
How to Think about Self-Timed Systems

Marly Roncken∗, Ivan Sutherland∗, Chris Chen∗, Yong Hei∗†, Warren Hunt Jr.‡, and Cuong Chau‡,

with Swetha Mettala Gilla∗, Hoon Park∗, Xiaoyu Song∗, Anping He§, and Hong Chen¶

∗Portland State University, Portland, Oregon, USA
†Institute of Microelectronics Chinese Academy of Sciences, Beijing, China

‡The University of Texas at Austin, Austin, Texas, USA
§School of Information Science & Engineering, Lanzhou University, Lanzhou, China

¶Institute of Microelectronics, Tsinghua University, Beijing, China

Abstract—Self-timed systems divide nicely into two kinds of
components: communication links that transport and store data,
and computation joints that apply logic to data. We treat these
two types of self-timed components as equally important. Putting
communication on a par with computation acknowledges the
increasing cost of data transport and storage in terms of energy,
time, and area. Our clean separation of data transport and
storage from logic simplifies the design and test of self-timed
systems. The separation also helps one to grasp how self-timed
systems work. We offer this paper in the hope that better
understanding of self-timed systems will engage the minds of
compiler, formal verification, and test experts.

I INTRODUCTION

On-chip communication over distance has inherent delay. Self-

timed systems accommodate this delay by sending validity

signals alongside data to bind or release the data. We package

data transport wires and their associated validity signals into

a communication component we call a link. Whereas a self-

timed component for computation tends to be compact, a

link often spans a long distance. Nevertheless, like all self-

timed components, a link reports completion of its tasks. For

instance, when “filled” with data at its input a link reports

completion of this fill task at both its input and output ends.

Except for its delay, a link’s communication behavior is

entirely independent of its length. Albeit spread over space,

we treat links as first class components, just like components

for computation. Design and test gain simplicity by elevating

communication to a status equal to that of computation [6].

We will first describe links, and then focus on how to specify

and implement many types of components for computation,

including flow control. We call a component for computation

a joint, because joints are the meeting points for links to

coordinate states and exchange data.

This paper intends to give readers (1) sufficient detail to

model their own self-timed systems in terms of links and

joints, and (2) easy access to the benefits of self-timing. We

carefully refrain from specifying one of the many families

of self-timed handshake communication circuits because their

implementation differences can remain “under the hood” of a

link and joint model [6].

II THE ROLE OF LINKS

A link transports data and their associated validity signals. The

validity signals are stored in the link as a FULL or EMPTY

state. A FULL state indicates that the link’s data signals are

stable and valid. The link presents a FULL state indicator at

its output end to let a receiver know whether or not it is FULL.

An EMPTY state indicates that the link’s data have been

released and may be replaced by fresh data. The link presents

an EMPTY state indicator at its input end to let a sender

know whether or not it is EMPTY. Our links are one-to-one

connections, with data flowing always in the same direction.

Links may, but need not, store the data they transport.

Figure 1 draws each link with a rectangle, to remind us that

it stores state and possibly also data. The rectangle is long

to remind us of the link’s transport delay. Colored rectangles

represent FULL links, and white rectangles represent EMPTY

links. A link stores data unless its rectangle is crossed-out as

in Figure 2(f). Figure 1 draws joints as stick figures, each

of which coordinates the actions of two links. The arrows

indicate the direction in which the data flow. The link-joint

configurations in Figure 2 represent joints as circles.

A link has two actions. A “fill” event with data at its input

causes the link to store the data and become FULL. The

link’s EMPTY state indicator, at the input end, is de-asserted

immediately. Because of transport delay, the link’s FULL state

indicator, at its output end, is asserted some time later. Like-

wise, a “drain” event at its output causes the link to become

EMPTY. When drained, the link’s FULL state indicator, at the

output end, is de-asserted immediately. Because of transport

delay, the link’s EMPTY state indicator, at its input end, is

asserted some time later.

Figure 1 shows the action of links coupled by a simple joint

that forms links into a first-in-first-out buffer configuration, or

FIFO. Data in such a FIFO reside in the links that are FULL.

Any subset of the links may be FULL at any one time, and so

such a FIFO is elastic. Elastic FIFOs decouple the timing of

arriving data from the timing of departing data.

Links serve admirably for transport as well as temporary state

and data storage.

1597978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017

Figure 1 This picture illustrates the action of a simple joint
between two links. The stick figure represents the joint, and
the rectangles represent the links. FULL links are colored
and EMPTY links are white. This joint can act only when its
input link is FULL and its output link is EMPTY, as shown
in the upper panel. When it acts, it copies data from its input
link to its output link, as illustrated in the left column. The
action disables itself. A joint whose go signal (GO) is de-
asserted never acts, as illustrated in the right column.

III JOINTS

A joint can have many input links and many output links as

illustrated in Figure 2(a). A joint may act when some or all

of its input links are FULL and some or all of its output links

are EMPTY. When it acts, it computes results from data it gets

from its FULL input links, and passes these results to some or

all of its EMPTY output links. It then fills selected EMPTY

output links, and drains selected FULL input links, destroying

the conditions that enabled this action. Links that it fills or

drains begin their data transport actions to carry results away

or fetch fresh input data.

We describe each action of a joint with a loose guarded

command formalism. Because joints can be seen as processes

that communicate through links, we anticipate that systems

with links and joints blend Hoare’s communicating sequential

processes (CSP) [3] with Dijkstra’s guarded commands [2].

Here is our guarded command specification for the single

action of the joint in Figure 1:

action:

when

FULL(in)

and EMPTY(out)

do

fill(out with data(in))

and drain(in)

Because all actions have go signals, its go signal is an implicit

part of every guard. Some joints have more than one action,

each with its own guard. A joint executes its actions one at a

time, each time making an arbitrary selection between actions

with a valid guard. Sections III-A to III-E discuss a variety of

joints. Aside from arbitration, a joint is storage-free.

III-A Broadcast Joint

The simplest joint acts when all its input links are FULL,

providing the joint with data, and all its output links are

EMPTY, providing it with space for computed results. When

such a joint acts, it fills each of its output links with a result

computed for that link, and it drains all its input links. In other

words: all its links participate in the action. We call such a joint

a “broadcast joint.”

A broadcast joint with one input and one output link can

form an elastic first-in-first-out buffer, or FIFO, as shown in

Figure 1. A FIFO copies data from its input link to its output

link. Given that each of its links can store at most one data

item, the FIFO in Figure 1 can store up to two separate data

items. The FIFO’s outgoing data stream retains the data and

sequence of its incoming data stream. By connecting n such

FIFOs in series, using the output link of each FIFO as the

input link to the next FIFO, one can make a longer FIFO that

can store between zero and n+ 1 data items. This elasticity

in storage capacity decouples input timing from output timing,

and can be used to bridge different timing domains.

A broadcast joint with one output link and several input links

might serve to combine the incoming data arithmetically, for

example by adding them, as illustrated in Figure 2(b-top).

A broadcast joint with one input and several output links can

serve to separate parts of a data structure, as suggested by the

example in Figure 2(b-bottom). This example might be used

in an instruction decoder to separate each incoming instruction

into parts: opcode, index values, and address.

At the beginning of Section III, we gave a simple guarded

command specification for the joint in the FIFO of Figure 1.

This simple specification is silent about the structure of

the data. The data structure is irrelevant for the operation

as a FIFO, but is relevant when the FIFO is implemented

in silicon or type-checked for compatibility as a sub-part

of a system. In this paper, we include data structures and

type information only when they promote understanding. The

guarded command specification contains an indirect reference

to the joint’s computation or “copy” function, f , using the fact

that f(data(in)) = data(in). Below, we give an example of a

specification with an explicit computation function, add, for

the joint in Figure 2(b-top):

define add(n1,n2) = n1 + n2

action:

when

FULL(number1)

and FULL(number2)

and EMPTY(sum)

do

fill(sum with add(data(number1),data(number2))

and drain(number1)

and drain(number2)

A corresponding circuit follows in Figure 3(a).

1598

jointinput links Li
... output links Lj

...

add sum

number1

number2

(a) Joint with data input and output links

(b) Broadcast joints for add (top) or decode (bottom)

(c) Data-driven branch joints for distributing data to

 one (top) or zero or more (bottom) output links

(d) First-come-first-serve (FCFS) joint for arbitrated

 mutually exclusive access to an output link

(e) Round-robin configurations with two (top) or

 two or more (bottom) successive destinations

(f) Telescope joint w/o data storage in output link out

decodeinstruction

opcode

index

address

sign<0number

negative

zeroPositive

routevalue

dr
op

_o
th

er

destinationList

destination1

destination2

destination3

FCFS shared

L1

L2

WW

X

0 (no data)

in

wig

wag

RR

next

last_destinationnext_destination

initially indicates L1

in

Ln

...

L1

Telescope

X

0 (no data)

in out

Figure 2 Configurations with links for communication and storage and joints for computation and flow control.

1599

III-B Data-Driven Branch

A joint with one or more input links and several output links

can serve as a data-driven branch by selecting different output

links according to data input values. For example, the joint

in Figure 2(c-top) sends negative input values to one output

link and zero or positive input values to another output link.

Figure 2(c-bottom) shows an example where one input link,

value, contains the data for the selected output links, and

the other input link, destinationList, contains the selection

information. This joint passes the data to all of its selected

output links, discarding mis-addressed selections.

We can design these joints with one or more mutually exclusive

actions. In a design with one action, the joint acts when all

its input links are FULL and all its output links are EMPTY.

When it acts, it fills only selected output links with the results

computed for them, and it drains all its input links. The joint

in Figure 2(c-top), designed with one action, can be specified

by the following guarded command:

action:

when

FULL(number)

and EMPTY(negative)

and EMPTY(zeroPositive)

do

if (sign < 0) fill(negative with data(number))

else fill(zeroPositive with data(number))

fi

and drain(number)

A corresponding circuit follows in Figure 3(b-top). Another

design, with two actions, follows in Figure 3(b-bottom). The

specification of this design has two guarded commands —

one per action. The guards need look only whether or not

the selected output link is EMPTY:

define sign is negative = (sign < 0)

action-1:

when

FULL(number)

and EMPTY(zeroPositive)

and not(sign is negative)

do

fill(zeroPositive with data(number))

and drain(number)

action-2:

when

FULL(number)

and EMPTY(negative)

and sign is negative

do

fill(negative with data(number))

and drain(number)

Advantages and disadvantages of these two specifications and

their circuit implementations follow in Section IV.

III-C First-Come-First-Serve Arbitrated Merge

Some system operations require mutually exclusive access to

a shared resource. Self-timed systems use a special circuit,

known as a mutual exclusion circuit or arbiter, which grants

mutually exclusive access on a first-come-first-serve basis [7].

Joint FCFS in Figure 2(d) contains such an arbiter to provide

its two input links, L1 and L2, with mutually exclusive access

to its output link, shared. We may use the arbiter to decide

which FULL input link to grant when data as well as space

are available, i.e. when the output link is EMPTY, or to decide

regardless of the FULL or EMPTY state of the output link.

We specify joint FCFS, with the arbiter applied when data as

well as space are available, as two guarded commands whose

guards may be valid simultaneously. The specification formal-

ism for guarded commands arbitrates on the basis of valid

guards. Because its arbitration mechanism is already present

in the formalism, this FCFS specification can be adopted easily

in a formal model and verification framework [1].

define

data and select =
(data(L1),select1,data(L2),select2)

action-1:

when

FULL(L1) and EMPTY(shared)

do

fill(shared with data and select)

and drain(L1)

action-2:

when

FULL(L2) and EMPTY(shared)

do

fill(shared with data and select)

and drain(L2)

Specifying an FCFS joint that applies arbitration directly

between the input links requires an explicit arbiter definition:

define

(grant1,grant2) =
arbiter(FULL(L1),FULL(L2),grant1,grant2)

data and select =
(data(L1),select1,data(L2),select2)

action-1:

when

grant1 and EMPTY(shared)

do

fill(shared with data and select)

and drain(L1)

action-2:

when

grant2 and EMPTY(shared)

do

fill(shared with data and select)

and drain(L2)

1600

This last specification omits an arbiter definition, but hints at

its presence. A circuit implementation for joint FCFS with

arbitration directly on the input links follows in Figure 3(c)

and is discussed in Section IV.

III-D Alternating Branch

Instead of using data to drive the flow of data, as discussed

in Section III-B, one can use control. For example, ”wig-wag”

joint, WW, in Figure 2(e-top) sends data from its input link, in,

alternately to two separate output links, called wig and wag.

Internal link X remembers whose turn is next. WW uses wig

when X is EMPTY or wag when X is FULL. Because X is

an input link of the joint, WW could receive data over X and

can access the FULL state indicator at the receiver’s end of X.

Likewise, because X is an output link of the joint, WW could

send data over X and can access the EMPTY state indicator at

the sender’s end of X. In this case, the link’s EMPTY or FULL

state suffices to remember whether to wig or wag. Therefore,

no additional data are sent or received over X, as indicated by

the “0-width” notation in Figure 2(e-top).

Joint WW can be designed with two mutually exclusive ac-

tions, and specified by the following two guarded commands:

action-1:

when

FULL(in)

and EMPTY(X)

and EMPTY(wig)

do

fill(wig with data(in))

and fill(X without data)

and drain(in)

action-2:

when

FULL(in)

and FULL(X)

and EMPTY(wag)

do

fill(wag with data(in))

and drain(in)

and drain(X)

A corresponding circuit follows in Figure 3(d).

The link-joint configuration in Figure 2(e-bottom) generalizes

Figure 2(e-top) by sending data in turn from its input link,

in, to n separate output links, L1 to Ln, for n ≥ 2. It

replaces link X of Figure 2(e-top) by a link-joint-link triple,

with links last destination and next destination, and broadcast

joint next. Given a destination indicator for the last turn, joint

next computes a destination indicator for the next turn. Both

indicators are treated as data. Figure 2(e-bottom) replaces the

control-driven wig-wag joint, WW, of Figure 2(e-top) by a

data-driven “round-robin” joint, RR.

Figure 2(e-top) initializes internal link X as EMPTY, making

wig the first destination. One can initialize X as FULL to

make wag the first destination. Likewise, Figure 2(e-bottom)

initializes internal links last destination and next destination

as EMPTY and FULL, with data indicating L1 as first desti-

nation. One can initialize the data for another first destination.

Wig-wag and round-robin configurations can improve through-

put. Take, for instance, a joint with a complex computation

function that takes too long to finish, say more than one

but less than two times the target action time. Such a joint

would jeopardize the throughput of the system. But we could

use two such joints, and use a wig-wag branch to send data

alternately to each, and a wig-wag merge to receive the

alternately computed results. The alternate service of the wig-

wag configuration gives each joint twice as much time to finish

its computation, and maintains system throughput.

III-E Telescope Joint

One may wish to perform certain data operations in sequence

without storing intermediate results. This can be accomplished

using “telescope” joints.1 For example, joint Telescope in

Figure 2(f) sends data from its FULL input link, in, to its

EMPTY output link, out. But it avoids draining in, until out

has been filled and drained again, thus keeping the data sent

by in and the data received by out valid and stable. Internal

link X remembers whether or not the current data have been

sent. Because link in guarantees the data’s validity, link out can

avoid storing the data, as indicated by the crossed-out rectangle

in Figure 2(f). Link out still stores its FULL and EMPTY

state information, which is why Figure 2(f) still draws link

out with a rectangle. Joint Telescope has two actions specified

as follows:

action-1:

when

FULL(in)

and EMPTY(X)

and EMPTY(out)

do

fill(out with data(in) without storage)

and fill(X without data)

action-2:

when

FULL(in)

and FULL(X)

and EMPTY(out)

do

drain(in)

and drain(X)

1The term “telescope” was introduced in the PhD thesis of Swetha Mettala
Gilla [4]. The name refers to the behavior of a pipeline with telescope joints.
The forward extension by FULL links and the reverse shortening by EMPTY
links are reminiscent of the extension (unfolding) and shortening (folding) of
a jointed telescope with sliding tubes.

1601

(a) Broadcast joint for addition

(b) Data-driven branch joints implemented with

 one action (top) versus two actions (bottom)

(c) FCFS joint with arbitration and with output data

 structured to multiplex-and-store in the link

(d) Wig-wag joint with input-output link X whose

 EMPTY-FULL state stores whether to wig or wag

go

MrGO

EMPTY(sum)

fill(sum)drain(number2)

drain(number1)

FULL(number2)

FULL(number1)

add
data(number2)

data(number1)
data(sum)

fill(zeroPositive)

go

MrGO

fill(negative)

EMPTY(negative)

EMPTY(zeroPositive)

drain(number)

FULL(number)

sign<0

data(number)

data(negative)

data(zeroPositive)

sign_is_negative

go1 go2

MrGO

fill(shared)

MrGO

EMPTY(shared)

drain(L1)

drain(L2)

grant1 grant2

FULL(L2)

FULL(L1)

data(shared)

data(L1)

data(L2)

go1 go2

EMPTY(X)

MrGO

fill(X)

fill(wig)

drain(in)

fill(wag)

drain(X)

MrGO

FULL(X)

EMPTY(wig) EMPTY(wag)

FULL(in)

data(in)
data(wig)

data(wag)

arbiter

go2

drain(number)

sign_is_negative

FULL(number)

go1

MrGO

fill(zeroPositive)

fill(negative)

MrGO

EMPTY(negative)

EMPTY(zeroPositive)

select1 select2

Figure 3 Gate-level circuit outlines of joints for various combinational logic computations and flow control operations.

1602

IV UNDER THE HOOD

Figure 3 shows circuit implementations for the guarded

command specifications of joints discussed in Section III.

We include circuit implementations in this paper to indicate

how our assumptions about mutually exclusive actions at the

dataflow and link and joint specification levels translate to

the lower circuit level. The gate-level circuits are drawn so

as to emphasize their relation to the corresponding guarded

command specifications. Sections IV-A to IV-D discuss them

in the order of Figure 3. Section IV-E discusses circuit-level

timing. The most important property of our circuit-level timing

assumptions is that they can be kept “under the hood.”

IV-A Broadcast Joint for Addition

The gate-level circuit in Figure 3(a) implements the broadcast

joint for addition shown in Figure 2(b-top) and specified by

the guarded command given at the end of Section III-A.

As indicated in Figure 1, each guarded command, or action,

has a unique go signal AND-ed with its guard. The circuit in

Figure 3(a) shows the guard as three guard terms entering a

3-input AND gate, followed by a MrGO circuit AND-ing in the

go signal. More details about MrGO follow in Section IV-F.

IV-B Data-Driven Branch with One Versus Two Actions

The two gate-level circuits in Figure 3(b) implement the

data-driven branch shown in Figure 2(c-top) and specified

in Section III-B. Figure 3(b-top) implements the one and

only action of the first guarded command specification in

Section III-B. Figure 3(b-bottom) implements the two actions

of the second guarded command specification in Section III-B.

As in the broadcast joint, the circuits show each guard as a

wide AND gate, combining the guard’s terms, followed by a

MrGO circuit AND-ing in the go signal. The guards of separate

actions have separate MrGO circuits and separate go signals.

Note that the computation for selection signal sign is negative

has more time to stabilize in Figure 3(b-top) than it has in

Figure 3(b-bottom). This is an advantage for the version with

one action. On the other hand, the one-action version has the

disadvantage of waiting for both output links to be EMPTY,

whereas the version with two actions waits for EMPTY on only

the selected output link. In Figure 3(b-bottom), the separate

go signals can stop executions for one branch and continue

executions for the other branch, which may be valuable for

test and debug.

IV-C Arbitrated Merge with Structured Data

The gate-level circuit in Figure 3(c) implements the FCFS joint

in Figure 2(d). More specifically, it implements the guarded

command specification in Section III-C with arbitration di-

rectly between the input links. For most system designs, this

implementation is fair to greedy input links — an advantage it

has over alternative designs that arbitrate between the guards.

As in the previous joint implementations, each guard has a

wide AND gate, combining the guard’s terms, followed by a

MrGO circuit AND-ing in its go signal.

Unlike the previous joint implementations, the guards in Fig-

ure 3(c) are cross-coupled: the negation of each guard is part of

the other guard. The cross-coupled guards give the output link

time to start its fill action, de-assert its EMPTY state indicator,

and disable the other guard before the granted action ends —

thus preserving its mutually exclusive access.

As specified in Section III-C, the data sent to the output link,

data(shared), are structured so that the link itself can multiplex

and store the selected data. This FCFS joint forwards the

data from both inputs, data(L1) and data(L2), along with the

selection signals, represented by select1 and select2.

IV-D Alternating Branch with Input-Output Link

Figure 3(d) implements the control-driven wig-wag joint, WW,

in Figure 2(e-top), as specified in Section III-D. Its organi-

zation is similar to that of the two-action data-driven branch

circuit in Figure 3(b-bottom), with additional cross-coupling

of the guards, as in the arbitrated merge circuit of Figure 3(c).

Cross-coupled guards generally give links that are filled or

drained by a selected action extra time to disable the joint’s

other actions before the selected action ends, thus preserving

mutually exclusive executions of a joint’s actions. As illus-

trated by Figure 3(b-bottom), some joint implementation with

multiple actions omit cross-coupled guards. Cross-coupled

guards are required only when partial completion of a joint’s

action can enable another action in the joint — e.g.:

• The data-driven branch circuit in Figure 3(b-bottom)

omits cross-coupled guards, because each of its partially

complete actions either de-asserts the EMPTY state in-

dicator of the selected output link, leaving the other

action as disabled as before, or de-asserts the FULL state

indicator of the input link, disabling both actions.

• The wig-wag circuit in Figure 3(d) requires cross-coupled

guards. A partially complete action-1, starting with link

in FULL and the other links EMPTY, could fill link X

and generate a temporary state with links in and X FULL

and links wig and wag EMPTY, thus enabling action-2

— if the cross-coupled guards were absent.

The need for cross-coupled guards can be determined syntac-

tically from a joint’s guarded command specification.

IV-E Circuit-Level Timing

In Sections IV-C and IV-D, we explained that the cross-coupled

guards in the circuit implementations in Figures 3(c) and 3(d)

give links time to settle into their new FULL or EMPTY states

before the current joint action ends and another starts. One

might ask: how much time?

To answer that question requires a maximum path delay anal-

ysis for filling and draining the near-ends of the links involved

1603

in the selected joint action and for propagating changes in the

FULL or EMPTY state indicators up to a point where these

disable another action in the joint. The cross-coupled guards

must give a settle time greater than the analyzed maximum

path delay. To compute the settle time given by each cross-

coupled guard, we use a minimum path delay analysis for

filling and draining the near-ends of the links involved and for

propagating changes in the FULL or EMPTY state indicators

up to the point where these release the cross-coupled guard to

enable other actions in the joint. We use static timing analysis

and repair procedures that insert delay when and where needed

to ensure that the given time is longer than the must give time.

Similar questions and answers about circuit-level timing apply

to other parts of the circuit implementations in Figure 3. Using

model checking and formal verification techniques, one can

identify the timing assumptions on which these circuit imple-

mentations depend, and prove their soundness and complete-

ness — see for instance [5] and its citations. Most importantly,

it is possible to keep circuit-level timing assumptions “under

the hood” and avoid elevating them to the dataflow and link-

joint specification and verification framework.

IV-F MrGO

MrGO, pronounced “Mister GO,” makes it possible to separate

initialization from execution. When its go input is de-asserted,

MrGO disables its associated action. When all actions are

disabled, we are free to change the state of any link to initialize

it. When initialization is complete, asserting the go signal to

MrGO returns control of the action to its guard. Because the

system is self-timed, we can assert go signals in any sequence,

or concurrently in groups.

Stopping a running self-timed system requires arbitration. For

that purpose, MrGO has an arbiter. The arbiter in MrGO de-

cides whether to continue or stop the action. The cross-coupled

NAND gates in the arbiter representation in Figure 3(c) are a

reminder that an arbiter has state. Because it has state, arbiter

inputs can hog an arbiter.

Because arbiter inputs might hog the arbiter, and because

we might want to change the value of an arbiter input for

the purpose of initialization or test, the position of MrGO

matters. We position MrGO after the guard. Because each

action disables its guard, relinquishing control of MrGO, this

position guarantees that a disabled go signal can take control

of MrGO after at most one action. Thus, after at most an

arbitration delay and one action delay, MrGO will disable its

action and prevent it from changing the state of its links.

Disabling all actions associated with a link allows us to set

the state of the link without interference from its joints.

Thus far, only a fraction of our tests involve stopping a running

self-timed system. Most tests end with the system inactive.

When the system is inactive, a disabled go signal can take

control of MrGO immediately. For test details, see [6], [4].

V CONCLUSION

This paper intends to make the link and joint model of self-

timed circuits and systems accessible to all, including those

already familiar with designing self-timed systems in specific

circuit families [8]. Our aspirations are:

• that the software community will use links and joints as

design and compilation targets for concurrent algorithms;

• that the test community will leverage each action’s go

control to develop algorithms for system-level testing;

• that the formal verification community will support such

design and test capabilities with a unified specification

and verification framework;

• and finally, because links accommodate any transport

delay imposed by their length, that the layout community

will place and route systems for average speed and power.

Automatic compilation of hardware systems distributed over

space requires relief from the tyranny of the clock [9]. Self-

timing provides such relief by eliminating timing artifacts

endemic in clocked design. Artifacts such as timing closure

and multiple clock domains result from the clocked design

paradigm’s false assumption of simultaneity over space. In

contrast, self-timing avoids these artifacts by embracing the

fundamental truth that time and space are intimately related.

ACKNOWLEDGMENT

This research was funded in part by DARPA, “Flexible Specifi-

cation, Analysis, and Implementation of Self-Timed Circuits,”

sponsor award UTA17-000001, and in part by the Portland

State University Foundation.

REFERENCES

[1] Cuong Chau, Warren Hunt Jr., Marly Roncken, and Ivan Sutherland.
A Framework for Asynchronous Circuit Modeling and Verification in
ACL2. In O. Strichman and R. Tzoref-Brill, editors, Haifa Verification

Conference (HVC), LNCS 10629, pages 3–18. Springer International
Publishing, 2017.

[2] Edsger Dijkstra. Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communications of the ACM, 18(8):453–457,
August 1975.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[4] Swetha Mettala Gilla. Silicon Compilation and Test for Dataflow Im-

plementations in GasP and Click. PhD thesis, Electrical and Computer
Engineering, Portland State University, Defended 3 November, 2017,
unpublished.

[5] Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, and Ivan Suther-
land. Modular Timing Constraints for Delay-Insensitive Systems. Journal

of Computer Science and Technology, 31(1):77–106, January 2016.
[6] Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni,

Chris Cowan, and Ivan Sutherland. Naturalized Communication and
Testing. In IEEE International Symposium on Asynchronous Circuits and

Systems (ASYNC), pages 77–84, 2015.
[7] Charles Seitz. Chapter 7: System Timing. In C. Mead and L. Conway,,

Introduction to VLSI Systems, pages 218–262. Addison-Wesley, 1980.
[8] Jens Sparsø and Steve Furber (Eds.). Principles of Asynchronous Circuit

Design: A Systems Perspective. Kluwer Academic Publishers, 2001.
[9] Ivan Sutherland. The Tyranny of the Clock. Communications of the ACM,

55(10):35–36, October 2012.

1604

