
Chapter 7

Design and test of
high-speed asynchronous circuits

Marly Roncken1 and Ivan Sutherland1

This chapter explores the design and test of high-speed complementary metal oxide
semiconductor (CMOS) self-timed circuits. Section 7.1 describes how the proper-
ties of CMOS technology itself limit how fast a self-timed circuit can run.
Section 7.2 presents our Link and Joint model, a unified point of view of self-timed
circuits that allows reasoning about them independently of circuit families and
handshake protocols. The model separates communication and storage, done in
Links, from computation and flow control, done in Joints. The model also separates
actions from states. Special go signals enable or disable Joint actions on an indi-
vidual basis. The individual go signals make it possible to initialize, start, and stop
self-timed operations reliably, which is crucial for design as well as for at-speed
test, debug, and characterization. Section 7.3 examines design and test aspects of
the Weaver, a self-timed nonblocking 8 � 8 crossbar switch designed using the
Link and Joint model. We report measured test results from a working Weaver chip
in 40 nm CMOS with speeds up to 6 Giga data items per second. With 72 bit wide
data items, this amounts to 3.5 Tera bits per second for the full crossbar.

7.1 How fast can a self-timed circuit run?

How fast can a self-timed circuit run? What are its fundamental speed limits? What
design considerations are important for digital circuits intended to operate at close
to maximum speed? How does the potential speed of self-timed circuits compare
with the speed of externally clocked circuits?

Lacking an external clock to drive their actions, all self-timed circuits must act
on their own. In place of an external clock, all self-timed circuits and systems use
the oscillations of logic rings to drive their actions.

Just as the tick of an external clock can be used as a unit of time, this chapter
uses the term gate delay as if it were a unit of time. Of course, delay varies from
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one logic gate to another, but high-speed circuits tend to size their transistors so that
their logic gates have similar delay, giving the notion of gate delay a rational basis.

A gate delay is also a partly topological notion of the time it takes a signal to
pass through an inverting logic gate, however long that might be. Except for pass
gates, all individual CMOS logic gates invert logic signals, and so gate delays also
count logic inversions.

7.1.1 Logic gate delays
A good model for CMOS logic gates operating at full power supply voltage
associates delay with output transition time as illustrated in Figure 7.1.

When the input of the logic gate reaches a switching threshold the output of the
gate begins an approximately linear change in voltage. The rate at which the output
voltage changes depends on the drive strength, or simply strength, of the gate and
how much load the gate drives. This makes it possible to formulate the notion
of gate delay as the ratio of load driven to strength:

delay ¼ load driven=drive strength:

Figure 7.1 illustrates the input and output voltage transitions of a logic gate
driving respectively a light, medium, and heavy load. It uses as gate delay how long
the gate output takes to reach the switching threshold of the next gate. Let us
assume for now that the output voltage ramp starts at a power or ground supply rail.
As Figure 7.1 illustrates, the actual delay of a logic gate of given drive strength
depends on the load it drives and the switching threshold of the next logic gate.
Assuming switching thresholds are about midway between the power and ground
supply rails, the delay of each logic gate is approximately half the time its output
would take to swing from one rail to the other. Transitions in signal voltage are the
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Figure 7.1 CMOS logic gate delay model. The outputs of CMOS logic gates
change relatively slowly. The picture shows three possible output
transitions for a logic gate driving a light, medium, or heavy load. The
output begins to fall when the input voltage exceeds a logic threshold,
marked here with a dot at approximately half of the supply voltage.
Because the next logic gate acts only when its input reaches its
threshold, the delay associated with each gate is roughly half
as long as the full output transition time of the gate
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major source of delay and energy consumption in CMOS logic. In the usual oper-
ating range, the voltage transitions are approximately linear ramps.

If, however, the output ramp starts at a voltage other than a power or ground
supply rail, the delay of the gate also depends on that starting voltage. The delay
may be very small if the output ramp starts at nearly the switching voltage of the
next gate. Moreover, different starting voltages cause different delays. A ring of
logic gates with widely varying delay may still oscillate but the output signals of its
slower gates may fail to swing rail to rail and may thus create a steady state behavior
that is very different from the ring’s starting cycles. Reliable operation is best
achieved by making sure that the output transitions of all gates start and end near the
voltage of a power or ground supply rail.

7.1.2 Rings of logic gates
Ring oscillators internal to a self-timed circuit drive the circuit’s actions. It is well
known that a CMOS ring oscillator must have an odd number of at least three
inverting logic gates. It is less well known that for reliable oscillation the logic
gates in a small ring must have very nearly matching delays. One can design self-
timed circuits that operate at maximum possible speed, that is, at the speed of a
three-gate ring oscillator, like 4-2 GasP [1]. However, such high speed requires
very careful design. Practical self-timed circuits, like the 6-4 GasP circuits used in
the Weaver and discussed in more detail in Section 7.3, tend to run no faster than
the speed of a five-gate ring oscillator. Nevertheless, the Weaver circuits still offer
an impressive throughput of one data element every ten fanout-of-four gate tran-
sitions, which is about twice the typical speed of a clocked system.

In this section, we examine and compare three-gate rings to five-gate rings. Let
us start with a ring oscillator with three logic gates, like the one in Figure 7.2. If all
three gates have equal delay, all three signals—a, b, and c—will reach full swing,
as illustrated in the upper timing diagram of Figure 7.2. If, however, gate c is twice
as slow as the others, its output will barely reach full swing, as illustrated in the
lower timing diagram. For all three signals of a three-gate ring oscillator to reach
full swing, the delays in the three gates must match within about a factor of two.
Any greater delay mismatch risks uncertain switching delay and erratic behavior.

Figure 7.3 shows a ring oscillator with five logic gates. If all five gates have
equal delay then all signals will reach full swing, as illustrated in the upper timing
diagram of Figure 7.3. In the middle timing diagram, signal e suffers twice the
delay of signals a, b, c, and d, and yet e still dwells at the power and ground rails.
The lower timing diagram shows that e has to be about four times slower to barely
reach full swing. In comparison, rings with five logic gates offer the following three
benefits over maximum-possible-speed rings with three logic gates.

1. Greater flexibility in accommodating gate delay mismatches: Rings of five
logic gates better tolerate variation in the delays of their individual parts be it
from variations in wire capacitance or in manufacturing or otherwise. Rather
than matching the logic gate delays within a factor of two as required by a
three-gate ring, a ring of five logic gates requires that the delays match within
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about a factor of four. A factor of two requires careful design. A factor of four
is easy to achieve.

2. Greater robustness in signaling: The signals produced by rings of five logic
gates dwell at the power and ground supply rails longer than those of rings of
three logic gates. In contrast, the signals in three-gate rings curve and some-
times even form sharp points near the rails as they change direction from rising
to falling. The dwell feature in rings of five gates separates cleanly the suc-
cessive rise and fall ramps of each signal.

3. Greater flexibility in accommodating logic computations: The topology of
five-gate rings provides more logic gates to do logic. Rings with three gates
often fail to have enough stages to invert particular signals and must instead
resort to duplicating the entire ring in true and complement form.

Their better tolerance for delay mismatch and greater logic flexibility make ring
oscillators with five logic gates not only more robust than those with three gates but
also easier to design. In general, the more gates a logic loop has the greater disparity it
permits between its slow and fast gates.

As mentioned at the start of Section 7.1, self-timed circuits and systems use the
oscillations of logic rings to drive their actions. Going around the ring twice creates
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Figure 7.2 Delay in a three-inverter ring. A ring with three inverting gates of
similar delay produces full-swing signals, as illustrated in the upper
timing diagram. In the lower timing diagram, signal c suffers twice the
delay of a and b. Were signal c driven any slower, it would fail to
reach full swing. For all three signals to make full transitions, the
delays of the gates must match within about a factor of two
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a high-to-low-to-high or low-to-high-to-low pulse on each signal. The rings in
Figures 7.2 and 7.3 generate approximately symmetric pulses with more or less equal
high-to-low-to-high and low-to-high-to-low pulse widths. It is also possible to use the
signal changes on a logic ring to generate asymmetric pulses, as in Figure 7.4.

When given wider than three gate delay pulse inputs, the two pulse generators
in Figure 7.4 create asymmetric pulses with three gate delay high-to-low-to-high
pulse widths in (a) and three gate delay low-to-high-to-low pulse widths in (b). One
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Figure 7.3 Delay in a five-inverter ring. A ring with five inverting gates of similar
delay produces full-swing signals, as illustrated in the upper timing
diagram. In the middle timing diagram, signal e suffers twice the delay
of the other signals and yet still dwells at the power and ground rails.
For all five signals to make full transitions, the delays of the gates
must match within about a factor of four, as illustrated by the lower
timing diagram
[Note: For clarity, the diagrams in Figure 7.3 omit the power-rail and ground-rail
voltage levels for signals a through d and show only their rising and falling voltage
transitions.]
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can style pulse generators similar to those in Figure 7.4 to generate wider pulses of
a more or less fixed width.

Locally generated pulses—either symmetric or asymmetric—can be used as
“local clock” signals to drive local latches or flipflops or other types of storage
elements to update the local state information changed during each action. Local
clock pulses that drive many storage elements may need amplification to obtain
enough drive strength. Section 7.1.3 discusses how one can amplify pulse signals.

7.1.3 Amplifying pulse signals
To drive a large load from a relatively weak source one can use a series of inverters
with exponentially increasing drive strengths, as shown in Figure 7.5.

OUTIN

OUTIN

(a)

(b)

Figure 7.4 Asymmetric pulse generators. A falling transition on IN in (a) makes
the output, OUT, of the NAND gate fall and then rise in rapid
succession by generating a three gate delay high-to-low-to-high pulse,
as suggested by the waveforms shown above signals IN and OUT.
Likewise, a rising transition on IN in (b) creates a low-to-high-to-low
pulse of three gate delays at the output, OUT, of the input-inverted
AND gate—also known as a NOR gate. For full-swing transitions and
a three gate delay output pulse, the gates must be sized appropriately
and may require artificial load inverters not shown here. All input
signals on IN must be high for at least three gate delays and low for at
least three gate delays
[Note: Figure 7.4 draws inverting gates with an inversion symbol “�” either at the
gate’s output or at the gate’s input to indicate whether the key transition they drive is a
falling or rising one. For instance, the key transition for OUT in (a) is a falling
transition, because it starts the pulse on OUT. Therefore, we draw the NAND gate that
drives it with the inversion symbol at its output. Likewise, the key transition for OUT in
(b) is a rising transition, and so we draw the gate that drives it with the inversion symbol
at its inputs. This notation is a matter of taste, but where it matters it enables us to
emphasize the meaning of the circuit.]
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To support the strength, load, and step-up numbers indicated in the context of
Figure 7.5 and the subsequent Figure 7.6, let us define the terms associated with
these numbers. All definitions are relative to a unit inverter, which is the smallest
inverter allowed in a particular circuit family or manufacturing process. The unit
inverter presents a load of 1 at its input and has a drive strength of 1.

● Drive strength or strength for short indicates the ability of a logic gate to drive
load. Its strength is how many times stronger the logic gate is than a unit
inverter in driving load at its output. Typically, one makes the transistors in a
logic gate wider or—equivalently—puts them in parallel to increase the drive
strength of the gate.

● Load presented or input load is how much input charge a logic gate takes to turn
its transistors on or off relative to the charge required to switch a unit inverter. In
other words, the load that a logic gate presents to its input is how much more
difficult it is to turn its transistors on or off than it is to turn on or off the
transistors of a unit inverter. Wider transistors are more difficult to drive.

● Step-up is the ratio of load driven to strength:

step-up ¼ load driven=drive strength:

Note that we used the same formula for the delay of a logic gate—see page 114.
Successive gates that use the same step-up, or delay, are fastest overall.* We
chose the strengths in Figures 7.5 and 7.6 to give each gate an equal step-up of
four.

● Amplification or gain is the ratio of load driven, at the output of a gate or series of
gates, to load presented at the input of a gate or series of gates. A logic gate can
drive multiple other gates. The input loads presented by the other gates add up to
the total load driven by the logic gate. Figures 7.5 and 7.6(a) and (b) show the load
presented at the input, IN, of each two-stage pulse amplifier and the total load
that can be driven at the output, OUT, to give each stage a step-up of four. The
corresponding amplifications from IN to OUT are 16, 72, and 60, respectively.

Figure 7.5 shows two series inverters that form a two-stage amplifier with a
uniform step-up of four per stage. Together the two stages provide an amplification
of 16—from presenting a load of 1 at IN to driving a load of 16 at OUT.

However, given that an inverter’s rise time almost always differs from its fall
time, each stage will either retard or advance its output transition relative to its
input transition. Each stage in the pulse amplifier of Figure 7.5 has two opportu-
nities to change its output pulse width relative to its input pulse width—once by
retarding or advancing the rising transition of the pulse and once again by retarding
or advancing the falling transition of the pulse. The accumulated change will
inevitably either lengthen or shorten a pulse from the amplifier’s input, IN, to its
output, OUT. This is particularly problematic when amplifying short pulses from
IN to OUT.

*An alternative but equivalent guideline for achieving fastest delay follows in Section 7.1.4.
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If you must amplify a short pulse it is best to do so by avoiding accumulation
of delay changes from intermediate stages. To do so, use feedback at the output to
control the output pulse width directly, as in Figure 7.6.

The two circuits in Figure 7.6 illustrate a technique called post-charge logic
described in an expired patent [2] from the late Bob Proebsting that:

“[� � �] permits propagation of a pulse through an arbitrary number of stages
with the pulse width remaining essentially unchanged.”

To understand how each circuit of Figure 7.6 works, first consider only the
bold transistors labeled D1 and D2. These transistors match the corresponding
transistors in Figure 7.5—they turn on the pulse signal at each stage. In the circuits
of both Figures 7.5 and 7.6, when the input signal, IN, rises, transistor D1 drives
signal a low, turning on transistor D2 to drive the output signal, OUT, high. Each
stage has more drive strength than its predecessor, as indicated by the strength
numbers for each stage in each circuit.

But unlike the two inverter stages in Figure 7.5, the two stages in Figure 7.6(a)
and (b) avoid wasting input charge to control the reset transistors, R1 and R2.
Instead, the post-charge logic of Figure 6(a) and (b) drives R1 and R2 from the
amplified output signal. For each circuit in Figure 7.6, when OUT rises, its inverted
and amplified signal, c, falls to raise its inverted and amplified signal, d, turning on
transistor R2 to reset OUT to low. Meanwhile, the falling signal c turns on transistor
R1 to reset a to high, and—for (b)—also turns off transistor D1A to avoid fighting IN
pulses that might be somewhat wider than three gate delays.

In addition to stabilizing the pulse width, the post-charge logic technique
offers a much higher amplification. The load numbers for IN and OUT in Figure 7.6
show an amplification of 72 for (a) and 60 for (b) versus only 16 for Figure 7.5.

R2

R1
a

D1

D2

IN

Load 1

OUT

Load 16

Strength 1 Strength 4

Load 4

Figure 7.5 Pulse amplifier. A simple two-stage amplifier consisting of two
inverters in series can amplify a pulse. The strengths shown give each
inverter a step-up of four. The inverter pair provides a 16-fold gain.
The broken line in the pulse waveform at signal OUT indicates that the
pulse width at OUT can vary and thus be wider or narrower than the
pulse width at IN. The variation is due to accumulated differences in
rise and fall times at each inverter stage, and makes this simple
solution less suitable for amplifying short pulses
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Figure 7.6 Pulse amplifiers with higher gain. More amplification is available by
postponing the drive of reset transistors, R1 and R2. Two feedback loops
from the amplified output signal, OUT, drive R1 and R2. Because none
of the charge on signals IN and a is spent on transistor R1 and R2

respectively, transistors D1 and D2 can be stronger than in Figure 7.5.
High gain is extremely useful for driving signals with large fan-out, like
clock trees or the “local clock” signals that drive the storage elements
in many an asynchronous design. Moreover, the two feedback loops
maintain the pulse duration, which is particularly important when
amplifying short pulses. Both (a) and (b) output fixed three gate delay
wide pulses, but (b) will accept somewhat wider input pulses
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In other words, for the same input loading, Proebsting’s two-stage post-charge
logic can drive about four times as much load as two ordinary inverters, and it
responds just as fast.

A rationale for the strength and load numbers in Figures 7.5 and 7.6 follows in
the itemized calculation narrative below. The calculations assume that a P-type
transistor is about two times harder to drive than an N-type transistor with the same
output load. These assumptions are valid for the 40 nm CMOS Weaver chip in
Section 7.3.

● An N-type transistor and a P-type transistor each of strength 1 make a unit
inverter of strength 1, like the first stage inverter in Figure 7.5. Assuming that
P-type transistors are twice as hard to turn on or off as N-type transistors, two
thirds of the input load of the first stage inverter in Figure 7.5 is due to R1.
When IN goes high this two third serves to turn off R1, leaving one third to turn
on D1 to pull signal a down. Using a step-up of four per amplification stage,
transistor D1 with its drive strength of 1 allows the falling signal a to drive a
load of 4.

● Instead of turning R1 off at the last possible time, one could turn R1 off ahead
of time, as do the amplifiers in Figure 7.6(a) and (b). Thus when IN goes high,
the first stage inverter in the two amplifiers in Figure 7.6 serves fully to turn on
D1 to pull signal a down. In other words, these first stage inverters can devote
their available input load of 1 for IN to drive N-type transistor D1, that is, to
drive 1

3 � x, with x the strength of D1. This makes it possible to resize D1 from
a strength 1 in Figure 7.5 to a strength 3 in Figure 7.6(a) and (b). Using a step-
up of four per stage, transistor D1 with its drive strength of 3 allows the falling
signal a to drive a load of 12 in Figure 7.6(a). The strength-3 transistor D1 in
series with a strength-15 transistor D1A in Figure 7.6(b) yields a combined
drive strength of 1=ð1=3 þ 1=15Þ, or 2.5, for the first-stage amplification.
Using a step-up of four, the strength-2.5 series pair allows the falling a to drive
a load of 10 in (b).

● Similarly, with R2 in the second stage inverter in Figure 7.6(a) and (b) turned off
ahead of time, the available load on a can be devoted entirely to turn on D2 to
pull OUT up. In other words, the second stage inverter in Figure 7.6(a) can
devote 12 to drive the load of P-type transistor D2, that is, to drive 2

3 � y, with y
the strength of D2. This makes it possible to resize D2 from a strength 4 in
Figure 7.5 to a strength 18 in Figure 7.6(a). Using a step-up of four per stage, the
strength-18 transistor D2 allows the rising OUT signal to drive a load of 72 in
Figure 7.6(a). Likewise, P-type transistor D2 in Figure 7.6(b) can be resized to a
strength of 15, allowing the falling OUT signal to drive a load of 60 in (b).

● These calculations can be extended to choose the strengths of the series
inverters on OUT that drive signals c and d to reset the output of each ampli-
fication stage in Figure 7.6(a) and (b). Their strengths can be small—between 1
and 2—and hardly impact the remaining drive load on OUT. By fine-tuning the
drive strengths of these feedback inverters one can fine-tune the pulse width
on OUT.
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The circuit in Figure 7.6(a) assumes similar input and output pulse widths. The
circuit in Figure 7.6(b) accommodates wider input pulses. Between pulses, weak
keepers—marked with the letter k—maintain the charge and corresponding logic
high or low voltage level on the output signal of each stage in Figure 7.6(a) and (b).

Figures 7.5 and 7.6 show circuits of only two stages, amplifying a low-to-high-
to-low pulse of three gate delays. Similar circuits amplifying high-to-low-to-high
pulses or circuits with more stages and wider pulse widths are also possible. All
assume that their signals have enough time to reach full swing—see Figures 7.2 and
7.3 for a reminder on full swing rail to rail signal transitions.

7.1.4 The theory of logical effort, or how to make fast circuits
To do its logical function, a NAND gate must have more transistors than an
inverter. To drive as much load as a same-strength inverter, a NAND gate not only
uses more transistors but also has transistors connected in series that are extra
strong. Because it has more transistors, some of them extra strong, a NAND gate
has more input load. It is harder to turn the transistors of a NAND gate on or off
than it is to turn on or off the transistors of an inverter of the same strength.

The Theory of Logical Effort [3] quantifies the “cost” or logical effort of doing
logic as how much worse input load a logic gate presents than would an inverter of
equal strength. In other words:

logical effort ¼ input load=drive strength:y

We use 1 for the logical effort of an inverter. More complex logic gates tend to
have logical effort larger than 1. Usually, the more complex the logic, the larger its
logical effort. For example, assuming that P-type transistors are twice as hard to
turn on or off as N-type transistors, the logical effort of a NAND gate, NOR gate,
multiplexer, and XOR gate are 4

3,
5
3, 2, and 4, respectively.

In some situations one can resize the transistor strengths of a complex logic
gate to reduce its logical effort for targeted output transitions. For example, recent
work by Swetha Mettala Gilla et al. on sizing mutual exclusion elements resizes
two frequently used and referenced arbiter designs, giving each a logical effort less
than 1 for uncontested grants [4]. The resized designs provide least uncontested
grant delay, making the common case—uncontested arbitration—fast.

Similarly, by moving the reset load from the input signal to an amplified output
signal, each Proebsting amplifier in Figure 7.6 reduces the logical effort of its first
stage inverter. With an input load of 1

3 � 3 or 1 each and drive strengths of 3 for (a)
and 2.5 for (b) the first stage inverters in Figure 7.6 have a logical effort of 1

3 for (a)
and 1

2:5 for (b). Likewise, with input loads of 12 for (a) and 10 for (b) and with drive

†Rather than measuring the logical effort of a logic gate as (1) how much more load the gate presents at
its input than would an inverter of equal drive strength—as we do here—feel free to measure instead
(2) how much weaker its strength is if the gate is allowed to present only the same input load as an
inverter, or—alternatively—(3) how many times longer than an inverter it takes the gate to drive a copy
of itself. These three views are mathematically the same [3].
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strengths of 18 and 15 respectively, the second stage inverters of the two Proebsting
amplifiers have a logical effort of 2

3 each. By reducing the logical effort of each
stage, the two Proebsting amplifiers achieve outstanding amplification.

We use logical effort to design fast CMOS circuits, with a guiding principle:
The fastest logic equalizes the product of logical effort and amplification in all
stages. This guiding principle translates any cost increase in doing logic, compared
to an inverter, into a corresponding decrease in amplification.‡ For more background
on the use of logical effort to improve circuit performance, see references [3,5,6].

7.1.5 Summary and conclusion of Section 7.1
Ring oscillators set the pace of self-timed circuits. Although rings of three logic
gates are possible, we prefer to use slower but easier to design and more robust
rings of five or a larger odd number of logic gates. Rings of five logic gates
oscillate at ten gate delays per cycle. Globally clocked networks running as fast as
that are unlikely due to the difficulty of amplifying short pulses. Section 7.3 in this
chapter describes the Weaver—a self-timed on-chip network manufactured in a
40 nm CMOS technology that operates at the speed of a five-gate ring oscillator.
We designed this high-speed self-timed network and the various circuit compo-
nents in it in accordance with the logical effort guideline described in Section 7.1.4.

The circuit components in the Weaver are partitioned into Links, which store and
transport local data and state information, and Joints, which compute on the data and
state information in their Links and control the flow and distribution of the locally
computed results and state updates. The information exchange from each individual
Link to a Joint and back to the Link forms a ring oscillator. In the Weaver, each Link-
Joint pair forms a five-gate ring oscillator. Each such ring oscillator generates a five
gate delay low-to-high-to-low pulse signal that is amplified and then used to capture
results and state updates computed by the Joint and stored by the Link. The Weaver
uses simple pulse generation and amplification techniques.

This section broaches the topic of simple as well as advanced pulse manage-
ment techniques because different designs require different techniques. The Weaver
could use simple techniques because (1) all its ring oscillators operate at the same
speed, (2) its data items are only 72 bits wide, and (3) the routing logic in each of its
Joints has sufficiently low logical effort to leave adequate amplification to “locally
clock” each Link.

Many of the design and test aspects for the Weaver are built in from the bottom
up—starting at the level of individual Links and Joints. We therefore added an
intermediate section, Section 7.2, on Links and Joints.

‡In Section 7.1.3 on page 119, we gave an alternative but mathematically identical guideline for
achieving fastest delay by equalizing the step-up in all stages. The two guiding principles are identical
because the logical effort guideline—equalizing the product (logical effort � amplification) in all
stages—is, according to the definitions of logical effort and amplification on pages 123 and 119,
respectively, the same as equalizing ((input load/drive strength) � (load driven/input load)), that is,
(load driven/drive strength), which—according to the definition of step-up on page 119—amounts to
equalizing step-up in all stages.
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7.2 The Link and Joint model

As do many asynchronous or self-timed circuit designers, we too started out with a
favorite set of handshake components that we compiled to and whose function and
timing we validated. The moment we started working with two self-timed circuit
families, Click and GasP, each with its own handshake protocol, the compilation
process got out of hand. Both families had fixed initialization circuitry built into
each component to set the initial states of their handshake signals. Differences in
initialization, handshake signaling, and static timing required Click and GasP
specific code duplication at various levels in the compiler, and made the resulting
compiler more complex and less useful [7]. Each additional initialization version of
otherwise identical components multiplied our design and validation efforts. While
modeling and validating timing constraints for flow control components in Click
we noticed that the components used the same handshaking parts for each hand-
shake interface and we were incidentally validating these parts over and over again.
Modeling them for each component was useless as well as harmful: we spent sig-
nificant amounts of time on managing the complexity of the models [8,9]. What
went wrong?

Section 7.2.1 analyzes what went wrong and motivates the various steps that we
took to make things right [10]. We illustrate these steps on Click and GasP circuits.
Figure 7.7 shows the handshake protocols for Click and GasP, and Figure 7.8 shows
what the circuits looked like when we started working with them [1,7,11].

7.2.1 Communication versus computation
The fact that validation of different flow control components in the same family
results in repeated validation of the same communication circuits suggests that we
combine too much in one component. As reference for what is in a component, see
Figure 7.8. So, let us separate communication from flow control. We will combine
the communication circuits for the same handshake signals, including their initi-
alization circuitry, into a separate component, called Link. We will keep the
remaining circuits in the original component and call the remainder a Joint. By
placing the Click and Gasp handshake communication circuits in their own Links,
we move their differences from the interface to the internals of each Link. As a
result, the interface between Links and Joints can no longer distinguish Click from
GasP, and the Joints become the same for Click and for GasP. Thus, by separating
communication from flow control, we (1) reduce the complexity as well as the
amount of validation required, and (2) make way for a single compilation strategy
to Links and Joints that works for both families.

We see Joints as the places where Links meet to exchange information. This
information can be dataless to serve as a mere synchronization means, or it can
involve data from several Links that the Joint computes on and for which it dis-
tributes results to other Links. Thus, in addition to managing flow control, Joints
compute. Computations work on data. Who stores the data—the Link or the Joint?
In our old design approach, with the communication and computation circuitry
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residing in the same component, the component stored the data, and the handshake
signals were just wires that transferred the data values. In the new design approach
with Links and Joints, we made the decision to make the Link both transfer and
store the data. As a result, Links and Joints not only separate communication and
storage from computation and flow control but also separate states from actions.

Figure 7.9 shows what Click and GasP circuits look like in terms of Links and
Joints [10]. Except for MrGO, an AND-like gate to be introduced in Section 7.2.2,
the two circuits are identical to those in Figure 7.8 for the old design approach—we
merely moved the interface! Each Joint in Figure 7.9 acts when its input Link is
FULL and its output Link is EMPTY. When it acts, it copies the data from input to
output Link and it drains the input Link and fills the output Link. The Links
respond by changing their FULL or EMPTY states, thus invalidating the conditions
for the Joint’s action which causes the action to complete its copy, drain, and fill
operations—see also Figure 7.11.§

Time

FULL FULLEMPTY EMPTYEMPTY

Request (R)

Acknowledge (A)

Click handshake

Statewire (sw)
GasP handshake

Valid ValidBundled data (D)

Voltage

Figure 7.7 Handshakes protocols for Click and GasP. Self-timed circuits in Click
and GasP use bundled-data two-phase handshakes. Click has two
handshake signals, request (R) and acknowledge (A). GasP has one,
called statewire (sw). These signals tell the receiver when the bundle
of data wires sent along them carry valid data. Data are valid in Click
when R and A differ, and in GasP when sw is high. In the reverse
direction, the handshake signals tell the sender when there is space for
new data. In the Link and Joint model we view a handshake protocol
as a way to encode the presence of data and space, and we focus on
what rather than how it encodes. So, rather than using R, A, and sw,
we use FULL and EMPTY, and we fill a communication Link to make
it FULL, and drain it to make it EMPTY. In terms of FULL, EMPTY,
fill, and drain, Click and GasP protocols are identical

§Figure 7.11 uses stick figures for Joints and rectangles for Links to illustrate how the Joint acts, how
the Links respond, and how the Link responses invalidate the conditions of the Joint’s action. The go
signal used in Figure 7.11 is normally high. It plays a role in initialization and test, as explained in
Section 7.2.2.
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Figure 7.8 A Click and GasP component before the Link and Joint model.
Simple circuits in Click (a) and GasP (b) omitting initialization and
amplification. Each acts when (1) its input is FULL, that is,
R(in) 6¼ A(in) in Click and sw(in) is high in GasP, and (2) its output
is EMPTY, that is, R(out) ¼ A(out) in Click and sw(out) is low in
GasP. When it acts, it copies and stores D(in) on D(out), makes
in EMPTY and out FULL
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Figure 7.9 Click and GasP as Links and Joints. We moved the interface from the
handshake signals to what they encode, FULL, EMPTY, fill, drain. We
stored the data in the Link together with the FULL or EMPTY state.
The pictures show only half of each Link. Each complete Link looks
like the two pictured half Links put together. The Joint’s AND function
includes MrGO, an (arbitrated) AND gate—see Figure 7.10
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We describe the behavior of Links and Joints using guarded commands
[12,13]. Links and Joints communicate via the FULL, EMPTY, fill, drain, and
data signals at their interface. Because the interface signals remain available
until the Link changes its FULL or EMPTY state, the communication protocol
uses shared variables rather than message passing. As a result, “probes,” that
check whether or not a Link can communicate [14] and that require special
primitives in a message-passing model, are just guards on the Link’s FULL or
EMPTY state.

7.2.2 Initialization and test
Differentiating states from actions turns out to be key in enabling initialization for
design and test. For design, fixed initialization circuitry would suffice. But for test,
arbitrary circuit initializations may be required, especially if we wish to accom-
modate unanticipated debug scenarios. So, why bother following the old design
approach by building in fixed initialization circuitry that will be used only once,
when the circuit starts up? Why not use existing test methods also to initialize the
circuit at start-up? There may even be an additional advantage in terms of security
if instead of having the circuit initialize itself automatically, initialization takes a
separate step—one that is hard to accomplish successfully by accident and would
take substantial time to accomplish through trial and error. This section explains
how test access to individual actions and states has helped us not only to initialize
the Weaver design discussed in Section 7.3 but also to test and debug the Weaver—
at speed.

7.2.2.1 Action control: go and MrGO
It is good practice never to let both the design and the test environment initialize the
same state at the same time. Letting them initialize different states at the same time
may be fine and perhaps even desirable because the self-timed design propagates
states faster than the test environment. During initialization, we disable Joint
actions that use Link states set by the test environment. Remember that the Links
store the states, and the Joints take the actions. To disable an action, we add an
extra condition, called go, which we control via the test environment. Each Joint in
Figure 7.9 now acts when its input Link is FULL and its output Link is EMPTY
and go is high. The original condition “input Link FULL and output Link
EMPTY” no longer suffices: a low go signal disables the action—see Figures 7.10
and 7.11.

Thus, by making the go signal of every Joint action low, the test environment
can disable all circuit actions and safely initialize FULL or EMPTY Link states and
data stored in Links anywhere in the design. For the Weaver, we shift the initial
values into the chip serially and bit by bit, using a chain of shift registers also
known as a scan chain [15]. Each shift register is associated with a particular state
signal in the design. When all values are shifted into position, the test interface writes
them in parallel into the associated Link states and data bits—see Figure 7.12.
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Figure 7.10 go and MrGO. We use go signals to enable or disable actions.
We combine them with the other action conditions through either a
simple AND gate (b) or an arbitrated AND gate (c). The arbitrated
AND gate, called MrGO and pronounced “Mister GO,” is
implemented as in (c) and (d). We use the name MrGO with the icon
in (a) when the decision which version to use is still open. MrGO
arbitrates between a high in signal, to continue the action, and a low
go signal, to stop the action. The arbiter’s bold transistor in (d)
delays active-low grant signal out0 by conducting only after
metastability ends. We size the transistors for the common
uncontested case to reduce the logical effort from in to out0 [4].
The various pull-up transistors keep out0 from floating.
The circuit normally operates with a high go signal
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For design initialization, the next step is to make every go signal of every Joint action
high and thereby start the circuit.

Test methods often use a single go signal, typically called test mode, to start or
stop the circuit. This may work fine when circuit actions are synchronized under
global control, but is far from ideal when they are asynchronous, widely distributed,
and local. As a thought experiment, try to follow a burst of data items through part
of a self-timed design—at speed. Any global control to “walk the burst” will con-
flict with the “at speed” nature of the experiment. The only candidate qualified to
run this experiment at speed is the circuit itself, running self-timed. So, if we could
enable all Joints within that part and disable the Joints outside it, then a burst of
data would run through that part at speed—and after it has run its course, we could

WHEN 
In is FULL

and 
  Out is EMPTY 
and 
GO

DO
  Copy data
  Drain in
  Fill out

NO action

LINK out

GO

60 

EMPTYFULL

LINK in

JOINT

LINK out

GO

60

FULLEMPTY

LINK in

JOINT

LINK out
60

EMPTYFULL 

LINK in

JOINT
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Figure 7.11 Joints act under go control on Link states. This picture illustrates the
action of a simple Joint, like the one in Figure 7.9(a) or (b), and the
responses of its two Links. The stick figure represents the Joint.
The rectangles represent the Links. FULL Links are colored gray,
EMPTY Links lack color. The Joint acts only when (1) its input Link
is FULL and (2) its output Link is EMPTY and (3) it has permission
to act, that is, its go signal is high. When it acts, it copies the data,
with value 60, from its input Link to its output Link, drains its input
Link, and fills its output Link. The input Link responds by declaring
itself EMPTY. The output Link responds by storing the data and
declaring itself FULL. Their responses disable and complete the
Joint’s action, and may enable actions in neighboring Joints. Note
that the data in the input Link are unaffected by the drain operation.
The data with value 60 will remain in the input Link until a follow-up
fill operation or a test write operation changes them
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read and scan out the states it left in its wake. Guess what. We can do exactly that
by giving each Joint action its own go signal.

In the Weaver, we use many separate go signals, one per Joint. In principle,
there are as many go signals as actions. To control that many go signals, we shift
them in using a scan chain—hence the go/nogo test interface and scan shift register
in Figure 7.12. Note that Figure 7.12 can read as well as write go signals, Link
states and data bits, and shift their values in as well as out through the scan chain.
To avoid interference between controlling actions and reading or writing states, the
Weaver has separate mutually exclusive scan chains for go signals, for FULL or
EMPTY Link states, and for data bits.

Figures 7.13 and 7.14 show examples of the “thought experiment” discussed
earlier. The examples run a burst of data items at speed through a part of the design
that has a counter attached to it. They test whether the counter can keep up and
count the correct number of data items passing by. We did similar test experiments
on the Weaver chip, whose counters are located in the NE corner of the floorplan—
see Figure 7.16. The test environment can read the Weaver counters, but only reset
them to zero. This was a mistake, acceptable in a mere test chip with a transparent
circuit-versus-performance relationship, but unacceptable otherwise. Counters are
sufficiently important for characterization purposes to justify full scan support for
both reading and writing.
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Figure 7.12 Link and Joint scan test interface. A series of shift registers, called a
scan chain, shifts bits in and out of the circuit serially. The scan
chain (bottom) can shift while the design (top) operates. A scan chain
reads or writes the design’s data bits, FULL or EMPTY states, and
go signals in parallel. To avoid interference when setting up states or
actions, we use separate scan chains for states and go signals
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Figure 7.14 Counting a burst of data items at speed. With longer takeoff and
landing runways one can run more data past the counter at speed
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Figure 7.13 Counting one data item at speed. The counter is attached to Joint 3
with the cowboy hat. The test setup leaves several adjacent Joints
enabled to permit data to pass through them at speed. Disabled
Joints upstream and downstream of the test part prevent entry of
other inputs and escape of results. Enabling “gate keeper” Joint 2
releases the test data to flow through the test part at speed and
update the counter
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The Links and Joints in Figures 7.13 and 7.14 are similar to those in Figure 7.9
and operate as illustrated in Figure 7.11. Note that the test segments are bounded
upstream and downstream by disabled Joints. Most test interface tasks, including
circuit initialization and manufacturing testing against, say, stuck-at faults, work
on bounded segments. Some though, notably tasks related to performance char-
acterization, require the circuit to run freely. It is for these tasks and our ability to
stop them cleanly, without corrupting circuit states, that the go signal has its own
arbiter. The arbitrated go signal, shown in Figure 7.10(c) and (d), is called MrGO
and pronounced “Mister GO” and arbitrates between continuing or stopping an
action.

The arbitrated version of MrGO in Figure 7.10 must “crown” the AND func-
tion for the Joint action, that is, all FULL or EMPTY state signals used in either the
guard or the command of the action must be AND-ed before we AND the go signal.
If the guard contains data bits, then these may be AND-ed either before or after
MrGO—the FULL state signals of their Links already cover them. The Weaver
adds the data bits after MrGO, as can be seen from Figures 7.21 and 7.23(a) and (b).
Giving MrGO a “crown” position guarantees a nonblocking arbitration that allows
the go signal eventually to grab the arbiter, either the first time or the next.{ If not
the first time, because the arbiter favors a high in signal over a low go signal and
thus continues the action, then the action will release the arbiter one cycle later—
without blocking. Because the cycle time for new actions is longer than the arbi-
ter’s uncontested grant delay, the arbiter will grant go next and thus disable further
action until released by a high go signal. Any MrGO position other than a “crown”
position may allow a temporary state to grab MrGO and may inject actions that
interfere with the initialization or test run whenever this state changes.

To obtain the throughput and power measurements reported in Section 7.3.5
for the Weaver chip, we let the self-timed circuit run freely for, say, 10 seconds and
then read out the counters. The corresponding test setup resembles Figures 7.13 and
7.14: first disable all Joints, then EMPTY all Link states, then enable all but two
Joints—the “gate keeper” before the reloader Link, and the reloader Joint after the
reloader Link. Reloaders are the only stages in the Weaver where we can scan data
bits in and out. They are in the SE corner of the floorplan—see Figure 7.16. We
repeatedly scan a data pattern with FULL Link state into the reloader Link, and
temporarily enable the reloader Joint to copy the data forward. The data will queue
up behind the “gate keeper.” When all scan inputs are delivered, we reset the
counters, then enable “gate keeper” and reloader, let the circuit run for 10 seconds,
disable the “gate keeper”—using MrGO—let operations peter out, and then read
the counters.

{We ignore the fact that the arbiter itself can take arbitrarily long to decide which of two contesting
inputs to grant. In practice, arbitration time is less relevant for initialization and test. We can avoid
arbitration in general for design initialization. We can avoid MrGO arbitration for tests on bounded
segments as in Figures 7.13 and 7.14. We can filter out rare arbitration delays by running performance
tests multiple times.
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7.2.3 Summary and conclusion of Section 7.2
By distinguishing communication, done in Links, from computation, done in
Joints, we obtain a simple interface that unifies both Click and GasP as well as
many other self-timed circuit families and the compilation and verification tools
around them. By also distinguishing states, stored in Links, from actions, per-
formed by Joints, we obtain a simple model of computation that works for
computer scientists and electrical engineers alike—a working relation that we
intend to explore further.

Traditional scan test access to individual states combined with go and MrGO
control of individual actions allows clean initialization as well as at-speed test,
debug, and characterization. In addition to playing a key role in test, MrGO can
also be used to gradually synchronize a self-timed design to a clock domain [16].

Section 7.3 details the Weaver’s Links and Joints and their scan connections.
The details include amplification needs and cycle times as discussed in Section 7.1.

7.3 The Weaver, an 8 � 8 crossbar experiment

The Weaver is a self-timed 8 � 8 crossbar switch built in 40 nm CMOS by TSMC.
The Weaver’s crossbar steers individual data items from any of eight input channels
to any of eight output channels. Local arbitration throughout the crossbar resolves
internal contention without blocking—on a first-come-first-served basis that is fair
to the loser—so that only input and output channel capacity limit throughput.
Without contention, a data item can pass through the crossbar in less than one
nanosecond. Without contention and at nominal 1.0 volt power supply, each chan-
nel can pass about 6 Giga data items per second through the crossbar at less than
half a watt. Data items are 72 bits wide, giving the crossbar’s eight channels a
maximum combined throughput of nearly 3.5 Tera bits per second. In the absence
of traffic, only leakage consumes energy. The Weaver runs without a clock.

The crossbar on the Weaver chip occupies an area of about a tenth of a square
millimeter in a triangle 433 micrometers by 391 micrometers in size. The triangle
contains a triangular array of 56 switches, one for each possible channel to channel
connection. The Weaver chip places the switches in close proximity and provides
recirculating first-in-first-out (FIFO) rings to connect the crossbar outputs back to
the crossbar inputs for extended high speed testing. For a network-on-chip appli-
cation, one would distribute switches like those in the Weaver geographically to
form the on- and off-ramps of a freeway-like data network.

The following sections discuss the design and test features of the Weaver from
a logical, electrical, and layout floorplanning point of view. Section 7.3.1 discusses
the architecture of the Weaver. Section 7.3.2 shows the key circuits used in the
Weaver. For consistency, the drawings in both sections show the architecture and
circuits from the Weaver’s floorplanning point of view. Sections 7.3.3 and 7.3.4
discuss test logistics and Section 7.3.5 reports performance measurements from the
Weaver chip. The final Section 7.3.6 concludes this chapter by summarizing where
the Weaver’s logical, electrical, and layout views differ—and why.
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7.3.1 Weaver architecture and floorplan
Figure 7.15 shows a schematic diagram of the Weaver. Eight self-timed channels,
each with 48 Links, form FIFO rings that recirculate data from the output of the
8 � 8 crossbar switch, also called crossbar, back to its input. Two additional
channels bypass the crossbar to provide a performance contrast. The two bypass
channels flank the recirculation channels. The ten rings are labeled in the floorplan
of Figure 7.16. One bypass channel, Ring 0, has 48 Links, but the other, Ring 9, has
only 40 Links.

In the floorplan long rectangles represent Links and black dots represent Joints.
Arrows connecting the dots and rectangles indicate the direction that data flow. The
floorplan arranges the Joints in rows numbered 1 to 20 from bottom to top and in
columns with letters A to Z from left to right. The medium- and dark-gray triangle
in the North West (NW) identifies the crossbar switch itself. Data enter the crossbar
from the South at row 12, going North, and leave the crossbar at column K, going
East. The diagonal NW edge of the crossbar (Double-barrel Ricochet) folds its
datapaths so they turn their data from a Northbound to an Eastbound direction.
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Figure 7.15 Weaver diagram, rotated to match the orientation of Figure 7.16. The
crossbar switch is in the gray triangle. Eight rings, 1–8, recirculate
data from its output back to its input. Two extra rings, 0 and 9,
bypass the crossbar switch to measure relative performance
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Figure 7.16 Weaver floorplan, rotated 90 degrees. The Weaver includes ten rings,
of which eight recirculate data from the output of the crossbar (NW
corner) back to its input. Each of the ten rings has a reloader stage
(SE edge) to read and write data from and to one of its Links, and a
counter (NE edge) to tally the actions taken by one of its Joints. Scan
chains (SE and NE) control the reading and writing of data and the
tallying and resetting of ring counters. Other scan chains, omitted
here, control the FULL or EMPTY state of each Link and enable or
disable the go control signals of each Joint
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Each of the ten rings forms a rectangle through which data circulate clockwise.
Ring 0 is wide, stretching between columns A and Z, and not very tall, going from
row 10 to row 11. Ring 1 is a little narrower, stretching between columns B and Y,
and a little taller, going from row 9 to row 12. Successive rings are narrower and
taller until Ring 9 is very narrow and very tall, occupying columns M and N and
rows 1 to 20. The rings fold on 45-degree diagonals at the edges of the floorplan—
like a ribbon cable. The North East (NE), South East (SE), and South West (SW)
ring sections collectively named Cross Fire identify simple FIFO pipeline circuits
that form most of each ring. Note that even though horizontal and vertical pipelines
in the Cross Fire sections may cross each other they are entirely independent.

Each ring includes a counter stage to measure throughput. The counters lie
along the North East (NE) diagonal edge of Figure 7.16. Each ring also includes a
reloader stage to insert, overwrite, or read data values. The reloaders lie along the
South East (SE) diagonal edge of Figure 7.16. The Weaver is so named because
data items can weave complex paths through its eight middle channels. Many of the
part names of the Weaver, such as Double-barrel Ricochet and Cross Fire, adopt
gunslinger lingo from Western movies.

7.3.1.1 Crossbar switch
Instead of a rectangular structure with N � N switches the Weaver’s crossbar
switch has a triangular structure with N � ðN � 1Þ switches and N repeaters. The
triangular structure of the crossbar minimizes its wire length and simplifies layout
of the rings that recirculate data through the crossbar at high speed.

Figure 7.17(a) illustrates the structure of the Weaver’s crossbar. Data items
entering from the South on any of eight input channels exit to the East on any of
eight output channels. Note that Figure 7.17 shows fewer channel connections.
Because the datapath folds diagonally like a ribbon cable, each of the eight input
channels crosses every other input channel in the crossbar exactly once. The arrows
inside the box at each crossing suggest how the switches at each crossing allow data
items to change from one channel to another. The repeaters that fold the datapath at
the diagonal edge of the crossbar are Double-barrel Ricochet modules described
later.

A complete 8 � 8 crossbar must have 8 � 7 or 56 individual switches, called
Crossers. The Weaver arranges these in pairs, called Double Crossers, one pair at
each of the 28 crossings. Figure 7.17(b) and (c) illustrates one Double Crosser
while Figure 7.17(d) shows how the Double Crosser appears in the floorplan of
Figure 7.16. One of its switches serves its North output, and the other one serves its
East output. Each Double Crosser accepts data items from the South or West and
delivers them to the North or East. Conflict in the crossbar happens only if two data
items try to leave a Double Crosser concurrently by the same exit. Each switch, or
Crosser, has a mutual exclusion element, or arbiter, with metastability protection
[4,17] to resolve exit conflicts on a first-come-first-served basis that is fair to the
loser. Although metastability may delay the passage of a data item, the self-timed
nature of the Weaver renders such delay harmless. Metastability delays tend to be
so rare and short that we expect them to be unnoticeable.
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competing data items that go in the same direction. The direction is
encoded in the data, in a Double Crosser specific steering bit. Data go
straight when this bit is 0, and turn otherwise. Link-Joint version (d) of
the Double Crosser as used in the floorplan of Figure 7.16 connects
four “rectangle” Links and two “black dot” Joints
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7.3.1.2 Steering bits
Steering bits in each data item control how the data item passes through the
Weaver. Because each data item carries its own steering bits, each data item
weaves its own individual path through the crossbar. To simplify decoding, the
Weaver assigns an individual steering bit for each of the 28 Double Crossers in the
crossbar switch. In other words, 28 of the 72 data bits in each data item may
function as steering bits. The remaining 44 data bits are entirely free of assigned
meaning in any data item.

Each steering bit applies to a singular Double Crosser. Regardless of how it
enters a Double Crosser, a data item with a 0 in the steering bit position for that
Double Crosser goes straight through it—West to East or South to North—staying
in the same channel. A data item with a 1 in that steering bit position turns either
from West to North or from South to East, changing to the other channel.

So, at each Double Crosser a data item either remains in its channel or changes
to the other channel. Thus, per channel, a data item requires seven steering bits, one
for each of the other channels to which it might change. The remaining 72�7 or 65
bits can carry arbitrary data, though, of course, some of those 65 bit positions may
be used as steering bits after the data item switches to another channel.

This choice of rules for steering simplifies testing by forcing every data item
to follow a closed path. For instance, data items with 0 in all steering bits keep
circulating in their initial ring. Data items with a single 1 in the steering bit
position for an intersection of two rings circulate alternately around those inter-
secting rings. Data items with multiple 1’s in steering bit positions weave through
several rings in succession, following a closed path that may be less intuitive at
first sight. A different application might use other steering rules by decoding a
destination address.

7.3.1.3 Test infrastructure: scan, counters, and reloaders
Control of Weaver experiments is entirely through an industry standard low-speed
JTAG test interface and scan chains [7,15]. The scan chains serve three purposes.

● First, the scan chains can read or clear the throughput values in each of the ten
54-bit counters, one per ring. These counters appear at the North East (NE)
edge of Figure 7.16, and in more detail in Figure 7.18.

● Second, the scan chains can write a data value into or read a data value from a
data item in each of the ten reloaders, one for each ring. The reloaders are
located at the South East (SE) edge of Figure 7.16.

● Third, because the Weaver implements Naturalized Communication and
Testing as described in [10] and Section 7.2, the scan chains can stop the flow
of data, sense the FULL or EMPTY state of every Link, initialize or reinitialize
the FULL or EMPTY state of every Link, and restart the self-timed flow.

In addition to the low-speed JTAG-controlled scan chains, the Weaver has two
dedicated medium-speed output pins that deliver reduced-frequency real-time
signals from the counters. These reduced-frequency outputs switch at 2�20 or
approximately one millionth of the throughput rate of the rings. Two series of
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Figure 7.18 Counters. Each of the ten rings in the Weaver has a counter of which
some appear in (a). Bit 19 of each counter provides a frequency
output for the ring’s monitored fill signal (b) divided by 220 or about
a million to view in real time on an oscilloscope. The scan chain
selects which output is delivered off chip. The counters are
implemented as ripple counters (c) that store each bit in a flipflop
that uses its inverted output as its input. Each flipflop operates at the
rising edge of its clock input. When a bit changes from 1 to 0, its
flipflop clocks the flipflop of the next significant bit. The fill signal of
the Joint connection to the ring clocks the flipflop of the least
significant bit
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multiplexers like those in Figure 7.18(a) allow the scan chain to select two rings for
frequency output. The frequency outputs permit real-time observation and com-
parison of throughput.

7.3.2 Weaver circuits
Motivated by the five- versus three-gate ring comparison presented in
Section 7.1.2, the Weaver uses the 6-4 GasP circuit family [10], whose circuits run
at the speed of a five-gate ring oscillator, rather than the original 4-2 GasP circuits
[1] that run at the speed of a three-gate ring oscillator. The use of GasP is a matter
of convenience, given that we have both the expertise and design libraries for GasP,
and a matter of target speed, given that designs tend to be faster in GasP than, for
instance, in Click.

This section shows the Link and Joint organizations and the 6-4 GasP circuit
implementations for various Weaver parts. First, Section 7.3.2.1 describes a simple
FIFO circuit that copies, stores, and transports 72 bit wide data. Last,
Section 7.3.2.3 describes more advanced parts from the crossbar switch that pro-
vide data-driven flow control. Section 7.3.2.2, in the middle, focuses on critical
paths and on circuit solutions to manage such paths.

7.3.2.1 First-in-first-out (FIFO) circuits
Figure 7.19 shows the 6-4 GasP implementation for the simple FIFO pipeline cir-
cuit in the ring sections collectively called Cross Fire—see floorplan of
Figure 7.16. The gate-level behaviors of the Joint and the two Links in Figure 7.19
are the same as for the Joint and GasP Links in Figure 7.9 in Section 7.2. The
implementation in Figure 7.19 is more detailed in that it specifies the inverting—
and amplifying—gates so we know exactly how many inversions there are in each
self-resetting loop.

Gates A, B, C, D, and Y form a self-resetting loop with five inverting gates, as
do B, C, D, E, and X. The two loops share three gates—B, C, and D—to form the
Joint’s AND function, FULL(in) and EMPTY(out) and go, and to limit delay var-
iations between the loops. Inverters D, E, F, and G amplify the output signal of the
AND function to drive the large loads presented by the 72 latches in Link out and
by the driver-and-keeper gates X and Y in Links out and in. Figure 7.19 shows only
one end of each Link, the end nearest Joint fifo. The far end of Link in looks like the
near end of Link out shown in Figure 7.19—and vice versa, the far end of Link out
looks like the near end of Link in shown in Figure 7.19.

Each time Link in is FULL and Link out is EMPTY and go is high, the AND
function is asserted, just like in the Joint of Figure 7.9, Section 7.2, and the two
loops generate a low-to-high-to-low fire pulse of five gate delays to “locally clock”
the latches—that is, render them temporarily transparent—so they store the data
copied by Joint fifo from Link in to Link out.

Going around each loop, the fire pulse also drives X and Y for five gate delays.
For the Links in the Weaver, a five gate delay drive pulse is long enough to drive
the state change at the output of X or Y from rail to rail across the entire Link length.
The state change is sensed at the other end of the Link within a gate delay, just like
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Figure 7.19 FIFO Joint and its two near-end Link connections in 6-4 GasP. This
FIFO circuit has the same functional behavior as the Joint with GasP
Links in Figure 7.9(b), Section 7.2. With its self-resetting loops,
A-B-C-D-Y and B-C-D-E-X, it runs at the speed of a five-gate ring
oscillator. We show only one end of each Link, the end nearest Joint
fifo. Gray-colored gates are icons—a circuit for MrGO was given
earlier in Figure 7.10, the latch follows in Figure 7.20. With the
exception of latches all gates invert. To match the inversion count
around each loop we use ~EMPTY(out) rather than EMPTY(out)
between Joint fifo and Link out. We sized the gates to give each latch
and driver-and-keepers X and Y a strength of 40 to help them drive
their changes to the other end of their Link within a gate delay
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any other gate output change in the FIFO circuit is sensed by subsequent gates
within a gate delay. The new FULL or EMPTY Link state is stored by the driver-
and-keeper gate at the other end of the Link. To reduce the logical effort of chan-
ging a Link’s FULL or EMPTY state a driver-and-keeper gate in GasP either drives
high and keeps low or drives low and keeps high. This not only creates fast state
transitions, it also enables the use of stronger keepers that are more robust to noise.

Note that the asserted AND function is de-asserted after five gate delays, when
Link in is no longer FULL and Link out is no longer EMPTY. The new Link states
enable AND functions in neighboring Joints, which in turn fill Link in with new
data and drain Link out and thereby re-assert the AND function in Link fifo,
and so on.

Fill and drain pulses on the same Link alternate, because one is generated only
when the Link is EMPTY and the other only when the Link is FULL. At maximum
speed the self-resetting loops run at a cycle time of ten gate delays, barely separ-
ating the alternating five gate delay fill and drain pulses on the same Link. Pulse
separation is enhanced by the nature of gate B—the AND-like gate at the core of
each pulse—which turns each pulse on using series transistors and off using par-
allel transistors. Because parallel transistors are faster than series transistors, each
fill or drain pulse turns off before the other turns on. As a result, the driver-and-
keeper gate that changes the Link state from EMPTY to FULL or from FULL to
EMPTY turns off before the driver-and-keeper gate at the other end of the Link can
turn on and change the state back. Separation between fill and drain pulses on the
same Link can be enhanced further by threshold shifts in amplifiers D and E that
follow gate B.

Because fill and drain pulses on the same Link alternate, latches rather than
flipflops can safely hold the data. The pulses play the role of any clock signal that
might otherwise have been provided. Because the pulses happen only when needed,
“clock gating” is automatic.

The name “6-4 GasP” indicates that (1) the Links are implemented with GasP
circuits, that is, with complementary driver-and-keeper pairs and bidirectional state
wires, and (2) it takes six gate delays to propagate a FULL state forward from Link
in through Joint fifo to Link out—via gates A, B, C, D, E, and X—and (3) it takes
four gate delays to propagate an EMPTY state in reverse direction from Link out
through Joint fifo to Link in—via gates B, C, D, and Y. Together, the forward delay
and the reverse delay yield a cycle time of ten gate delays. Note that this cycle time
is consistent with the self-resetting of the two five gate delay loops, A-B-C-D-Y and
B-C-D-E-X. We made the forward delay longer than the reverse delay, because the
propagation of a FULL state goes together with the propagation of data and thus
affects both a Link state and the data stored in the latches of the Link, while the
propagation of an EMPTY state affects the Link state only.

7.3.2.2 Critical path: latches to data kiting to double-barrel Links
One might expect that the critical paths in the Weaver are in the crossbar switch
where high speed, wide data, and data-driven flow control come together. In this
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section we explain why the combination of five-gate ring oscillators and 72 latches
per Link lead to data kiting, why data kiting combined with data-driven flow
control necessitates advance decoding of steering bits, and why advance decoding
motivates the use of double-barrel Links in the crossbar switch.

We designed the circuits in the Weaver using the Theory of Logical Effort [3]
discussed in Section 7.1.4. In particular, logical effort helps us determine the
amplification required to drive the larger circuit loads. For each gate that drives a
large load, we want (1) subsequent gates to sense changes in the gate’s output
signal within a gate delay, and (2) the gate output signal to change from rail to rail
over its entire length within five gate delays. The larger loads in Figure 7.19 are
(1) the many latches in Link out, which present a large load to gate G, and (2) the
data and state wires between the two ends of each Link, whose lengths are likely to
exceed those of other wires in Figure 7.19 and which present a large load to each
latch, X or Y . Below, we outline how the FIFO circuit in Figure 7.19 supports these
larger loads.

● Provide amplification for G: Each Link has 72 latches to store 72 bits of data,
one bit per latch. The series of inverters D, F, and G in Figure 7.19 amplify the
output signal of the AND function, FULL(in) and EMPTY(out) and go, to
enable G to drive the large load presented by the 72 latches in Link out.

● Limit the load on G: To make the load on gate G as small as possible, the
latch design—shown in Figure 7.20(a)—uses two complementary and tiny
pass gates that are controlled by input c, which is the output of G in the context
of Figure 7.19. One pass gate is transparent when c is high and is used to
capture new data from Din to Dout. The other pass gate is transparent when c is
low and is used to store the captured data and maintain the value on Dout.
Each pass gate has an N-type and a P-type transistor and a tiny inverter—
omitted from Figure 7.20(a)—to invert c locally so it can drive both types of
transistors.

● When needed, provide higher-gain amplification for G: The current design
with series inverters D, F, G provides enough amplification for G to drive the
tiny pass gates in each of the 72 latches. Had the FIFO circuit used sub-
stantially more latches, say twice as many, it might have “clocked” these with
a higher-gain pulse amplifier based on the post-charge logic design by
Proebsting [2]—for instance by replacing series inverters F and G with a
version of Figure 7.6(b), Section 7.1.

● Provide amplification for X and Y: Just like series inverters D, F, G build up
sufficient amplification for G to drive 72 latches, so do inverting gates D, E, X
and D, Y provide enough amplification for X and Y to drive a FULL or EMPTY
state change on Link out and Link in. We gave X and Y each a drive strength of
40, as indicated in Figure 7.19. We were able to do so partly because X and Y
use small keepers.

X uses a P-type transistor to drive Link out from EMPTY to FULL. Because
its keeper is small, driving X boils down to driving its P-type transistor, which
is two thirds the effort of driving an inverter. The reduced effort makes it
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Figure 7.20 Latch circuits to store and drive one bit of data in a Link.
(a) A single-input single-output latch icon (top) and circuit (bottom)
uses two complementary and tiny pass gates—the crossed squares—
that are controlled by input c. Each pass gate has an N-type and a
P-type transistor and a tiny inverter—omitted here—to invert c
locally so it can drive both types of transistors. The picture indicates
if the pass gate is transparent when c is high or c-inverted is high.
With c high, the latch captures data from Din to Dout. With c low, the
latch stores the captured data and maintains the value on Dout. The
multiplexed latch version in (b) uses two control inputs, cA and cB, of
which at most one is high at any time. With cA high, data go from
DinA to Dout. With cB high, data go from DinB to Dout. When both cA

and cB are low, the latch stores and maintains the captured data
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possible to give X a drive strength of 40 using three steps of amplification—D,
E, X—the first of which, D, is shared to amplify G and Y as well. Y uses an N-
type transistor to drive Link in from FULL to EMPTY. Because the keeper in Y
is small, driving Y boils down to driving its N-type transistor, which takes only
one third the effort of driving an inverter. The reduced effort makes it possible
to give Y a drive strength of 40 with just two steps of amplification—D and Y.

● Provide amplification for each latch: Like X and Y, each latch has drive
strength 40. The design in Figure 7.20(a) achieves this drive strength by
amplifying the data signals captured by the pass gates, using a series of three
inverting gates directly following the pass gates.

Note that the amplification for each latch, to give it a drive strength of 40, is
done inside the latch design. Note too that this amplification comes in addition to
the amplification for G, to give G sufficient strength to drive each of the 72 local
latch control signals. Had the data been narrower, say 1 or a few bits, a latch design
with two instead of four gate inversions and “clocked” by fill(out) instead of the
output of gate G might have sufficed. In that case, the new data values would have
been available at the other end of Link out at same time as the FULL state indi-
cator. With 72 bits, however, the new data values will be available three to four
gate delays later. In other words, to drive 72 bit wide data at high speed the Weaver
must kite the data.

Below follows a step by step explanation for why this is the case and how this
leads from data kiting to advance decoding and double-barrel Links.

● Data kiting: Two gate delays after the start of the fire pulse the 72 latches in
Figure 7.19 are “clocked” by gate G. Likewise, two gate delays after the start
of the fire pulse driver-and-keeper gate X drives the state of Link out from
EMPTY to FULL.

In the Weaver, we can assume that the input data for the latch circuits in
Figure 7.20 arrive at the pass gates before “clock” control signal, c, goes high.
Thus, the delay through each latch in Figure 7.20 is determined by the delay
from c (rising) to Dout. With tiny pass gates, the latch delay is closer to three
than to four gate delays. As a result, the new data values captured by the latches
become available at the other end of Link out three to four gate delays after the
FULL state. The data are kited—they are tardy by three to four gate delays.

Ring FIFOs in the Weaver can deal with three to four gate delays data kiting.
In Figure 7.19, D(in) data that arrive three to four gate delays after FULL(in)
arrives at Joint fifo will be at the latches in Link out two to three gate delays before
FULL(in) will have propagated through the six gates A, B, C, D, F, G to “clock” the
latches. By the time the “clock” rises, the data will be ready at the pass gates in the
latches, having arrived at least one to two gate delays earlier.

If designed with care, data kiting can work equally well for Weaver parts with
data-driven flow control. Take for instance the Splitter circuit in Figure 7.21. Its
incoming data contain a steering bit, D(in[s]), that must be available in both true
and complement forms before the circuit can decide which outgoing Link state to
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Figure 7.10, latch circuits can be found in Figure 7.20. Splitters
start the advance decoding of steering bits for the crossbar
switch by converting a steering bit from bundled data to double
barrel form
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change—out0 or out1. True and complement can be generated within a gate delay.
The circuit decides which Link state to change as late as possible by using the true
and complement steering signals as an extra selection input to driver-and-keeper
gates X0 and X1. Thus, D(in[1:72]) data that arrive three to four gate delays after
FULL(in) will be at X0 and X1 one to two gate delays before FULL(in) will have
propagated through the five gates A, B, C, D, E to drive the selected X0 or X1.

All circuits in the Weaver have a margin of at least one to two gate delays from
the arrival of their data signals to the arrival of their control signals, be it for
latching the data or for data-driven flow control. We can get extra delay margins
from the wires in the Weaver’s layout by allowing different wires to have different
widths and different spacings. In particular, data wires in the Weaver use twice the
width and twice the spacing used for control wires.

To understand how width and spacing affect the “speed” of a wire, let us
consider the real shape of an integrated circuit wire. Wires are relatively thick
layers of metal, sandwiched between layers of insulation. Most wires are more tall
than they are wide, much as a fence is more tall than it is wide. Wires stand up the
full thickness of each layer, like the walls of a room inside a multistory building.
Because wires are more tall than wide, most of the capacitance between wires is to
adjacent wires on the same layer rather than to wires in layers above or below.

Making a wire twice as wide halves its electrical resistance. Less resistance
allows information to get through the wire faster. Doubling the wire width doubles
the wire’s relatively small capacitance to wires in layers above or below, but pre-
serves the much larger capacitance to adjacent wires in its own layer. Doubling the
space between a wire and adjacent wires on the same layer almost halves the
capacitive load of that wire. Less capacitance speeds up the transistors that drive
the wire.

By doubling both width and spacing, the Weaver’s data wires gain an almost
four-fold advantage in speed over the Weaver’s control wires.

● From data kiting to advance decoding of steering bits: The Splitter decodes
the steering bits one stage in advance, just before the data enter their first
Double Crosser in the crossbar switch—see Figure 7.16. In the Double
Crosser, the FULL Link state that accompanies the data is hardwired to the
Crosser that steers the data in the intended direction—see Figure 7.17.

The Crosser arbitrates between data items that go in the same direction by
arbitrating between their FULL Link states—without looking at the data. This
is possible because the Splitter decoded the direction in advance by making the
associated Link state FULL. As a result, each Crosser can support arbitration
as well as decode its Double Crosser specific steering bit one stage in advance.

The combination of five-gate ring oscillators, data kiting, and arbitration
would have been impossible without decoding the steering bits in advance.

● From advance decoding to double-barrel Links: Note that the Splitter cir-
cuit in Figure 7.21 as well as the Crosser circuit spread over Figure 7.23(a) and
(b) take the one-hot Link states that decode the circuit’s steering bit and pair
these into a single Link with two Link states. Because at most one of these two
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Link states can be FULL at any given time, just one set of 72 latches will
suffice to store the data sent along each FULL Link state. We call the resulting
Link a double-barrel Link.

The layout of the Weaver shields the narrow FULL or EMPTY state wires in
each Link with an adjacent grounded wire on each side, to protect them from
capacitance coupled noise. Ordinary Links with only one state wire use a three-wire
control bundle: ground-state-ground. Double-barrel Links use a five-wire control
bundle: ground-state0-ground-state1-ground. In each Link, 36 wider data wires
with their wider spacing flank each side of the control bundle. Double-barrel Links
are only slightly wider than ordinary Links.

One might view a double-barrel Link as a peephole optimization of the more
typical implementation with two separate ordinary Links that can share data
because they take the data from the same crossbar source to the same crossbar
destination and they operate in mutual exclusion. We prefer to view a double-barrel
Link as just a Link with typed interfaces, where the type information conveys the
one-hot encoding properties of the two Link states. Adding type information to a
Link and Joint interface makes it possible to fine-tune the interface and the tasks on
each side of it as well as to graduate the delay sensitivity of the information
exchange.

The stages in the crossbar switch communicate through double-barrel Links.
Section 7.3.2.3 describes three representative circuits related to the crossbar.

7.3.2.3 Crossbar circuits: Splitter, Double-barrel Ricochet, Crosser
Double-barrel Links appear only inside the 8 � 8 crossbar switch and at its inputs
and outputs. Data enter the crossbar from the South and leave toward the East. Just
South of the crossbar, a dark gray area in Figure 7.16 holds eight Splitter stages that
fill the double-barrel Links for the first row of Double Crossers. The dark gray area
at the North West (NW) boundary holds eight Double-barrel Ricochet stages that
act as FIFO stages for double-barrel Links. They repeat and fold double-barrel
Links, directing data from the South heading North to make an Eastbound turn
instead. Each Double Crosser stage in the light gray area in Figure 7.16 has two
double-barrel input Links, coming from the South and the West, and two double-
barrel output Links, going North and East, respectively. A Double Crosser also has
two Crossers—one for Northbound data and the other for Eastbound data. As illu-
strated in Figure 7.17(c) and (d), the two Crossers share data from the double-barrel
input Links. Each Crosser arbitrates between data items that go into the direction it
controls. Just East of the crossbar, another dark gray area in Figure 7.16 holds eight
Lumper stages that drain the double-barrel Links for the last column of Double
Crossers and pass their data to the ordinary Links and FIFO rings, for recirculation.

Figures 7.21–7.23 show the 6-4 GasP circuit implementations that the Weaver
uses for the Splitter, Double-barrel Ricochet, and Crosser. To emphasize how
similar these implementations are to each other and to a simple 6-4 GasP FIFO with
ordinary Links, all three Figures borrow the alphabetic gate identifier scheme of
Figure 7.19. Below follow brief explanations of the circuit implementations in
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Figure 7.22 Double-barrel Ricochet Joint and near-end Link connections.
An advanced FIFO circuit for double-barrel Links
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Figures 7.21–7.23. We focus primarily on new circuit aspects that each subsequent
Figure brings in.

● Splitter: Figure 7.21 gives a 6-4 GasP implementation of the Splitter showing
its Joint splitter and omitting its input Link in and half of its output Link out.
The Joint receives 72 bundled data input bits labeled D(in[1:72]). One of these
72 bits, Din[s], acts as a Splitter specific steering bit to select which double-
barrel output state to fill—out0 or out1. The Joint copies all 72 input bits
D(in[1:72]) to D(out), including steering bit D(in[s]). Thus, Din[s] remains
available in bundled data form to repeat its steering task on a subsequent pass
through the Splitter. As explained in Section 7.3.2.2, the kited steering bits are
used as late as possible, in X0 and X1, to compensate for their kiting. Similar to
Figure 7.19, inverters D, E, F, G amplify the Joint’s AND function so it can
drive the large loads presented by the 72 latches in Link out and by the driver-
and-keeper gates X0, X1, and Y in Links out and in. Joint splitter has the
following AND function: FULL(in) and EMPTY(out0) and EMPTY(out1)
and go.

● Double-barrel Ricochet: Figure 7.22 gives a 6-4 GasP implementation of the
Double-barrel Ricochet, showing its Joint DB-ricochet with half of its input
and output Links, in and out. A Double-barrel Ricochet is an advanced FIFO
circuit for double-barrel Links. It has two mutually exclusive AND functions.
When it fires its first one, FULL(in0) and EMPTY(out0) and EMPTY(out1) and
go, inverters D0, E0, F, G provide the amplification to drive the latches in Link
out to copy the data from D(in) to D(out) and to drive X0 and Y0 to fill out0 and
drain in0. When it fires its second one, FULL(in1) and EMPTY(out0) and
EMPTY(out1) and go, the inverters D1, E1, F, G provide the amplification
to drive the latches and copy the data and to drive X1 and Y1 to fill out1 and
drain in1.

Note that Joint DB-ricochet has two MrGO circuits, one per AND function,
but that we tied their go input signals together, resulting in one go signal that
enables or disables both AND functions.

● Crosser: Figure 7.23(a) and (b) gives a 6-4 GasP implementation of the
Crosser, showing its Joint, crosser, and double-barrel output Link, out. The
input interface of the Joint suggests two ordinary incoming Links, inA and inB,
with 72 bits of data including a steering bit. Links inA and inB subset the signals
of the double-barrel Links that enter the Double Crosser and relate to Link
out—see Figure 7.17. The Crossers handle contention in the crossbar switch.
At the heart of Joint crosser in Figure 7.23(a) is an arbiter or mutual exclusion
(ME) circuit, gate A0, patterned after the 1980 design by Charles Seitz [17],
and sized to minimize its delay for the common uncontested case [4]. This
mutual exclusion circuit grants on a first-come-first-served basis, and waits for
metastability to end before it lowers the selected grant signal. Besides handling
contention, each Crosser also decodes its Double Crosser specific steering bit
one stage in advance of need, by producing double-barrel outputs—just like
the Splitter in Figure 7.21. The new aspects in the Crosser are:
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(a) Joint crosser in Figure 7.23(a) has two mutually exclusive AND func-
tions: one for granting FULL(inA) and the other for granting FULL(inB).
When it fires the first, ~grant(inA) and ~fireB and EMPTY(out0) and
EMPTY(out1) and go, inverters D, E, F, G spread over Figure 7.23(a) and
(b) provide the amplification to drive the latches in Link out to copy D
(inA), and drain inA, and fill either out0 or out1 depending on whether
steering bit D(inA[s]) is zero or one. The other AND function results in a
similar action between inB and out. Note that ~fireB is an input to the
AND function that generates fireA. Likewise, ~fireA is an input to
the AND function that generates fireB. Such cross-coupling prevents
one AND function from overtaking the other in case of back-to-back
grants [13]. Cross-coupling ensures that the signals that drive the data and
state changes over the Links have adequate pulse widths—five gate
delays wide.

(b) Note that the AND functions in Joint crosser both have a go input signal,
but that both signals come unarbitrated, that is, without a corresponding
MrGO circuit. We found the task of adding two MrGO arbiters to an
already arbitrated circuit with a tight layout and with tight five gate delay
loops and high amplification needs simply too daunting. One go input
signal serves both AND functions.

7.3.3 Test logistics
The Weaver’s rings, including the parts that go through the crossbar switch, can
each transfer up to about 6 Giga data items per second (GDI/s). The supporting
throughput measurements follow in Figure 7.30, Section 7.3.5. With 72 bit wide
data items, this amounts to 3.5 Tera bits per second. Yet, we use a low-speed test
interface consisting of only five wires to test the functionality of the Weaver and to
debug and characterize its high-speed operations. Moreover, we use this low-speed
“test interface” to initialize and start the Weaver. The photo in Figure 7.24 shows a
Weaver chip in its ceramic package, mounted on its test board.

In addition to the five low-speed test signals, the Weaver has two dedicated
medium-speed outputs that deliver one-millionth reduced ring frequency outputs.
These two medium-speed outputs follow the switching frequency of bit 19 in two
of the ten 54 bit long ring counters in the Weaver—see Section 7.3.1.3 and
Figure 7.18. The two black coaxial cables in Figure 7.24 carry the reduced ring
frequency outputs to an oscilloscope for real-time observation.

The ring counters are 54 bits long to accommodate long test experiments.
When counting 6 Giga items per second, a 54 bit counter will overflow about every
30 days.

The counters can be reset to zero at the beginning of a test experiment and read
out at the end. They are read out over the white flat ribbon cable visible midway the
right edge of Figure 7.24. The flat ribbon cable carries low-speed signals between
the chip and a computer. The computer contains the test program with instructions
for controlling the low-speed test stimuli and observing the low-speed test
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responses. The chip contains a low-speed JTAG test interface with five test pins,
an on-chip test access port, and on-chip scan chains. This low-overhead low-
speed test interface is an industry standard for testing manufactured chip designs
and printed circuit boards. It was codified by the Joint Test Action Group (JTAG)
and the Institute of Electrical and Electronics Engineers (IEEE) in IEEE Standard
1149.1-1990, entitled Standard Test Access Port and Boundary-Scan
Architecture [15].

The JTAG test interface in the Weaver runs at 500 kHz. The ten ring counters
hold 54 bits each. We use a scan chain to read out all 540 counter bits at once. We
then shift the scan bits one by one over the JTAG test interface, which takes on the

Figure 7.24 Photo of a packaged Weaver chip on its test board. The chip contains
two experiments, one of which is the Weaver. The other, called Anvil
and designed by Chris Cowan, is a case study in radiation
hardening—not further discussed here. The two black coaxial cables
connected near the middle of the board carry two one-millionth
reduced ring frequency outputs to an oscilloscope for real-time
observation—see Section 7.3.1.3. L-shape connectors at the top-right
corner of the photo bring in power and ground. A white flat ribbon
cable visible midway the right edge of the photo carries five low-
speed test signals to and from the chip and a computer. The computer
contains the test program with instructions for controlling the low-
speed test stimuli and observing the low-speed test responses. Board
and final chip layout are by the late Jon Lexau of Sun Labs
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order of a millisecond. We use a similar approach for reading and writing
approximately 500 go control signals, one per Joint, approximately 500 Link states,
and 720 data bits, 72 for each of the ten ring reloaders.

The JTAG test interface is synchronous and clocked. It has one output signal,
test data out, and four input signals, test clock, test data in, test mode select, and an
optional test reset signal. These signals are used to set up and select test operations,
to read and write Weaver states, and to enable and disable Weaver actions. Details
about setting up test operations can be found in IEEE Standard 1149.1-1990 [15].
Here, we show the Weaver specific parts of the test interface [7]—the scan chains
and the transfer circuits to and from the scan chains and the Links and Joints in the
Weaver—that read and write (Link) states and enable and disable (Joint) actions.

7.3.3.1 Scan chains and connections to Weaver Links and Joints
The scan chains in the Weaver consist of shift registers connected in series. Each
shift register has two small latches that are also connected in series, as illustrated in
Figure 7.27(c). The circuit designs for the two small latches follow in Figure 7.25.
With two latches, the shift register can store one bit safely. This bit can be shifted in
or out serially. To shift bits in or out, the two latches in the shift register are clocked
alternately, using two scan clocks, c1 and c2. Instead of shifting a bit in through the
scan chain, the shift register can read a bit from the Weaver and store it into its
second latch, using a special scan signal called read. In addition to shifting a bit out
through the scan chain, the shift register can write the bit that it stores in its second
latch into the Weaver, using a special scan signal called write.

Each shift register comes with a bundle of eight scan signals, including shift
register specific scan input and output signals, sin and sout. The other signals in the
scan bundle travel the entire length of the scan chain, with regular amplification.
These include the two scan clocks, c1 and c2, and the scan read and write signals for
interaction with the Weaver. Other scan signals that travel the entire length of the
scan chain—c1Return, c2Return, sReturn—are the far-out scan clock signals and
the scan output signal of the last scan shift register. These travel in reverse direction
through the scan chain, back to the first scan shift register and its JTAG test
interface.

The far-out scan clock signals that return to the JTAG test interface are
important for generating nonoverlapping clocks for shifting data in and out of the
scan chain. The clock generator in Figure 7.26 combines the low-frequency JTAG
test clock with c1Return and c2Return to generate low-frequency scan clocks c1 and
c2 that are never high at the same time. If the two clocks are never high at the same
time, the two small latches clocked by them in Figure 7.27(c) are never transparent
at the same time, and neither are any other subsequent latches in the scan chain.
The nonoverlapping clocks make the scan chain shift bits properly.

After a bit has arrived in the second latch of the shift register, we can write it
into the Weaver signal associated with this shift register. Or we can read the value
of the Weaver signal into the second latch and shift it out for inspection. Some writes,
specifically those associated with go signals, enable or disable circuit actions and can
even start or stop them. Other writes merely change circuit states.
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Test clock c1

c2

c2Return

c1Return

Figure 7.26 Scan clock generation. We use the low-frequency JTAG test clock to
generate two low-frequency scan clocks that are never high at the
same time. Each scan clock, c1 or c2, goes high only after the longest
branch of the other scan clock, c2Return or c1Return, has gone low
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Figure 7.25 Scan latch circuits. Because of their low, 500 kHz, clock frequencies
the scan latches can be half the size of the data latches in Figure 7.20
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Figure 7.27 Scan connections for reading and writing Weaver data. Weaver data
can be read for inspection and written for initialization or test at a
reloader stage located in the SE corner of the Weaver floorplan—see
Figure 7.16. A reloader stage is just a FIFO circuit, as in
Figure 7.19, but one with scan access to the data latches in its output
Link. Each data latch is associated with a specific scan shift register
(c) which can read the bit stored in the data latch, Dout[i] alias
Dread[i], or write its own bit, Dwrite[i], into the data latch (b). To
allow the shift register to overwrite latch content, each data latch is
replaced by its multiplexed version (a)—see Figure 7.20. Thanks to
their small latches, the 72 serially connected scan shift registers and
their bundles of scan signals occupy a footprint similar to the FIFO
circuit. Reloader FIFO and scan fit in one Weaver layout module
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The Weaver uses different circuits to transfer bits to and from the scan chains
and its data latches, FULL or EMPTY Link states, and go signals. Figures 7.27–
7.29 illustrate the differences. The three Figures show similar shift registers (c) but
different transfer circuits (b) and different Link and Joint circuit modifications after
scan insertion (a). In particular, the Weaver writes and stores the data bits that it
receives from the scan chain in its own data latches—see Figure 7.27. Likewise, the
Weaver reuses its own driver-and-keeper gates to write and store the FULL (1) or
EMPTY (0) bit that it receives from the scan chain. It turns the keepers off while it
writes the Link state, and stops driving the Link state when the write signal is
low—see Figure 7.28. In contrast, the Weaver writes and stores each go signal that
it receives from the scan chain in a separate small latch—see Figure 7.29. Note that
all three Figures enable their shift register to read back what it wrote. To reduce
wire capacitance and switching power, we gate the read connections from the high
frequency Link state signals to the shift registers when read is low.

The Weaver has several scan chains. One scan chain follows the NE edge of
the Weaver, reads the ring counters, initializes them to zero, and sets their multi-
plexers for monitoring frequency outputs in real time—see Figure 7.18. A second
and similar scan chain, based on Figure 7.27, follows the SE edge and reads and
writes the data latches in each reloader stage. A third one, based on Figure 7.28,
reads and writes the Link states of each Link in the Weaver. A fourth, based on
Figure 7.29, reads and writes the go signals of each Joint. The scan chains for
FULL or EMPTY and go signals visit each module in the Weaver, and do so in
boustrophedonic order—turning like oxen in ploughing a field. Their first shift
registers start at the JTAG test interface in the corner where NE and SE edges meet.
Their last shift registers end at the opposite corner where NW and SW edges meet.
Their scan shift registers and the corresponding transfer circuits to each Link and
Joint are combined with the layout modules of the Links and Joints. The Weaver’s
JTAG test interface operates the scan chains in mutual exclusion. Note that the shift
registers in Figures 7.27–7.29 read Weaver bits in parallel, write Weaver bits in
parallel, but shift bits serially in and out the scan chain. Note too that the scan chain
can shift while the circuit operates, without mutual interference.

7.3.4 How low-speed scan chains test high-speed performance
Asynchronous or self-timed circuits operate as fast as they can—when they can.
Externally lock-stepping their operations to, for instance, the JTAG test clock
would take the “self” out of their timing and run them synchronously and no longer
at speed. Once this realization sinks in, it becomes obvious that we need merely
identify the borders to where the circuit can run, and allow it to run “flat out” inside
these borders. Circuit actions stop at the border. The go signals in our circuits give
us the necessary control to enable actions within borders and disable actions at
borders.

We can test the high-speed Weaver operations at speed because we enabled the
JTAG test interface to control actions and states separately. The Weaver’s test
interface recognizes and controls the individual go signals in each Joint’s action
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Figure 7.28 Scan connections for reading and writing Link states
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and it recognizes and controls the individual FULL or EMPTY and data signals that
are stored in each Link. In Section 7.2, we explained how distinguishing actions
from states and controlling them separately accommodate initialization, structural
testing, and at-speed testing of parts or the entire design.

In the Weaver, a burst of data items will run at speed from one end to the other
end of an empty ring segment, with the two ends marked by disabled go signals.
Any preparation work for running this burst—by (1) first disabling the go signals,
so we can initialize the Links in the takeoff, under test, and landing parts of the
ring, as in Figure 7.14, by (2) then enabling the go signals to enable all parts to run
freely except for the two ends and the “gate keeper” to the part under test, and by
(3) finally enabling the “gate keeper” to release the burst and let it run freely
through the ring segment—any of that can be done at low speed, using the JTAG
test interface. The at-speed performance follows from letting the circuit run freely
from end to end. Similar low-speed preparations let us run data items through an
endless ring and stop their circulation by disabling the “gate keeper” in real time, as
described at the end of Section 7.2.2. We do this to measure performance—
throughput, power, and energy. For throughput, we scan out the ring counters and
relate their values to the run time. For power, we use a current probe to measure the
average current that the Weaver draws while running, and relate its value to the
supply voltage used while running. The energy consumption can be calculated from
throughput and power. Section 7.3.5 presents our throughput, power, and energy
measurements from the Weaver chip.

7.3.5 Performance measurements
Figures 7.30–7.33 show four collections of canopy graphs with throughput and
power measurements from the Weaver chip, measured for various traffic and sup-
ply voltage levels. Each graph plots the measured information as a function of ring
occupancy—the number of FULL Links or valid data items [18,19]. Sections
7.3.5.1–7.3.5.4 analyze the canopy graphs, showing throughputs of about 6 Giga
data items per second, and energy dissipation around 3 picojoules to forward one
data item one stage.

7.3.5.1 Throughput versus occupancy at nominal power supply
The canopy graphs in Figure 7.30 plot the throughput for four of the ten FIFO rings
at nominal power supply voltage. Rings 0 and 9 bypass the crossbar switch and thus
omit switching elements. Ring 1 has the highest maximum throughput and Ring 8 has
the lowest maximum throughput of all eight rings that go through the crossbar switch.
The throughput reflects the count reached in each ring counter stage in the NE corner
of the Weaver floorplan—see Figure 7.16. We normalized the count to average one
second of run time. Each graph plots the throughput as a function of ring occupancy,
that is, of the number of valid data items in the ring.

An empty ring has zero throughput just as an empty freeway carries no traffic.
Likewise a completely full ring has zero throughput just as a congested freeway
stalls traffic. Therefore, at its left and right ends a canopy graph shows zero
throughput. The linear rise in throughput with occupancy at the left of each canopy
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graph is easy to understand. One data item circulates with a period set by the
forward latency around the ring, and—just like a few racecars on a circular track—
so do any small number of data items. Because data items cannot overtake each
other, throughput increases with the number of circulating data items—as long as
congestion is avoided. The right side of the canopy graph shows the impact of
congestion. As congestion decreases, more spaces become available for forwarding
data items and there is a corresponding linear increase in throughput.

Somewhere between a completely full and a completely empty ring there is an
occupancy with maximum throughput. The canopy graph for Ring 9 shows its
maximum at 6.4 Giga data items per second (GDI/s) at 60% occupancy, that is,
with 24 valid data items in its 40 stages. The 6-4 GasP circuits in the Weaver
transport space faster than data: the forward latency of each 6-4 GasP circuit in the
Weaver is about 100 picoseconds, and the reverse latency is only about 66 pico-
seconds. The choice to transport space faster than data is inspired by the relative
ease of transporting space. It is easier to declare a Link EMPTY, when transporting
space, than it is to declare a Link FULL and drive the latches and capture an
arriving data item, when transporting data. At 60% occupancy the net velocity of
spaces and data items match, resulting in maximum throughput.

The Weaver’s layout accounts completely for the differences in the shapes of
its canopy graphs. These differences can be explained by examining the basic
layout of the Cross Fire sections outside the crossbar switch and by examining the
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Figure 7.30 Canopy graphs for throughput versus occupancy. Each canopy graph
plots the frequency measured at nominal supply voltage as a function
of ring occupancy. Ring 9 has 40 stages, all others have 48 stages.
Maximum throughput is at 60% occupancy, and around 6 GDI/s.
Weaver’s layout accounts completely for the differences in maximum
throughput shown by the graphs

164 Asynchronous circuit applications

JiaDi-6990448 28 September 2019; 11:34:52



layout of the Double Crossers inside the crossbar switch. We start our explanation
by examining the layout of the NE, SE, and SW Cross Fire sections in Figure 7.16.

● Layout modules: In the Cross Fire layout, we pair independent FIFO stages
that cross each other at a North-South and East-West ring crossing. Each stage
has a FIFO Joint and its two near-end Link connections as shown in
Figure 7.19. Crossing stages are paired to form one layout module. Each layout
module is approximately square. Layout modules abut. The two FIFO stages fit
side by side in the module, each taking a slice that spans the full module height
and half the module width. Per FIFO stage or slice, the control circuits—gates
A to G, X , Y in Figure 7.19—occupy a center row flanked above and below by
two groups of 36 latches each that belong to the outgoing Link. The scan
circuits for go signals and Link state signals occupy the bottom row, below the
latches, and part of the center row.

● North-South module connections are longer: Per FIFO, the Link state sig-
nals extend horizontally in East-West direction, almost all the way across the
center row. A Link state signal that connects two FIFO stages in East-West
direction must jump horizontally from one layout module’s center row to an
adjacent module’s center row, a slice distance away. The jump requires about
half a module width of extra wire. A Link state signal that connects FIFO
stages in North-South direction must jump vertically from center row to center
row, which requires a full module length of extra wire—twice that of an East-
West connection.

● North-South module connections are slower: Longer wires are harder to
drive than shorter wires. Moreover, the Weaver’s throughput depends in part
on the control speed of its Links, that is, of its state signals and their driver-
and-keeper gates. For design modularity and simplicity, the Weaver uses the
same drive strength of 40 for each Link driver-and-keeper gate, independent—
within reason—of the wire length of the state signal it drives. Because North-
South module connections have longer Link state signals than East-West
module connections, using equally strong Link driver-and-keeper gates makes
the North-South module connections slower.

The slowness of North-South connections compared to East-West connections
is even more pronounced for the Double Crosser layout modules in the crossbar
switch. Their footprint and organization are similar to those for the Cross Fire
layout modules: approximately square, with two Crossers and their near-end Link
connections positioned side by side, with control circuits occupying a center row
and groups with 36 latches each above and below. Because the control complexity
is higher and the number of gate connections per Link state is higher, Double
Crosser layout modules have longer Link state signals in and between them than
Cross Fire layout modules. Double Crosser module connections are slower than
Cross Fire module connections in any direction, and slowest in the direction North-
South.

All other circuits, barring the reloader stages, are organized as narrow half-
width layout modules, with just one slice instead of two slices side by side. North-
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South connections for these are about as slow as for Cross Fire layout modules.
The reloader stages in the SE corner of Figure 7.16 take an entire layout module
each. The FIFO ring stage takes one slice. The other slice contains the scan circuits
to read and write the 72 data bits in the FIFO ring stage. North-South and East-West
connections to a reloader stage are similar to those for a Cross Fire layout module.

We now have enough information to understand the differences between the
canopy graphs in Figure 7.30. Consider first the canopy graphs for Ring 0 and
Ring 9 that avoid the crossbar switch. The maximum throughputs of Ring 0 and
Ring 9 are about the same because both are limited by their slower North-South
Links. Next consider the canopy graphs for the switched rings, Ring 1 and Ring 8.
Ring 1 passes across the bottom of the Double Crosser triangle of the crossbar switch,
and is therefore slower than Ring 0 and Ring 9. Ring 1 avoids North-South connec-
tions between Double Crossers and is therefore faster than Ring 8. The canopy graph
for Ring 8 is about the same as for Ring 2 to Ring 7—omitted from Figure 7.30 for
this reason—because each is limited by its slower Double Crosser North-South Links.

7.3.5.2 Throughput for various power supply voltages
Speed scales with power supply voltage. Figure 7.31 shows canopy graphs that plot
the relative throughput of Ring 4 as a function of ring occupancy at different supply
voltages. Throughput numbers are scaled relative to the maximum throughput of
Ring 4 at nominal supply. The throughput of Ring 4 at nominal supply is about the
same as that of Ring 8 in Figure 7.30. The spacing of the flat canopy tops at
different voltages indicates a nearly linear relationship between throughput and
power supply. The Weaver operates flawlessly between 0.6 and 1.0 volt. In this
operating region, throughput is very nearly proportional to the excess of power
supply voltage over threshold voltage. Any excess beyond that required just barely
to overcome the transistor threshold voltage of about half a volt can be used to
charge the wires.

The medium-speed real-time outputs connected to the counters, shown in
Figure 7.18, give a vivid demonstration of speed as a function of power supply
voltage. Lacking a global clock, it is unnecessary to adjust a clock frequency when
changing the supply voltage. Turning the knob to adjust power supply voltage
makes the self-timed Weaver automatically speed up or slow down because each
part proceeds as fast as the available power supply voltage permits. Turning the
power supply voltage knob stretches or shrinks the square wave seen on an oscil-
loscope attached to Weaver’s real-time counter outputs.

7.3.5.3 Power for various power supply voltages
Figure 7.32 shows canopy graphs that plot the relative power of Ring 4 as a func-
tion of ring occupancy for five different power supply levels, using a worst-case
data pattern.k The graphs are normalized in proportion to the maximum power at

kThe data pattern used in Figure 7.32 is a checkerboard pattern, with alternating bit values for each data
item that flip in opposite direction for subsequent data items. For more details, see Section 7.3.5.4.
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Figure 7.32 Canopy graphs showing power at various supply voltages. The
graphs plot the relative power of Ring 4 as a function of ring
occupancy at five different power supply levels, using data patterns
like 101010 followed by 010101. The measured power is very nearly
proportional to (supply voltage � 0.5 volt) �(supply voltage)2
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Figure 7.31 Canopy graphs showing throughput at various supply voltages. The
graphs plot the relative throughput of Ring 4 as a function of ring
occupancy at five different power supply levels, and indicate that
throughput is very nearly proportional to (supply voltage � 0:5volt)
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the highest voltage. We measured the power as the product of the current drawn
and the power supply voltage.

Upon examination one can see that the measured power is very nearly
proportional to ðsupply voltage � 0:5voltÞ � ðsupply voltageÞ2. Figure 7.31 in
Section 7.3.5.2 already noted ðsupply voltage � 0:5voltÞ as proportional to the
throughput. Thus, the first term, ðsupply voltage � 0:5voltÞ, relates to how many
data items per second pass a given point, for example, the counter stage. The sec-
ond term, (supply voltage)2, relates to the energy for forwarding a data item by one
stage, which involves charging or discharging the capacitance of the data wires.
Power is energy per second, and so the units work out correctly. The graphs in
Figure 7.32 serve mostly as a sanity check. The more compelling power measure-
ments follow in Figure 7.33, Section 7.3.5.4.

7.3.5.4 Power for various data patterns
Figure 7.33 shows canopy graphs that plot the active power of Ring 4 as a function
of ring occupancy and different patterns of data measured at nominal power supply.

Power is lowest when all data items are identical, because for identical values the
data wires need never change. Power is highest for a checkerboard pattern in which
data wires adjacent in the layout switch in opposite directions as each data item
passes. Power numbers drop slightly if instead of a checkerboard pattern the Weaver
alternates all-zeros and all-ones, because of a reduction in side capacitance for
adjacent data wires that carry the same value. The intermediate graph in Figure 7.33
is for random data and shows random local variation from sample to sample.

In both the checkerboard graph and alternating all-zeros and all-ones graph, the
power numbers ripple between even and odd occupancy, up to about 60% occu-
pancy. For N data items circulating, there are either N or N � 1 changes in value
depending on whether N is even or odd. Adding one more data item to an existing
even set of data items maintains the number of data changes, but adding one more
data item to an existing odd set of data items introduces another data change with a
corresponding increase in active power—barring congestion.

The power numbers in the graphs for the checkerboard and alternating data pat-
terns differ by only about 5%. The data wires in the Weaver are all double width at
double spacing to reduce their capacitive load—see Section 7.3.2.2. The graphs
confirm that the side capacitance between data wires contributes relatively little load.

The minimum power measured for circulating a constant data pattern is about one
quarter of the maximum power reported in Figure 7.33, for the same occupancy. This
minimum reflects the power required to “locally clock” the 72 latches in each occu-
pied stage, making them repeatedly transparent and opaque—even though their data
inputs and outputs remain unchanged.

The power measured for circulating a random data pattern is more than half the
power measured for circulating a checkerboard pattern. Comparing the two after
subtracting the fixed power overhead for “local clocking” provided by the constant
data pattern gives ðrandom � allzeroÞ=ðcheckerboard � allzeroÞ, which is about
0.54 over a wide range of occupancies. This is consistent with the statistical model
that a random data bit changes about half the time.
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The canopy graphs in Figure 7.33 show clearly that the Weaver’s power is
determined by how many data bits change when data circulate through the rings
and the crossbar switch. The maximum power of 500 milliwatts is for circulating
60% � 48 or around 29 data items in a checkerboard pattern through 48 stages of
Ring 4, including eight stages in the crossbar switch. Any stage in the Weaver has
the same number of latches driving about the same length of data wires. Each stage
therefore has the same power when circulating the same pattern at the same speed.
So, if we were to circulate a worst-case data pattern at maximum speed through
each switching ring, the 8 � 8 crossbar would run at ð64=48Þ � 500 or about
667 milliwatts.

All switching rings have a throughput up to between 5.5 and 6 GDI/s. Worst-
case, a checkerboard pattern with 29 data items running through a switching ring
would run at 5.5 GDI/s and 500 milliwatts. If we call x the energy required to forward
one data item one stage, then worst-case x ¼ 500=ð5:5 � 29Þ or 3 picojoules.
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Figure 7.33 Canopy graphs showing power for various data patterns. The graphs
plot the power of Ring 4 at nominal power supply voltage as a
function of ring occupancy and four different data patterns. Power
depends on how many latches change as data items travel through
the Weaver. With constant data (All zero) the latched data remain
unchanged, resulting in lowest power. Checkerboard patterns like
101010 followed by 010101 (Checker) cause adjacent data wires to
change with every passing data item, resulting in highest power.
Patterns with all-zeros alternating with all-ones (Alternating) take
almost as much power. Random data (Random) give average power.
By combining these power measurements with the throughput
measurements in Figure 7.30, one can estimate that the energy to
forward one data item one stage is at most 3 picojoules—for details,
see end of Section 7.3.5.4
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7.3.6 Summary and conclusion of Section 7.3
The Weaver implements a simple logical function: an 8 � 8 nonblocking crossbar
switch with recirculating channels connecting its eight outputs back to its inputs. Its
simplicity allowed us to push its limits. Wide datapaths of 72 bits stretch the
Weaver’s layout. A short cycle time based on five-gate ring oscillators and a
complex flow control with steering bits and arbitration stretch the Weaver’s elec-
trical design. The Weaver’s high throughput of 6 Giga data items per second per
channel—nearly 3.5 Tera bits per second for the full crossbar—is outstanding.

For initialization and at-speed test and debug, the Weaver has separate go
control in each and every Joint and FULL or EMPTY state access in each and every
Link. Its functional simplicity made it possible to read and write all its data through a
single reloader stage per channel. Testing the Weaver was a delight—an experience
we intend to cultivate further through the Link and Joint model of computation.

The Weaver’s logical design separates communication and states in Links
from computation and actions in Joints. The Weaver’s electrical design maintains
this separation. Although all its circuits use the 6-4 GasP self-timed circuit family,
they might equally well have used Click.

The Weaver uses different kinds of Links. For instance, the crossbar combines
the steering bits and the fill signals in the driver-and-keeper gates of its output Links—
see Figure 7.21. Doing so compensates for kiting delay in the data, as explained in
Section 7.3.2.2. A novel feature of the Weaver is its use of double-barrel Links.
A double-barrel Link bundles data bits with two state signals that carry steering
information in one-hot form. The end of Section 7.3.2.2 considers whether to view a
double-barrel Link as a peephole optimization of two mutually exclusive ordinary
Links or as a Link with a typed interface that carries data in a different form. Adding
type information permits fine-tuning of Link-Joint interfaces.

The Weaver’s layout modules package a Joint with the near ends of its Links,
cutting the Links where they can be stretched. The layout modules conceal the
Link-Joint interface and expose the handshake interface—an unfortunate side
effect. All too often, designers let layout guide the way they design. The Link and
Joint model guides the Weaver’s design. And that has made all the difference.
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