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Abstract. This paper makes self-timed circuits dual citizens by provid-
ing a clocked mode of operation in addition to their self-timed mode. The
clocked or synchronous mode of operation re-uses the self-timed fabric
and protocols, and thereby — beneficially — inherits the elasticity of
the self-timed or asynchronous mode of operation. In exchange, clocked
circuit operations can build confidence in self-timed circuit operations or
replace aging or erratic self-timed circuit operations that need more time
to finish. Once confidence is gained, the self-timed mode of operation can
serve as a turbo mode to obtain better latency, throughput, energy, ro-
bustness to delay variations, or electro-magnetic compatibility. The dual
citizen circuits in this paper have individual action control. As a result,
the circuits can either run in a fixed mode — self-timed or clocked —
and switch modes on the fly, or run in both modes concurrently.
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Figure 1 Carrying coal to Newcastle, ASYNC 2008.
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Foreword

The title of this paper reflects an incident at the ASYNC 2008 conference chaired
by Alex. Ivan, having a British mother, grew up knowing the futility of “Carrying
Coal to Newcastle.” Because ASYNC 2008 was in Newcastle, Ivan seized on the
opportunity actually to carry coal to Newcastle. Being at pains to find coal in
the San Francisco Bay area where it is a rare household fuel, he finally got
a plastic sandwich bag of coal imported from Utah to California. He labeled it
“mineral samples” to pass international inspection, and duly delivered it to Alex
— see Figure 1.

1 Introduction

This paper expands [8] by not only naturalizing self-timed circuits but by turning
them into dual citizens as well. Below, we explain what this means.

The “naturalized communication and testing” view [8] separates self-timed build-
ing blocks into links and joints. Links store and transport data. Joints serve as
meeting points for links to coordinate state and exchange data. The actions of a
self-timed system start in joints, and can be enabled or frozen selectively using
separate go control signals in each joint. Joints act only when input links are
full and output links are empty and go is enabled. Actions can be conditional or
nondeterministic. For ease of explanation, this paper uses simple FIFO actions
— see Figure 2.

Figure 2 shows a joint as a stick figure with data flowing in the direction of
the arrow, and links as rectangles. Each link-joint-link triple represents a FIFO
with an input link called in, and an output link called out. The most important
property of a link is whether it is full or empty, just as the most important
property of a parking place is whether or not it is occupied. We color the inside
of a full link blue (grey in black and white print) and leave an empty link white.

Each link reports its full or empty state at both ends. It accepts a fill command at
its input end and a drain command at its output end. Fill and drain commands
change the state of a link. The impact of fill and drain commands is observed
immediately at the near end of the link but may take time to traverse the length
of the link before appearing at the link’s far end.

The joint in Figure 2 acts only when its input link, in, is full and its output
link, out, is empty, and its go signal is enabled. When it acts, it starts three
concurrent operations that (1) copy the data from in to out, (2) drain link in
— leaving it empty, and (3) fill link out — leaving it full. Note that when go is
disabled, the joint is “frozen,” and there is no action. Note also that the data
value shown in Figure 2 as 60 stays in link in even after being copied — it may
stay there until link in is filled with new data. By making link in empty and
link out full, the action enables neighboring joints to act while it disables itself.
This is what makes a self-timed circuit “tick.”
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Figure 2 Self-timed FIFO action.

The full-empty protocol in Figure 2 works regardless of its handshake imple-
mentation. We advocate using it as standard interface to facilitate mixing and
matching self-timed designs from different circuit families. The “naturalized”
link and joint view offered in [8] captures the essence of self-timed systems.

This paper expands that view by adding a clocked or synchronous mode of oper-
ation to a naturalized self-timed circuit. Clock signals that retard the self-timed
or asynchronous operation can be part of links or part of joints — we show cir-
cuits for each. A clocked link announces changes in its full or empty state only at
times specified by its clocks. Likewise, a clocked joint acts only at times specified
by its clocks. Not only do both self-timed and clocked modes of operation work,
but simulations reported here also confirm mixed mode operation.

By providing a self-timed circuit with a clocked mode of operation, we aspire
to increase the level of familiarity, comfort, and confidence of VLSI designers to
integrate self-timed circuits into their systems. We regard the resulting circuit
as both a self-timed and a clocked circuit — just as a “dual citizen” is regarded
as a citizen of two countries. We therefore call this circuit a dual citizen circuit.

This paper is organized as follows. Section 2 shows a naturalized FIFO imple-
mentation for Figure 2 in Click, taken from [8], for use as reference design.
Section 3 expands this reference design in two ways, by adding a clocked mode
of operation to (1) its joint and (2) its links. Section 4 presents simulations for
fixed mode operation, mode switching, and mixed mode operation. Section 5
discusses related work. Section 6 concludes the paper.
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2 Naturalized Self-Timed Circuits

Most design methods for self-timed circuits use handshake protocols to encode
the full or empty status of a link and validity of the link’s data. Figure 3 shows a
two-phase single-rail handshake [9] — or as we say a “two-phase non-return-to-
zero handshake with bundled data” — and the way it encodes full, empty, and
data validity. This protocol is used by the Click self-timed circuit family [6].

Click is the most synchronous asynchronous circuit family that we know. Its
implementation style was chosen to resemble clocked or synchronous circuits as
much as possible. It uses flipflops in every loop and it uses flipflops to store
data. The flipflops facilitate the use of conventional optimization, timing, and
test tools used for clocked circuits.

Figure 4 shows a self-timed circuit implementation for Figure 2, based on Click
and two-phase non-return-to-zero handshake signaling with bundled data, but
adapted for “naturalized communication and testing” [8]. The circuit has been
adapted by moving the link-joint interface. The original interface separated links
and joints at the handshake request, acknowledge, and data signals — here
named R, A, and Dstored. The new interface separates the links and joints at
their natural communication signals: full, drain, and Dstored for links carrying
data into a joint, and empty, fill, and D for links carrying data away from the
joint. The new interface takes full advantage of the handshake protocol without
exposing it. It thereby diverts any “Tower of Babel” effect that a multitude
of handshake protocols in use [9] might create if their handshake signals were
exposed to each other.

By “naturalizing” the communication we gain translation-free communication.
Moreover, we gain it whilst keeping the peculiarities of each handshake protocol
and the specific skills that it supports to create circuits with better latency,
throughput, energy, robustness, or electro-magnetic compatibility [1, 4, 5].

Voltage
bundled data
empty = full empty full empty
request —— N\
acknowledge / N—
P Time

Figure 3 Example of a two-phase non-return-to-zero handshake with bundled
data. This protocol has two control signals, request and acknowledge, and zero
or more data signals, also known as bundled data. A link using this protocol is
full when the voltage levels of its request and acknowledge differ, and empty
otherwise. Its data signals are valid when the channel is full. A full channel may
be drained, i.e. made empty, and an empty channel may be filled, i.e. made full.
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Figure 4 Naturalized Click FIFO circuit presented at ASYNC 2015 [8].

The links in Figure 4 use edge-triggered flipflops to store their full or empty state
and the data they transfer. Combinational logic (CL) for datapath operations is
kept in the joint. A FIFO that merely fills its output link with data copied from
its input link uses simple wire connections for combinational logic.

Each link stores its full or empty state on two signals, a request signal, R, and an
acknowledge signal, A. Each fill operation, performed as soon as signal fill goes
high, changes R, making it differ from A. Each drain operation, performed as
soon as signal drain goes high, changes A, making it match R. XOR and XNOR
gates generate the full or empty state of the link by comparing the signal values
of R and A. They report this state to signals full and empty. The link changes
each R and A signal by complementing its value. Because R and A are separate
signals, the link has separate flipflops to store the old and new values.

The joint in Figure 4 contains an AND function and the combinational logic
for the datapath. The AND function combines the full and empty signals of
links in and out with a go signal. When all three signals are high, the AND
function “acts” by making signals drain and fill both high. Thus the action
starts concurrently (1) a drain operation in link in, and (2) a fill operation in
link out that copies the data from link in. In turn, the fill and drain operations
make both full and empty signals low, thus disabling the AND function and
causing both drain and fill to go low, which ends the action.

The go signal comes with its own arbiter to decide what to do when go is low.
When go is low, the arbiter decides cleanly whether to stop at once or to complete
a pending or ongoing action in the joint. The arbitrated circuit is called MrGO,
pronounced “Mister GO” — see Figure 5(a). To control actions selectively, each
MrGO has its own go signal. We use MrGO for single-step, multi-step, and at-
speed test and debug as explained in [8], and for switching between self-timed and
clocked modes of operation as explained later in this paper.
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Figure 5 Transistor-level details for (a) MrGO and (b) a zero-passing latch.
(a) MrGO

The schematic for MrGO with its icon inset in the grey area is copied from [8],
except that here we use correctly matching in and go parts. When go is high,
MrGO acts as an inverter from in to out. When go is low, MrGO uses arbitration
to decide cleanly whether or not to make out high. The bold central transistor
delays active-low signal out by conducting only after metastability ends in
favor of a low out signal. Metastability can occur during arbitration decisions,
when a high-to-low (falling) transition on go to make and keep out high concurs
with a low-to-high (rising) transition on in to make out low. Transistors are
sized to reduce the logical effort from in to out. Split pull-up transistors avoid
a floating out signal. We use MrGO for single-step, multi-step, and at-
speed test and debug as explained in [8], and for switching between
self-timed and clocked modes of operation as explained in this paper.
(b) Zero-passing latch

The latch stops a high input signal in from propagating until clock signal ck
is high. When both in and ck are high, or when in is low, output signal out
copies the value of in. Back to back inverters on out keep its value. To reduce
drive fights, the reverse inverter of the keeper is weak.

3 Dual Citizen Circuits

The link and joint model of a self-timed circuit extends naturally to two solutions
with a clocked mode of operation: clock the joint, as in Figures 6, or clock the
link, as in Figure 7. The two dual citizen circuit solutions in Figures 6-7 both
extend the Click circuit of Figure 4. Both circuits re-use the self-timed fabric and
protocols. As a result, even in clocked mode, each circuit inherits the elasticity
of the self-timed mode of operation to act only when and where needed. This is
beneficial not only because it reduces power and saves energy, but also because
it simplifies scheduling of clocked operations. With protocols rather than clock
cycles in charge of the flow of control, the clocked operations of a dual citizen
circuit can function correctly even when operating out of lockstep.
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Figure 6 Dual citizen version of Figure 4 with clocks in the Joint.
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Figure 7 Dual citizen version of Figure 4 with clocks in each Link.
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Because they re-use the self-timed fabric, the clocked circuit operations can
build confidence in the self-timed circuit operations or replace aging or erratic
self-timed circuit operations that need more time to finish.

Once confidence in the correctness of the self-timed operation is established, the
self-timed mode can serve as “turbo mode” to obtain better latency, throughput,
energy, robustness to delay variations, or electro-magnetic compatibility.

Both circuits use master and slave clocks, clockM and clockS. For self-timed
operation, both clocks remain high. For clocked operation, a high pulse on clockM
is followed by a high pulse on clocksS.

The circuit in Figure 6 adds clockM and clockS at the end of the AND function
in the joint where the clocks control a serial pair of zero-passing latches. For a
transistor level schematic of a zero-passing latch, see Figure 5(b). In self-timed
mode, clockM and clockS both remain high and the latches remain transparent
to amplify the output signal of the MrGO controlled AND function. In clocked
mode, each latch passes a low incoming signal by making its output low, but
keeps its output as is when the incoming signal is high and its clock is low.
A high incoming signal propagates only during a high pulse of the latch clock.
Zero-passing latches allow the reset part of the joint action to run unhindered to
completion — even in the clocked mode of operation. Because neighboring joints
act in mutual exclusion, allowing each action to complete by making its copy,
fill, and drain signals low before starting another action in the next clock cycle,
facilitates the use of latches instead of edge-triggered flipflops in the datapath.

The key advantages of the dual citizen circuit in Figure 6 are (1) its simplicity
and (2) its generality: many self-timed circuit families use the same joints [8].
Its key disadvantage is that the clocks leave some self-timed loops free running;:
e The inverting loops of the link flipflops run freely, even in clocked mode. As
a result, hold violations on these flipflops, due to an exceedingly fast data
inversion loop, will affect both self-timed and clocked modes of operation.
e The action, once started, runs freely to completion. As a result, active-high
pulse width violations on copy, fill, and drain signals are beyond clock control,
and will affect both self-timed and clocked modes of operation.

The dual citizen circuit in Figure 7 adds clockM and clockS in each link. This
circuit also allows the reset part of a joint’s action to run to completion. But it
does so while keeping a firm grip on all self-timed loops. The circuit in Figure 7
can repair all aging or erratic self-timed circuit operations that need more time
to finish by switching to a clocked mode of operation, and by setting the high
and low pulse widths for clockM and clockS as wide as needed.

In Section 4, we show simulation waveforms of dual citizen circuits interacting
in self-timed and in clocked mode. Some interactions use MrGO to control joints
selectively. In clocked operations, we change go signals during the low phase of
clockM. None of the simulation scenarios in this paper require the arbitration
function of MrGO. But if needed, arbitration in MrGO can be avoided in clocked
operations by changing the go signal only when both clockM and clockS are low.
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4 Simulation Experiments

We use four simulation scenarios to illustrate what one can do with dual citizen
circuits. We simulate a ripple FIFO with ten joints, Joint 1 to Joint 10, and
eleven links, Link 0 to Link 10, where Link 0 and Link 10 are connected to the
external environment — see Figure 11. We assume that initially all links are
empty (low) and all input signals and signal values stored in latches or flipflops
are zero (low). For details on initialization, see [8].

All simulations were done in Verilog and use discrete delay models. For gate
delays we model the number of signal inversions: each inversion counts as one
time step. More precisely: signal changes through INVERTER and NAND gates
take one time step. It takes two time steps to go through AND, X(N)OR,
FLIPFLOPS, and LATCHES. The environment takes five time steps to respond.
Environment actions that fill and drain a link are synchronized with a link’s slave
clock whenever the link operates in clocked mode, and are self-timed otherwise.?

All simulation waveforms shown in this paper are generated using the dual citizen
Click FIFO with clocks added to the links, as shown in Figure 7, and with 6-bit
wide data signals and simple wire connections for combinational logic. If instead
of clocking the links we clock the joints, as shown in Figure 6, the Verilog test
benches produce similar waveforms with the same test stimuli and responses.

Sections 4.1-4.3 below discuss the following simulation scenarios:

e Run in fixed mode mode, either self-timed or clocked.
e Switch modes after starting a self-timed operation to finish it clocked.
e Mix modes by running self-timed and clocked operations concurrently.

4.1 Run in Fixed Mode — Self-Timed or Clocked

The simulation waveforms in Figure 8 show the FIFO operating in self-timed
mode. Those in Figure 9 show the FIFO operating in clocked mode.

The horizontal axis at the top of both Figures shows the progression of time
throughout the course of the operation. The signal waveforms are displayed
vertically, row by row. The vertical axis on the left shows the signal names.
The signal called start indicates the end of initialization — we use it to start
the operation cleanly. Any grey-colored, i.e. undefined, waveform values and any
waveform changes prior to start going high can be ignored.

The master and slave clocks, clockM and clockS, are both high in Figure 8, as
required for self-timed operation, while in Figure 9 they start ticking as soon as
start goes high. Signals in_empty, in_fill, and in_D go between Link 0 and the
environment. Likewise, signals out_D, out_full, and out_drain go between Link 10
and the environment. The remaining signals, Dstored0 to Dstored9, are the data
signals stored in Link 0 to Link 9.

5 The reset part of fill and drain actions remains self-timed at all times.
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Figure 8 Self-timed FIFO operation transferring four data items.

As soon as start goes high, the environment starts communicating with the
FIFO, using the protocols on Link 0 and Link 10. The entire operation consists
of: (1) the environment sending four data items, with successive values 1 to 4,
through Link 0 into the FIFO, (2) the FIFO forwarding these data items from
Link 0 to Link 10, and (3) the environment collecting the data items at Link 10.

Note that data values stay in the links until they are overwritten by new values.
This is particularly visible for the initial data values of 0 and for the final data
values of 4. The FIFO’s output data, out_D, for instance, keeps its initial value 0
for approximately 140 time steps in Figure 8, which is how long it takes a data
item to ripple through the FIFO in self-timed mode. In the clocked mode of
operation shown in Figure 9, this takes approximately 700 time steps. Likewise,
the value 4 of the last data item stays on all the links after all four data items
have rippled through the FIFO.

Figures 8-9 show that both the self-timed and the clocked operation are immune
to old data values lingering on links. This is as expected, because both modes of
operation obey the same dataflow protocols. Both use the full or empty status
of a link to decide when to pay attention to and when to ignore the link’s data.
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Figure 9 Clocked FIFO operation transferring four data items.

As a result — omitted from Figure 9 — the master and slave clocks in the clocked
operation can keep ticking after the operation completes, without jeopardizing
any of the final values of status or data signals.

As noted earlier, the clocked mode of operation shown in Figure 9 is slower than
the self-timed operation in Figure 8. The clocked operation is slower because
the clocks retard the self-timed fabric and protocols. The clock periods must be
longer than the worst-case cycle times of the self-timed fabric and protocols.

4.2 Switch Modes — from Self-Timed to Clocked

The simulation waveforms in Figure 10 show the FIFO first operating in self-
timed mode and then switching mode to operate in clocked mode. The overall
operation is similar to each of the operations shown in Figures 8-9: four data
items pass through the FIFO. Approximately the first 250 time steps of the
simulation run self-timed. In self-timed mode, we execute the first half of the
operation, which consists of (1) the environment sending four data items, with
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Figure 10 From self-timed to clocked FIFO operation passing four data items.

successive values 1 to 4, through Link 0 into the FIFO, and (2) the FIFO storing
these data items in Link 0 to Link 4. The remaining time steps of the simulation
run clocked. In clocked mode, we execute the second half of the operation, which
consists of (3) the FIFO forwarding the data items stored in Link 0 to Link 4,
and (4) the environment collecting the data items at Link 10. In between, the
mode of operation switches from self-timed to clocked.

To split the operation in two and switch the mode of execution between the two
halves, we deploy MrGO [8]. Specifically, we use go control signal go5 of Joint 5.
Signal go5 is the only new signal that we inserted into the waveform display of
Figure 10 — just below the center. All other signals match those of Figures 8-9.

A pictorial view of the role of go in splitting the operation follows in Figure 11.
First, we freeze Joint 5, by making god low — see Figure 11(a). This prevents
Joint 5 from acting. Then we run the first half of the operation in self-timed
mode. The operation ends in a stable state in which Link 1 to Link 4 are full and
the other links are empty — see Figure 11(b). The stable state allows us to switch
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Figure 11 Pictorial view of how to switch modes from self-timed to clocked.
We color full links blue (or grey) and empty links white — see also Figure 2.
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the mode of operation reliably from self-timed to clocked — see Figure 11(c).
Next, we enable Join 5 by making go5 high — see Figure 11(d). To do this
safely, go5 must change from low to high during the low phase of the master
clock, clockM. The waveforms in Figure 10 show a safe low to high transition for
god sufficiently in advance of the first high pulse on clockM, around 275 time
steps into the simulation. The second and clocked half of the operation can now

forward and drain the four data items from the FIFO — see Figure 11(e).
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4.3 Mix Modes — Self-Timed and Clocked

The waveforms in Figure 12 show the FIFO operating simultaneously in both
self-timed and clocked modes. In addition to showing waveforms for the signal
names introduced earlier for Figures 8-10, Figure 12 also includes the waveforms
for go control signal go7 of Joint 7, and for status signals empty5 and empty6
of Link 5 and Link 6. The FIFO is partitioned into three regions that share the
same source clocks but can run in different modes of operation:

e Region 1, the FIFO’s input region, covers Link 0 to Link 4, and operates
continuously in self-timed mode. Signals clockM1, clockS1 refer to its clocks.

e Region 2, the FIFO’s airlock, covers Joint 5 to Joint 7. It switches mode
repeatedly. Signals clockM2 and clockS2 refer to its clocks.

e Region 3, the FIFO’s output region, covers Link 7 to Link 10, and operates
continuously in clocked mode. Signals clockM3 and clockS3 refer to its clocks.

We call the middle region, Region 2, “the FIFO’s airlock” because it permits
status, control, and data to pass reliably between the input and output regions
of the FIFO, Region 1 and Region 3, just as an airlock permits safe passage of
people and objects between environments of different air pressures.

A pictorial view of how the airlock provides safe passage of status, control, and
data between Region 1 and Region 3 follows in Figure 13. To operate the airlock,
we deploy the two MrGO circuits in Joint 5 and Joint 7 — the two joints that
separate the airlock from its neighbors. By freezing or enabling Joint 5, using go
control signal go, we disconnect the airlock from or engage it with its predecessor
region in the FIFO, Region 1. Likewise, freezing or enabling Joint 7, via go7,
disconnects the airlock from or engages it with its successor region in the FIFO,
Region 3. The use of go control signals to accommodate the airlock operation is
an extension of their use in the mode-switching operation depicted in Figure 11.

The waveform and pictorial views in Figures 12—-13 relate to each other as follows:

e Figure 13(a) — fill airlock self-timed
Initially, Joint 5 is enabled and Joint 7 frozen, because go5 is high and go7
low. This engages the airlock with Region 1 for self-timed filling. The fill
operation ends with Links 0 to 6 full, around 200 time steps into Figure 12.

e Figure 13(b) — engage airlock with clocked successor
The stable state of the airlock allows us to disconnect the airlock safely from
its self-timed predecessor, Region 1, which we do by freezing Joint 5, i.e.
by making go5 low. Now, we can switch the airlock’s mode of operation
reliably from self-timed to clocked. Next, we engage the airlock with its
clocked successor, Region 3, by enabling Joint 7, i.e. by making go7 high. To
do this safely, go7 must change during the low phase of the master clock. The
waveforms in Figure 12 show a safe low to high transition for go7 sufficiently
in advance of the engaging high pulse on clockM2 or clockMS3, now the same,
around 275 time steps into the simulation.
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Figure 12 Mixed-mode self-timed and clocked FIFO operation with airlock.
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Figure 13 Pictorial view of the airlock from Joint 5 to Joint 7 passing data.
We color full links blue (or grey) and empty links white — see also Figure 2.
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e Figure 13(c) — drain airlock clocked
We can now drain the airlock using a clocked mode of operation. The drain
operation forwards data value 1 on Dstored6, stored in Link 6, followed by
data value 2 on Dstored), stored in Link 5, draining both links in the process.
The drain operation ends in a stable airlock state with Link 5 and Link 6
both empty, around 450 time steps into Figure 12.

e Figure 13(d) — engage airlock with self-timed predecessor
The stable airlock state allows us to disconnect the airlock safely from its
successor, Region 3, which we do by freezing Joint 7, by making go7 low.
Next, we engage the airlock with its self-timed predecessor, Region 1, by mak-
ing clockM2 and clockS2 both high to enable self-timed operation, and by
making go5 high to enable Joint 5. These engagement steps happen shortly
after the airlock becomes empty, about 450 time steps into Figure 12.

e Figure 13(a) — fill airlock self-timed
We can now fill the airlock using a self-timed mode of operation, just like
we did initially. The fill operation ends with Link 0 to Link 6 full, and with
a data value of 3 on Dstored6 in Link 6 and a data value of 4 on Dstored5
in Link 5 — about 500 time steps into Figure 12. This specific fill operation
is marked by the first grey-colored vertical band in Figure 12. Similar grey-
colored bands mark similar fill operations further along in the simulation.

Note that each grey-colored band in Figure 12 starts with emptys and empty6
both high, and ends with emptyd and empty6 both low. This indicates that each
grey-colored band starts with an empty airlock and ends with a full airlock. The
airlock is filled using a self-timed mode of operation within a grey band, and is
drained using a clocked mode of operation between grey bands.®

Note also that the data exchange rate at the output of the FIFO is constant. The
output environment receives a new data value for out_D for every two pairs of
non-overlapping clockM3—clockS3 pulses, i.e. every two clock cycles. This is the
fastest clock cycle time that the simulated dual citizen Click circuit can support.
The output environment works at full speed, and can be completely agnostic of
the existence of the self-timed input environment and the FIFO’s airlock!

5 Comparison to Related Work

The idea of clocking a self-timed circuits is not new by itself. Prior work pub-
lished in [7, 10, 3, 2] explains how to combine clocks with handshake protocols or
with other forms of elastic protocols. Only the circuits published in [10] and [3]
use both a clocked and a self-timed mode of operation, as do we, but neither
publication discusses running a system in both modes concurrently as we do in
Figures 12-13. Below follows a more specific comparison.

The work reported in [7] adds clocks to initially self-timed handshake circuits
but then optimizes the circuits for synchronous operation by simplifying those

5 Note that clockM2 and clockS2 remain high within a grey band, for self-timed filling,
and match clockM38 and clockS3 between grey bands, for clocked draining.
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parts of the circuits that provide flow control for self-timed operation but that
are redundant under clocked operation. The resulting circuits, though generated
with the same design flow, are no longer self-timed and may have lost some of
their elasticity, but can be used for FPGA mappings or for integration into a
completely synchronous system.

The circuits presented in [2] remain elastic when clocked, and will thus tolerate
variations in computation and communication delays when clocked. The sup-
porting design, analysis, and optimization techniques described in the paper can
be used for clocked as well as for self-timed circuit designs. As such, the choice
“to clock or not to clock” can be deferred until late in the design process. The
paper gives no examples nor any indication of keeping both choices, clocked and
self-timed, available to the final circuit implementation.

The dual-mode synchronous/asynchronous CORDIC processor for wireless
broadband communication presented in [3] can select its mode of operation
to fit system demands and application needs. For instance, when the received
signal is weak, the processor can be switched into self-timed mode to reduce
electro-magnetic interference. The clocks in [3] bypass the handshake control
circuits. Consequently, clocked operation of the CORDIC forfeits the elasticity
provided by the handshake protocols. Also, in bypassing the handshake control,
the CORDIC’s clocked mode of operation will be of marginal use for building
confidence in the CORDIC’s self-timed operations.

In contrast to [3], the clocked or synchronous mode of operation implemented
in [10] re-uses the self-timed fabric and protocols — as do we. The resulting
level-sensitive synchronous mode of operation thus inherits the elasticity of the
self-timed mode of operation. As a result, the synchronous mode of operation
can be used to build confidence in the self-timed circuit operations, which is
one of the key reasons for us to add it, though this is not addressed in [10]
which mentions only its potential use for system-level diagnosis and debug. The
paper provides a systematic solution for adding clocks and test inputs to a self-
timed circuit. The use of clocks to run the circuit in synchronous mode acts as a
stepping stone in that solution. The key feature of [10] is the systematic addition
of a clocked scan test mode of operation.

The dual citizen circuits that we present in this paper offer a new approach to
clocking self-timed circuits, because the circuits are built around the ideas of
naturalized communication and testing [8]. By differentiating links from joints
the design solutions for adding a clocked mode of operation fall naturally into
solutions that clock the links versus solutions that clock the joints. By differen-
tiating actions from states we can avoid adding energy-costly slave latches into
the datapath that an action-agnostic approach like [10] would add, because we
know that the joints at opposite ends of a link act in mutual exclusion. Last
but not least, we can control actions individually, using MrGO. By enabling or
freezing selective actions at run time, different parts of the circuit can be made
to (1) run in different modes, (2) switch modes reliably, and (3) exchange data
without the need for synchronizers.
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6 Conclusion

The “naturalized communication and testing” view [8] unifies thinking about a
wide variety of self-timed circuit families and facilitates mixing and matching
these families within a single system. In this paper, we extend this unity to
embrace clocked circuits; we add a clocked or synchronous mode of operation to
self-timed circuits. We call the resulting circuits dual citizen circuits.

As reference circuit, we chose a ripple FIFO implemented in Click [6] but adapted
for naturalized communication and testing [8]. Its dual citizen solutions and
simulation results apply broadly to other self-timed designs and circuit families.

Clock signals that retard self-timed operation can be part of links or of joints.
Links store and transport data. Joints act on the data. We have shown how to add
clocking to each. Each of our clocking additions re-uses the self-timed protocols,
and thereby inherits their elasticity to act only when and where needed. Need-
driven action is beneficial not only because it saves energy, but also because
it simplifies scheduling of operations. With protocols rather than clock cycles
in charge of flow control, the clocked operations of a dual citizen circuit can
function correctly even when operating out of lockstep.

By recognizing joint actions, we can avoid adding latches and clocked gates into
the datapath As a result, dual citizen circuits operating in self-timed mode can
maintain the energy-efficiency of the original self-timed circuit.

By enabling or freezing selective actions at run time, using MrGO, different
parts of the circuit can (1) run in different modes, (2) switch modes reliably, and
(3) exchange data without the need for synchronizers. We have shown simulations
of fixed mode operation, mode switching, and mixed mode operation.

The clocked mode of dual citizen circuits can bolster confidence in the correct
functionality of the self-timed mode — or vice versa — in various ways.

e Engineers most comfortable with clocked systems can easily see how dual
citizen circuits work when clocked. The datapath is identical in both modes
and so may be understood in either mode. The self-timed control fabric and
protocols are shared in both modes. Seeing the control work when clocked
can therefore build confidence in its self-timed behavior.

e Simulations reported here exhibit mixed mode behavior. Data received in
self-timed mode may be delivered to a clocked destination and vice versa.
The ability to change between clocked and self-timed modes of operation
can bolster confidence in the correctness of either mode.

Because their self-timed mode of operation is faster than their clocked mode,
the clocked mode of operation can be used as a “crutch” to support aging or
erratic self-timed circuit operations that need more time to finish. The link-
based clocking addition makes a good crutch because it keeps a firm grip on
self-timed loops and can retard any of these as much as needed by using wider
clock pulses. On the other hand, the self-timed mode of operation can provide a
“turbo” performance boost when needed, to obtain better latency, throughput,
energy, robustness to delay variations, or electro-magnetic compatibility.
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Moving safely from clocked circuits through self-timed circuits and then back
again provides a path for synchronous designers to embrace self-timed design
incrementally. We clear this path by providing self-timed circuits with a clocked
mode of operation. This approach deserves thorough study, so the costs in terms
of design, analysis, verification, and engineering can be quantified, and — we
hope — proven competitive with the state of the art in distributed VLSI design.
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Pavlova photo by Hazel Fowler, Wikimedia Commons

Paviova

3 (old) egg whites
9 oz castor sugar
1 tsp vanilla

1 tsp vinegar

1 pinch salt
cream

fruit

Beat egg whites with a pinch of salt
until stiff enough to peak.

Fold in sugar, vanilla, and vinegar.
Place on baking paper on greased tray.
Bake slowly about 1-1.5 hours at 250F.
Dress with fresh whipped cream,

kiwi fruit, strawberries, or similar.

BON APPETIT !




