the C-element based on a majority-gate.
This circuit does not contain a four-phase signal that can be
easily used to control datapath latches or flip-flops. It can be
combined however with double-edge-triggered flip-flops or
toggle-latches, both at the price of extra multiplexer delay
in the datapath.

A more attractive two-phase pipeline control circuit is
Mousetrap [6], shown in Fig. 3(b), where the control
feedback-loop includes a four-phase signal (labeled ’en’ in
the picture) that can be used to enable both the control
latch and the datapath latches (not shown in the diagram).
In contrast to the Muller control, the feedback loop in the
Mousetrap circuit is broken by a state-holding element,
namely the latch. Since this is a level-sensitive element, this
still leads to complications for timing analysis and design-
for-test.

Fig. 3(c) shows the Click implementation introduced
above, which also includes a four-phase signal (labeled °g’
in the picture), that is used to clock both the control and
datapath flip-flops. One may observe that in the Click circuit,
the control feedback loop is broken by an edge-triggered
element, which facilitates both timing analysis and design-
for-test. Compared to the Mousetrap circuit, one may note
that the combinational function in the control feedback loop
is slightly more complex (it has three instead of two inputs),
which is likely to lead to a somewhat reduced performance

0 —(
cl —Q SELECT @— sel
c2——(

Figure 4. Handshake symbol SELECT with three inputs.

before design-for-test is introduced.

The Click implementation presented in Fig. 3(c) can be
easily generalized to control circuits with multiple inputs,
multiple outputs, and multiple control flip-flops, simply by
changing the feedback function F(). The Click template can
thus be used to implement handshake elements with at least
one passive input and at least one active output handshake
port.

In general, a Click implementation consists of:

1) A control circuit, consisting of combinational logic
and control flip-flops in which the combinational logic
generates the clock signal for the flip-flops. A general
version of the control circuit is shown in Fig. 3(c).

2) A datapath circuit (optional), consisting of combi-
national logic and datapath flip-flops (registers), for
which the clock signal is generated by (and shared
with) the control circuit.

The combinational function in the control circuit precisely
defines the trigger moment for the datapath. This trigger
point leads to a rising clock edge on the local clock, which
updates both the control and datapath flip-flops, and as a
side affect also generates the (redundant) falling edge of
that same clock. In the following sections some examples
of generalized Click elements are presented.

B. Example: SELECT

The SELECT is an example of a handshake element that
can be implemented with the generic Click template. It
has an arbitrary number of passive inputs, for which the
environment will guarantee mutual-exclusive activation (if
not, then this can be arranged by prefixing the element with
an arbiter component to implement this mutual exclusion),
and one output port. The SELECT component waits for
a handshake on one of its inputs to be activated, and
will subsequently send on its output a one-hot encoded
data item indicating which port activated the select. Once
this information is acknowledged, the input will also be
acknowledged. An example of this component for three
inputs (c0, cl, and ¢2) is shown in Fig. 4.

Fig. 5 shows the implementation of the SELECT with
three channels. This circuit contains three flip-flops that
maintain control status, namely which handshake port (0, 1,
or 2) initiated the handshake. This state is needed to generate
the acknowledge signal and to generate the one-hot encoded
data for the sel output port.

One may observe that in this circuit, the next state of the
control flip-flops is not always the inverse of the previous

c0.req \
cl.req ' > sel.req
c2.req ﬁ/

sel.ack

c0.req c0.ack cl.req % clack c2.req c2.ack

sel.data[0]

sel.data[1] sel.data[2]

Figure 5. Implementation of Select element.

state. Only for the then-active control channel, the clock-
event generated by sel.ack will change the state of the
flip-flop; the other two state bits will remain unchanged.
Therefore the next-state of the control flip-flops cannot be
generated using the inverter feedback, as was the case for
the simple Click element presented in Fig. 2.

C. Example: JOIN stage

The implementation of a Join stage is presented to illus-
trate that the Click template indeed allows the elimination of
C-elements in pipelines, such in contrast to the Mousetrap
template.

a —»(
JOIN c

b —(C

Figure 6. Handshake symbol for JOIN element.

A Join component with two inputs is shown in Fig. 6.
It will repeatedly wait until new data has arrived on inputs
a and b, and then forward the combination of the two on
output ¢, and store it internally.

The implementation of this Join component would tradi-
tionally require a C-element to synchronize the incoming
requests on a and b, before activating a standard pipeline
state that would capture the data and forward it to c. An
example of such an implementation can be found in the
literature on Mousetrap [6].

In the Click implementation of a Join element, we can
simply make the combinational feedback function more
complex, so as to precisely define the capture moment in
terms of the inputs. This implementation is shown in Fig. 7,
in which function F() stands for:

(a.req # c.ack) and (b.req # c.ack) and (c.ack = c.req)

which is equivalent to:

b.req

c.ack
a.req l i
FO
g
a.ack c.req
b.ack

Figure 7. Click implementation of control circuit for JOIN element.

a.req*b.req*—c.req*—c.ack +
—a.req*—b.req*c.req*c.ack

D. Example: Arbitrated Merge

No asynchronous circuit solution is perfect, and the Ar-
bitrated Merge component is an example of this. The Click
template does eliminate the need for C-elements in control
circuits, but it fails to eliminate the use of the elusive mutual-
exclusion element.

The Arbitrated Merge is a handshake element suited for
Click implementation. Its handshake symbol is shown in
Fig. 8. The element shown has two input channels (a and b),
and an output channel c. Data that arrives at the element via
handshake on a or b is propagated to channel c. The data
on ¢ will be interleaved; so when there is a conflict (data
arriving on a and b simultaneously), the Merge will make a
choice on which channel to serve first.

4 —>C
MERGE c
b L
Figure 8. Handshake symbol for MERGE element.

A Click implementation of the Merge is shown in Fig. 9.
The element that generates signals a.sel and b.sel is a so-
called mutual-exclusion element, which guarantees that only
one output will go high, even if both inputs are high. When
either a.sel or b.sel goes high, the clock signal for the Click
pipeline is generated, which latches both the three control
signals (a.ack, b.ack, and c.req), and the datapath bits (c.i,
generated from either a.i or b.i, depending on which input
is selected by the mutual-exclusion element).

One may observe that control signal c.req will be inverted
unconditionally, upon each activation. In contrast, control
signals a.ack and b.ack are inverted conditionally, depend-
ing on which channel is selected by the mutual-exclusion
element.

E. Example: DEMUX

The examples shown so far all generate an internal clock
signal that is directly distributed to all control and datapath

c.req
c.ack

areq

a.ack §> | a.sel clk
b.req b.sel
b.ack
clk clk
asel b.sel
> a.ack > b.ack
— >
clk clk

a.sel
c.req ai ci
b.i

b.sel

Figure 9. Click implementation of arbitrated MERGE handshake compo-
nent.

flip-flops. Selective updating of control flip-flops is then
implemented in the combinational logic, by augmenting the
feedback-function for the control element, such as in the
implementation of the Merge element shown in Fig. 9.

Out0
Sel —Q DEMUX

Outl

Figure 10. Handshake symbol Demux with two outputs.

The Demux component is an example of a component that
can also be implemented using clock gating in the control.
The Demux handshake element, whose symbol is shown
in Fig. 10, is a data-driven demultiplexer that repeatedly
receives on its input data-items that are propagated to one
of its outputs, where the destination is encoded in the input.

Fig. 11 shows a Click implementation of the Demux, in
which the destination of incoming data is one-hot encoded as
part of the incoming data on Sel. The destination can then
be used as a clock-gating condition to selectively update
either the request on either channel OutO or channel Outl,
depending on which output is selected.

One may observe that only one of OutO.req or Outl.req
will toggle per activation. Therefore, signal Sel.ack can also
be generated with an XOR function of these output request
signals, thereby avoiding the use of a flip-flop. For a generic
Demux element with more than two channels this is more
costly than using the extra register, since the complexity
of the XOR function would increase, whereas the flip-flop
implementation shown here suits all.

It is also possible to implement this element in an un-
buffered way, where the data flip-flops are omitted. In such
an implementation, the Sel.ack signal would have to be de-
layed until the output that was addressed has acknowledged
completion. This would require an XOR function on the

Sel.ack

Out0.ack
. fe |
Sel.req
‘ g) Outl.ack
(@)
Sel.data[1]
\
sel.daJa[O] J E
L Out0.req

Outl.req

U A
Al

Out0.data

Outl.data

Sel.data[2..N]

Figure 11. Handshake element Demux with two outputs.

incoming acknowledge signals of the outputs.

III. DESIGN FLOW

A complete high-level synthesis flow to create Click net-
works has been largely created from scratch. The only part
that has remained the same is the front-end of the compiler.
This has been done to ensure source code compatibility with
the syntax-directed flow. The source code language is Haste,
although it should be straightforward to replace this by a
SystemVerilog or SystemC front-end, or even add support
for design languages like Simulink [12].

An overview of the design flow is given in Fig. 12. It
consists of three steps before handing the design over to
a standard third-party backend flow for placement, routing,
and sign-off. The three steps are:

o Compilation (tool name: htcomp)

e Mapping (tool name: htmap)

o Processing for Optimization, Scan & Timing (POST)

(tool name: htpost)

The interfaces between the handshake tools are based on
standard file formats, but with proprietary extensions used
for functionality that is not available in the basic format. For
the handover to third-party tools, most design information
is passed on using standard file formats. For the additional
requirements, custom constraints are used together with tool-
specific scripting.

Haste program

htcomp Compilation
Data driven
netlist
htmap Mapping to gates

Gate level netlist

htpost

Optimization,
Scan and Timing

Relative
Constraints &
Scripts

Standard (sdc)

Gate level netlist Constraints

Layout &
Verification

Handover to 3" Party
tools

Figure 12. Handshake element Demux with two outputs.

A. Compilation

The compiler converts a Haste program into a data-driven
handshake circuit. One of the biggest differences is that
its compilation is not syntax-directed like the old compiler,
which means that there is no longer a one-to-one relation
between Haste constructs and handshake components. With
syntax-directed compilation the designer decided where and
when sequencers and storage elements are introduced by
using semicolons and variables. In the new data-driven com-
pilation scheme these decisions are made by the compiler
(which can be guided by constraints).

This approach not only enables more compiler optimiza-
tions but it also keeps the Haste code clean from implemen-
tation details. For example, Fig. 13 and Fig. 14 show the
Haste code for the two compilers of a process that performs
conditional inputs without using registers to store the input
value. The syntax-directed version requires probes because
using a variable (as x and y in Fig. 14) would introduce
storage in the circuit. This is costly both in terms of area and
time to read and write the extra variable. Probes are low-
level constructs that are intrinsically unstable and require
compiler directives to suppress warnings about potentially
unsafe code. The probe construct and compiler directive

mux :proc (
S?chan bool & IN1,IN2?chan T & OUT!chan T).
forever do
wait (outprobe (S))
; if {$STABLE} dataprobe (S) {$} then
wait (outprobe (IN1))
; OUT!{SSTABLE} dataprobe (IN1) {$}
; INL1?”
else
wait (outprobe (IN2))
; OUT!{SSTABLE} dataprobe (IN2) {$}

; IN27?7
fi
; S?7
od
Figure 13. Syntax-directed Haste code for multiplexer without storage

{$NR_BUF 70’} mux:proc (

S?chan bool & IN1,IN2?chan T & OUT!chan T).
begin

x:var bool & y:var T
| forever do

S?x

; if x then IN1?y else IN2?y fi

; OUT!y

od
end {s}

Figure 14. Data-driven Haste code for multiplexer without storage

make the code harder to write and understand. This version
also has explicit sequencing of actions, further reducing its
speed.

The data-driven version nicely separates the functional
description of the multiplexer and the number of storage
elements used for its implementation (which is set with a
compiler directive). Using data-flow analysis, the compiler
can determine that no storage is required. The current default
in the compiler is to insert a single pipeline stage (buffer)
in each procedure. This can be overruled by specifying a
compiler directive for the procedure.

The new data-driven compiler is source code compatible
with the previous one. However, non-handshaked expres-
sions, like probes and wires, do not fit well in the data-driven
compilation scheme. The values of these expressions are
always observable, which makes it more difficult to create
a pipelined implementation. When compiling these expres-
sions the compiler defaults to syntax-directed compilation,
which usually results in complex controllers with multiple
sequential steps (instead of the single-sequencer controllers
generated by the data-driven approach). Haste designs that
have been optimized for syntax-directed compilation typi-
cally use many non-handshaked expressions, which reduces
the potential for optimization by the compiler. Therefore a
rewrite or cleanup of the Haste source code is typically
needed to truly benefit from the data-driven compilation

scheme.

The compilation flow from Haste to a handshake circuit
is done in three steps, two of which are shown in Fig. 16
for the Haste program in Fig. 15. First Haste is translated
to a control-data flow graph (CDFG), which is a Petri net
that contains only the essential dependencies between atomic
actions and computations in the Haste code. The CDFG
represents the complete interface between the Haste-specific
front-end of the compiler and the data-driven back-end. It is
based on the format defined in [13], which is also used in
[14]. The nodes in the CDFG represent the operations in the
circuits, while the edges represent the data transfers between
the nodes. Each data transfer can be seen as a movement of
tokens, where a node with a valid set of tokens on its inputs
consumes these and produces a set of tokens on its outputs
(typically one). Edges can also have an initial token directly
after reset.

forever do

IN?x
; if x.valid then
result := f(x.data)
else
result := 0
fi
; OUT!result
od

Figure 15. Simple Haste program

Every CDFG node results in a unique handshake compo-
nent instantiation (i.e., there is no hardware sharing between
node implementations). In the initial CDFG every edge
represents the value transfer of a single Haste variable.
This will result in an implementation with fine-grained
parallelism. However, more parallelism does not always
give higher performance if extra synchronization is required.
Therefore, before proceeding to the next step, the CDFG
is transformed by merging edges and nodes to reduce the
number of incoming and outgoing edges of each node
(which determines the amount of synchronization).

In the second step (not shown in Fig. 16) the compiler de-
cides where to insert buffer (pipeline) components. A buffer
is a storage component that alternates between receiving a
value on its passive input and sending that value via its active
output. Buffers can be inserted on any edge in the CDFG.
The cost of a buffer (i.e., the number of registers) depends
on the bit-width of the edge on which it is placed. During
buffer insertion the compiler tries to minimize the number
of registers while satisfying the following three constraints:

1) The architecture defines that every edge with an ini-

tialization token must be implemented with a buffer
that starts with sending the initialization value.

2) Every cycle in the CDFG must contain at least two

buffers (otherwise deadlock would occur because a
single buffer alternates between inputs and outputs).

Figure 16. CDFG and handshake circuit for Haste program of Fig. 15.

3) There must be at least N buffers on every path from
any input to any output of the CDFG (where N
specifies the number of pipeline stages). By default
N is one, but this can be overridden for every Haste
procedure using a compiler directive (e.g., as shown
in Fig. 14).

This optimization problem is solved by a heuristic algo-

rithm, which falls outside the scope of this paper.

The third and last step converts the CDFG to a handshake
circuit. This step is relatively straightforward because the
operation of a Petri net closely matches the behavior of
a data-driven handshake circuit. Every type of node in
the CDFG can be directly mapped onto a corresponding
handshake component with passive inputs and active outputs.

The generated handshake circuit is written into a new
SystemVerilog-based format. The main advantages of this
new format are:

o Combinational logic in the data-path is translated into
RTL Verilog, which can be synthesized with standard
EDA tools. This enables the flow to take advantage
of the latest developments in logic synthesis. It also
makes it easier to port the flow to different standard-
cell libraries. Finally it allows for RT-level simulations
(which are faster than gate-level simulations).

o The hierarchy of the Haste design (i.e. procedure call
graph) is preserved in the handshake circuit. This fa-
cilitates analysis and constraint generation during later
stages in the design flow.

o It allows annotations for each channel and compo-

nent, which enables mixing of different implementa-
tion styles in a single handshake circuit. This can for
example be used to specify two-phase or four-phase
operation.

B. Mapping

The mapper takes the data-driven handshake representa-
tion of a design and combines this with a library of compo-
nent implementations to create a gate-level netlist and a set
of timing constraints. Initial mapping is a straightforward
substitution of handshake components by their respective
gate-level implementations. The RTL parts of the design
are given to a third-party logic synthesizer and the resulting
logic is included in the final netlist.

An example of a gate level handshake component de-
scription is shown in Fig. 17. This example shows the
Click implementation of the buffer (pipeline) component
that was introduced in Fig. 2. The component description
is again in SystemVerilog [15] with a custom extension
for the behavioral and constraint information. Nets that are
referenced inside a port instantiation are postfixed with . in
or .out (so-called ‘modports’) to denote if the port is
consuming or driving the net, respectively. When param-
eterized components are used, htmap will first create a set
of component instantiations with resolved parameters.

Since the generated circuit uses conventional logic (in the
asynchronous world also known as single rail), the timing
relation between the control circuit and the data path logic is
not automatically correct. For correct operation, the control
circuit must be slower than the data path. The old synthesis
method achieved this by inserting delay chains at predefined
places in the control circuit. This can however lead to
an excessive number of delay chains that are not always
required.

The new synthesis method does not include delay chains
upfront but inserts them later during timing verification at
those places where they are required. To guide this process
relative-timing constraints [16] are generated by htmap,
based on the constraint information in the handshake compo-
nent description. Relative-timing constraints are in general
not limited to a single handshake component. In most cases
multiple components need to be analyzed together to create
complete constraints. Two types of constraints are used:

o Constraints that start and end in the same component.

o Constraints that start in one component and end in

another component.

An example of the second kind is included in Fig. 17.
The three dots (...) are used to indicate paths that are
external to the handshake component. Both setup_start and
setup_end are incomplete constraints that are analyzed by
htmap. If htmap finds a timing path starting with the fast
part of setup_start in one component and ending with the fast
part of setup_end in another component it combines the two
into a single complete constraint. While analyzing timing

module HC_BUF (input reset,
push_chan.pas #(.width(2),
push_chan.act #(.width(2),

assign in.ack=toggle;
assign out.reg=toggle;

.prot ("2phase"))
.prot ("2phase"))

in,

out);

INV inv(.a(in.req.in), .z (ai.out));
NAND3 na3(.a(ai.in), .b(out.ack.in), .c(toggle.in), z (wi.out));
OAI31 oai(.a(ai.in), .b(out.ack.in), .c(toggle.in), .d(wi.in), .z (clk.out));
FFRESET ff(.d(wi_ff.in), .g(toggle.out), .clk(clk.in), .r(reset.in));
INV inv_ff(.a(toggle.in), .z (wi_ff.out));
FF var_0(.d(in.data.in[0]), .g(out.data.out[0]), .clk(clk.in));
FF var_1l(.d(in.data.in[1]), .g(out.data.out[l]), .clk(clk.in));
timing
behavior stg([(in.regq”™ || out.ack™) ; (out.req”™ || in.ack™ || out.data”™)]);
relative setup_start (
.fast(oai.z+ ; (var_0.g9” || var_l.g”) ; out.data”™ ; L)y,
.slow(oai.z+ ; out.reqg”™ ; ...));
relative setup_end(
.fast (... ; in.data” ; (var_0.d” || wvar_1.d”)),
.slow (... ; in.req”™ ; (var_0O.clk+ || var_1l.clk+)));
endtiming
endmodule

Figure 17.

paths, htmap uses the behavioral description, also shown in
Fig. 17, to determine how to trace transitions through the
components (e.g., to eliminate false paths).

C. Post processing

During post processing the last modifications are done
to the netlist, before the handover to the layout process.
These modifications consist of a final logic optimization,
the insertion of scan test (optional) and the tuning of the
circuit timing to make sure that all timing constraints are
met.

To limit the number of tools and increase flexibility, all
these tasks are combined in a single tool, htpost, which
is controlled by a tcl script. This tool will read standard
liberty (.lib) library files, verilog gate-level netlists and the
constraints generated by htmap. Additional constraints, such
as for performance, net loads, and transitions times, can be
specified using the standard sdc syntax.

Since htmap does not fix design rule violations, an opti-
mizer is included in htpost that does constant propagation
and buffer insertion to create a violation free circuit. This is
only intended as a preliminary optimization to enable error-
free simulation of the output netlist. Final optimization takes
place during layout.

The optional scan test is based on the synchronous
multiplexer-based testing method introduced in [17]. One
major improvement is the use of clock gating to introduce

Specification of the Click element of Fig. 2 based on SystemVerilog.

the synchronous clock into the circuit. This clock-gating
logic can in most cases be integrated with the pipeline
control logic to reduce the cost of scan, as shown in Fig. 18
for a basic Click stage. The clock gating is of the so-called
OR-type, which means that after the rising edge of the clock,
the circuit has time to stabilize until the falling edge. The
scan-enable input to the AND gates is used to ensure that
the clock is always enabled during scan shift.

The circuit also allows for some advanced behavior to
switch the circuit between synchronous mode and asyn-
chronous mode. For example, it is possible to use the
synchronous scan mode to bring the circuit into a certain
state by scanning the appropriate bits into the control state
registers; from which it is possible to continue operation in
asynchronous mode by first making the clock signal zero
followed by making the scan enable zero. This behavior can
form the basis of future advanced delay-fault test methods
to directly validate the relative timing constraints. Circuits
that can switch between synchronous and asynchronous
operation have been reported earlier by Grass [18] in a
variant that uses an explicit synchronous/asynchronous mode
signal.

The main task of htpost is to make sure that the cir-
cuit meets all relative timing constraints. To solve timing
violations, htpost will insert delay chains in the circuit.
To minimize the number and size of the delay chains
all constraints are analyzed together, to find the optimal

Table T
BENCHMARK RESULTS FOR KEY HANDSHAKE COMPONENTS.

Syntax-directed, four-phase Data-driven, two-phase
Benchmark Throughput (MHz) | Area (um?) | Power | Throughput (MHz) | Area (um?) | Power
Fifo 193 549 52.29 603 487 12.27
Feedback 145 1507 193.93 522 1225 34.17
Demux 164 606 76.93 520 664 21.10
Non buf demux 224 164 32.44 470 221 14.61
Mux 100 1143 156.13 424 1020 54.61
Non buf Mux 84 1020 334.58 400 573 36.36
Select 90 1470 311.59 138 1634 234.38
Static for 121 1331 297.03 245 2499 177.39
Dynamix for 94 2429 533.73 168 3981 615.81
Clock gate 173 717 80.02 611 602 13.63
Ram 111 1495 1625.04 259 1712 1424.22
a.ack =)) o)
areq ' b.ack the syntax-directed compiler, which introduces delay chains
(’)(TB C)‘ (J) | b.req in predefined locations based on local timing requirements
scan_enable D] only.
clock IV. RESULTS
During the development of the data-driven design flow,
a number of small designs were used to validate the
components and flow, and to get an initial idea of the
1 performance and power characteristics. For comparison,
scan_in the designs were also processed using the syntax-directed

scan_enable

rlocal_clock

Figure 18. Scan-testable control circuit of Click pipeline stage of Fig. 2.

placement of the delay chains. This analysis consists of the
following two steps:

1) For each gate affected by a constraint path the slack is
calculated using standard static timing analysis. If the
slack is negative, the value is annotated on the path.

2) The slacks are combined to determine the optimal size
and location of the delay chains required to solve all
violations.

o For each constraint the “minimal flow” is cal-
culated, this is the minimal number of delay
elements that are required to solve the constraint.

o Considering the delay elements required for one
constraint, the effect of these elements on the total
negative slack for all constraints is determined.
The set of delay elements with the best total
negative slack reduction is inserted in the circuit
and the analysis is started again.

The method of introducing delay chains only where

needed and where most effective, based on global analysis, is
a significant improvement over the method implemented in

compiler and associated design flow. The Haste source code
that is used as input for the syntax-directed compiler has
been optimized to get the best result, especially in terms of
data-path registers and sharing of control, whereas the code
provided to the data-driven compiler is more behavioral,
see for instance the code in Fig. 13 and Fig. 14. Since the
compilers are source-code compatible both versions of the
design could be processed by both compilers. However, code
optimized for the syntax-directed compiler will typically
result in suboptimal data-driven implementation since it
disables analysis and optimization by the compiler by the
use of non-handshaked expressions, probes and compiler
directives. Vice versa, input for the data-driven compiler
is clean, which enables optimization by the data-driven
compiler, but produces suboptimal (typically larger and
slower) results in the syntax-directed flow, which does not
include these data-flow analysis and optimization steps.
The results of the benchmarks are shown in Table I. It
shows the pre-layout area, power, and throughput results in
a 0.18 pum technology. The throughput numbers are also
shown in Fig. 19. The selection of designs has been chosen
to include all basic data-driven components that are included
in the flow, and 8-bit datapaths are used in all designs. The
benchmark also includes a design (Select) that is well suited
for a syntax-directed flow but not very well suited for data-
driven compilation. As a result this example hardly benefits
from data-driven compilation. Most of the other designs
show significant improvements, up to a 3x improvement of
the throughput in a basic fifo stage. The power efficiency
is improved even more than the throughput, indicating that

700
@ Syntax-directed
600 -
B Data-driven
500 -
400 -
300 A
200 A
100 -
O -
) T $ @
& Q%S" &&' @“* @\i" @\i‘” S F ng&
S P ¢ & 9 &
& O N P & P
< 5 N > & &
Q> %0 Q‘\
%0
Figure 19. Throughput (in MHz.) for syntax-directed and data-driven
implementations.

even per MHz the new circuit is more efficient.

The previous experiments were all done in a rather old
0.18 um technology. To show future potential, we also did
an experiment to indicate the maximum performance for
a range of more advanced technologies. The circuit used
for this was the Fifo benchmark. The results are shown in
Table II. The results show that a throughput of around 1
GHz is possible using 90 nm process technology.

Table 1T
BENCHMARK RESULTS FOR KEY HANDSHAKE COMPONENTS.

Three stage fifo Throughput (MHz)
Technology Node Worst Case | Nominal Case | Best Case
0.18 um? 603 998 1650
90 nm (High Vt) 656 1121 1767
90 nm (Standard Vt) 1085 1692 2496
65 nm (High Vt) 663 1210 1938
65 nm (Standard Vt) 1121 1849 3024

After the initial testing, work started on a larger bench-
mark. This was complicated however by the fact that most
large benchmarks were heavily optimized for syntax-directed
compilation. Without some rework to remove these opti-
mizations, the data-driven compilation would be limited in
its operation and not give the best possible results. The
first design that was used was a custom-specific 16-bit
microcontroller. After a rewrite that removed all arb/narb
specifiers, STABLE directives and wire statements, the data-
driven version of this circuit is twice as fast as the optimized
syntax-directed version. Furthermore, the new Haste code
is much cleaner and easier to read without the low-level
constructs. In addition, the area of the data-driven design is
equivalent to the optimized four-phase syntax-directed de-
sign. The prototype data-driven flow performs significantly
better than the mature syntax-directed flow. This shows that
the new approach has a great future potential.

V. CONCLUSION

This paper has introduced two contributions that can
help in making asynchronous circuits more acceptable by
making both the design flow and the designs themselves
less disruptive, that is, more synchronous alike.

On the design-flow side, this has resulted in the im-
plementation of a data-driven compiler for Haste, which
has been set up in such a way that a connection to more
standard design languages can be established via the internal
control-data flow representation. The data-driven style of our
handshake circuits is very similar (i.e. passive inputs, active
outputs) and is based on the same insights as in the work of
Taylor for Balsa [1], [2], [3]. Taylor has chosen for a data-
driven subset of Balsa, which is then compiled in a syntax-
directed way into a data-flow circuit. In contrast, we have
chosen to stick with a more traditional imperative language,
and have implemented a data-flow compilation. Thereby we
have avoided restrictions on the input language, which would
otherwise be needed because not all language constructs can
be transparently mapped onto a pipeline template. In the
design flow that we have presented here, any Haste program
is compiled into a data-driven implementation through an
intermediate control-data flow representation [13]. Advan-
tages of our approach are that the input language is more
intuitive and that compatibility between syntax-directed and
data-driven designs can be maintained. In addition, data-
driven designs described in a different source language, such
as Simulink [12], can be compiled into Haste for data-driven
compilation straightforwardly.

Nielsen [14], [19], [20] and Hansen [21], [4] have pre-
sented alternative approaches to improve on strict syntax-
driven compilation. In both approaches, Haste or Balsa code
is taken as a behavioral starting point, and different analy-
sis and transformation steps are implemented, after which
optimized Haste or Balsa is generated. The transformations
described by Nielsen typically aim at improving area (re-
ducing cost by sharing resources), although performance
enhancing optimizations are also reported. The framework
supports design-space exploration guided by area or speed
constraints, and uses a specific template to map the op-
timized source code. The source-to-source transformations
described by Hansen are aimed at enhancing performance
by increasing parallelism through automatic parallelization
and pipelining, arithmetic transformations and reordering of
channel communications. Both approaches are very effective
in relieving the burden for the designer. Since the standard
compilers for Balsa and Haste are syntax driven, they
demand optimized source code as input, which especially
reduces readability and maintainability. The work of Nielsen
and Hansen simplifies the design phase, but since the result
is fed through the same compiler, the performance is still
limited by the syntax-tree-like handshake control structure
and the associated handshake components. In contrast, both

Taylor’s work and this paper make use of a new class
of handshake components and a new compilation scheme
(based on data flow rather than control flow) to enable
substantially faster handshake circuits.

On the circuit-implementation side, Click implementation
has been introduced, which is based on two-phase handshake
protocols (in line with Mousetrap [6]), but in contrast uses
only flip-flops as state-holding elements, both in the control
and in the datapath elements. This not only eliminates the
need for C-elements, it thereby also facilitates the reuse
of existing synchronous design tools. Click implementation
can be used independent of a data-driven compiler. The
arbitrated Merge element, for instance, is typically not used
in a data-driven compiler.

Although data-driven compilation does not dictate the
use of Click implementation of the associated handshake
components, we believe this is the combination that leads
to the highest performing circuits in an industrial standard-
cell based design flow. The two-phase control circuits are
efficient in terms of area and power, and most importantly,
have proven to outperform the four-phase circuits in terms
of speed. On the one hand this is due to the simplicity of
the protocol and its flip-flop based implementation. On the
other hand this is also facilitated by the fact that the Click
implementation lends itself very well for performance opti-
mization and physical synthesis using standard synchronous
design tools.

ACKNOWLEDGEMENTS

Thanks are due to Rene Engbers and Rob Knubben (of
TASS), and Frits Schalij (Philips Incubators) for their work
on the implementation of the data-flow compiler, and to
Marc Verra (Philips Incubators) for running the benchmarks.

REFERENCES

[1] S. Taylor, “Data-driven handshake circuit synthesis,” Ph.D.
dissertation, University of Manchester, 2007.

S. Taylor, D. Edwards, and L. Plana, “Automatic compilation
of data-driven circuits,” in Proc. Int. Symp. on Advanced
Research in Asynchronous Circuits and Systems, Apr. 2008,
pp- 3-14.

S. Taylor, D. Edwards, L. A. Plana, and L. A. Tarazona
D., “Asynchronous data-driven circuit synthesis,” IEEE Trans.
VLSI Syst., 2010.

J. Hansen and M. Singh, “Concurrency-enhancing transfor-
mations for asynchronous behavioral specifications: A data-
driven approach,” in Proc. Int. Symp. on Advanced Research
in Asynchronous Circuits and Systems, Apr. 2008, pp. 15-25.

(2]

(3]

(4]

[5] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams,
“A variation of LSSD and its implicationson design and test
pattern generation in VLSL” in Proc. Int. Test Conference
(ITC), 1982, pp. 63-66.

M. Singh and S. M. Nowick, “Mousetrap: High-speed
transition-signaling asynchronous pipelines,” IEEE Trans.
VLSI Syst., vol. 15, no. 6, pp. 684-698, 2007.

R. L. Traylor, “Self-timed data pipeline apparatus using
asynchronous stages having toggle flip-flops,” U.S. Patent
5,386,585, Jan. 31, 1995.

B. R. Quinton, M. R. Greenstreet, and S. J. E. Wilton, “Asyn-
chronous IC interconnect network design and implementation
using a standard ASIC flow,” in Proc. Int. Conf. Computer
Design (ICCD), Oct. 2005, pp. 267-274.

B. R. Quinton, M. R. Greenstreet, and S. J. E. Wilton,
“Practical asynchronous interconnect network design,” IEEE
Trans. VLSI Syst., vol. 16, no. 5, pp. 579-588, May 2008.
J. Sparsg and S. Furber, Eds., Principles of Asynchronous
Circuit Design: A Systems Perspective. Kluwer Academic
Publishers, 2001.

I. E. Sutherland, “Micropipelines,” Communications of the
ACM, vol. 32, no. 6, pp. 720-738, Jun. 1989.

M. Tranchero, L. Reyneri, A. Bink, and M. de Wit, “An
automatic approach to generate Haste code from Simulink
specifications,” in Proc. Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems, May 2009, pp. 175-184.
J. T. J. van Eindhoven and L. Stok, “A data flow graph
exchange standard,” in Proc. European Conf. on Design
Automation (EDAC), Mar. 1992, pp. 193-199.

S. E. Nielsen, “Behavioral synthesis of asynchronous circuits,”
Ph.D. dissertation, Technical University of Denmark, 2005.
1EEE Standard for SystemVerilog-Unified Hardware Design,
Specification, and Verification Language, IEEE Computer
Society Std. 1800-2005, Nov. 2005.

K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing,”
IEEE Trans. VLSI Syst., vol. 11, no. 1, pp. 129-140, Feb.
2003.

F. te Beest and A. Peeters, “A multiplexer based test method
for self-timed circuits,” in Proc. Int. Symp. on Advanced
Research in Asynchronous Circuits and Systems, 2005, pp.
166-175.

E. Grass, B. Sarker, and K. Maharatna, “A dual-mode syn-
chronous/asynchronous CORDIC processor,” in Proc. Int.
Symp. on Advanced Research in Asynchronous Circuits and
Systems, Apr. 2002, pp. 76-83.

S. F. Nielsen, J. Sparsg, and J. Madsen, “Behavioral synthesis
of asynchronous circuits using syntax directed translation as
backend,” IEEE Trans. VLSI Syst., vol. 17, no. 2, pp. 268—
281, Feb. 20009.

S. F. Nielsen, J. Sparsg, J. B. Jensen, and J. S. R. Nielsen, “A
behavioral synthesis frontend to the Haste/TiDE design flow,”
in Proc. Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, May 2009, pp. 185-194.

J. B. Hansen, “Concurrency-enhancing transformations for
asynchronous behavioral specifications,” Master’s thesis, Uni-
versity of North Carolina at Chapel Hill, 2007.

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

