
Naturalized communication and testing has been an amazing team builder.

The ideas came out of the research work by the first three authors.

and have been tested on silicon by the other three authors.

You may have seen the chip demos yesterday afternoon.

1ASYNC 2015 - Naturalized Communication and Testing

This talk has two parts.

Part 1 is about naturalized communication.

which is about exposing the fundamental pipeline actions

hidden in each and every handshake protocol.

If we use these actions instead of the raw handshakes

we can create a standard protocol interface

and talk to each other directly - without protocol converters:

<CLICK>

Translation-free communication greatly simplifies

the exchange of designs and tools between different self-timed circuit families.

<CLICK>

Part 2 is about naturalized testing.

Have you ever wondered why your test solution doesn't work for debug?

It's because you and I are so used to seeing everything as state

that we've forgotten the role that actions play.

Traditional test methods manage state in great detail,

but they manage actions very poorly.

The secret to debug is to manage the actions.

I will show you a circuit that allows you to do that - it's called MrGO.

MrGO gives you single-step, multi-step, and at-speed test and debug.

PS Action control also solves the initialization problem presented by

Norman Kluge and Ralf Wollowski in one of the ASYNC 2014 fresh ideas sessions.

ASYNC 2015 - Naturalized Communication and Testing 2

We start with Part 1: naturalized communication.

3ASYNC 2015 - Naturalized Communication and Testing

I use the following icons to represent the building blocks of a self-timed system.

The stick-figure in the middle is a handshake component or module.

We call it a joint.

Data flow from left to right, in the direction of the arrow.

Each box left and right of the stick-figure is a communication channel,

or handshake channel.

We call it a link.

These two links have names in and out.

All the systems in this talk are FIFOs, to keep things simple.

4ASYNC 2015 - Naturalized Communication and Testing

The FIFO can either do nothing or act.

It acts when link in is full and link out is empty.

Like this:

<CLICK>

We use blue for full and white for empty.

When it acts it

copies the data, drains link in, and fills link out

like this:

<CLICK>

Link in is now empty

and link out is now full.

5ASYNC 2015 - Naturalized Communication and Testing

There are multiple ways to design links and joints.

The next few slides show FIFO designs in four self-timed circuit families.

Even though the designs are different,

they all share the same drawbacks.

Drawback 1: each link has wires only.

Drawback 2: the joint gets all the logic

the flow control logic,

the datapath logic,

as well the communication logic.

As a result, the link-joint interface changes

whenever the handshake protocol changes.

That's the biggie.

That's the real drawback.

The easiest way to recognize these drawbacks in the next few slides

is to focus on the two links.

If the two links have wires only,

then the drawbacks are there.

Here we go...

6ASYNC 2015 - Naturalized Communication and Testing

Gasp.

Note that both links have wires only.

7ASYNC 2015 - Naturalized Communication and Testing

Micropipeline.

Both links have wires only.

8ASYNC 2015 - Naturalized Communication and Testing

Mousetrap.

Likewise: the left and right links have wires only.

9ASYNC 2015 - Naturalized Communication and Testing

Click.

Same story: both links have wires only.

<NEXT CLICK IS DIFFERENT !!!>

10ASYNC 2015 - Naturalized Communication and Testing

All four families

have over-designed the joint

and under-designed the links.

In everyday English this means

that the joint is too fat

and the links are too thin.

11ASYNC 2015 - Naturalized Communication and Testing

An obvious way to solve this

is to distribute the weight.

I will show how to do this for GasP.

12ASYNC 2015 - Naturalized Communication and Testing

Here is the GasP design again.

Note that I have added combinational logic in the datapath.

<CLICK>

This enables the joint to not just copy

but to also do interesting computations from Data in to Data out.

Remember that we want to distribute the weight

because the joint is over-designed – it's too fat,

and the links are under-designed – they're too thin.

We will distribute the weight by

moving the communication logic from the joint to the links

like this:

<CLICK TO NEXT SLIDE>

13ASYNC 2015 - Naturalized Communication and Testing

Let's do that again <GO BACK TO PREVIOUS SLIDE>

We move the link-joint interface from here to <CLICK> here.

<AGAIN> from here to here <CLICK>.

The key observation is that the control signals at the new link-joint interface

are an exact match to the signals that we used earlier

to describe the action of a FIFO:

<FROM BOTTOM TO TOP>

• full and empty, where empty is just the negation of full.

• drain

• fill

• and data

These are the fundamental pipeline protocol signals !

Both you and I use these, but we conceal them

beneath our handshake implementations.

By moving the handshakes further into the links

we expose the real protocol that we all share.

There are three more observations for this slide.

1. (ONE) : the data latches have moved to link out.

2. (TWO) : the combinational logic remains in the joint.

3. (THREE) : we see only half of each link.

Combine these halves and you get the complete link.

Like this

<CLICK TO NEXT SLIDE>

14ASYNC 2015 - Naturalized Communication and Testing

This is a GasP implementation of a complete link

with the fundamental pipeline signals at its interface.

We call this a naturalized link.

Because it's naturalized –

because it uses the fundamental pipeline signals

embedded in each and every handshake protocol –

we can replace the GasP logic

by the link logic of your choice.

<NEXT SLIDE>

15ASYNC 2015 - Naturalized Communication and Testing

This is the last slide of Part 1.

The take-away of Part 1 is that

by exposing the fundamental pipeline signals: full-empty, drain, fill, and data

we can standardize the link-joint interface.

Having a standard interface makes it very simple

to exchange and share links, joints, and even design tools.

<NEXT CLICK GOES TO PART 2>

16ASYNC 2015 - Naturalized Communication and Testing

Part 2: naturalized testing

17ASYNC 2015 - Naturalized Communication and Testing

Test solutions for self-timed systems

came from test solutions for synchronous systems.

Synchronous systems can start and stop the global clock action

and use scan test to control and observe global state.

They do this primarily to detect stuck-at faults

Here is a two-dimensional view of such a test solution.

It has two axes.

The vertical axis controls the clock, by enabling or disabling it.

we call it GO control – you may call it test mode.

Traditional clocked systems have one GO control.

The horizontal axis labeled Data shows

which part of the global state is scanned.

If only some data items are scanned, say just the counters,

it's a partial scan test solution.

If all data are scanned, it's a full scan test solution.

The test solutions represented by the red line

go from no scan to partial scan to full scan.

Even though we use two axes to describe this red line

the line itself is really one-dimensional.

From our point of view,

traditional scan test is a one-dimensional test method.

18ASYNC 2015 - Naturalized Communication and Testing

It becomes two-dimensional when we apply it to self-timed systems.

The third axis on the right-hand side of the graph is labeled Full-Empty

and represents the control state of the links.

The Infinity chip designed by Sun Microsystems in 2008 lives <HERE>:

it scans every full-empty state,

it scans the counters,

and it can load and unload one Data item.

Because there is exactly one GO control

we have a two-dimensional plane with test solutions.

We went from one-dimensional – the red line – to two-dimensional.

19ASYNC 2015 - Naturalized Communication and Testing

To see the third dimension requires that we recognize

that a self-timed system isn't about global action.

The actions of a self-timed system are spontaneous, self-generated,

and widely distributed in both space and time.

It matters to be able to control these distributed actions separately.

That's what the GO axis is for:

to control

• one action,

• or two

• or three

• ... or all of them.

Our latest chip, the Weaver, lives <HERE>:

it scans all GO control signals,

it scans every full-empty state,

it scans the counters,

and it can load and unload one Data item.

What you get with this dedicated GO action-control

goes way beyond stuck-at fault detection.

Dedicated action control combined with traditional scan access to state

(Data and Full-Empty)

gives you not only stuck-at fault detection,

but also at-speed test, debug, and characterization.

20ASYNC 2015 - Naturalized Communication and Testing

So, how do we GO there?

ASYNC 2015 - Naturalized Communication and Testing 21

The first step is to recognize self-timed actions.

Here is a reminder of what a self-timed action looks like.

When link in is full (blue) AND link out is empty (white)

copy the data

drain in

and fill out.

22ASYNC 2015 - Naturalized Communication and Testing

To control this action

we add a GO control signal to the and-function in the when part of the action.

We leave the what part as is.

Now:

When link in is full (blue) AND link out is empty (white) AND GO is enabled

copy the data

drain in

and fill out.

When GO is enabled, the action runs as before.

23ASYNC 2015 - Naturalized Communication and Testing

But when GO is dis-abled

the action stops and freezes.

24ASYNC 2015 - Naturalized Communication and Testing

Where do we add this GO control?

Well ... the and-function is located in the joint

so the joint gets the GO control.

Here is a reminder of what a joint looks like

<CLICK to NEXT SLIDE>

25ASYNC 2015 - Naturalized Communication and Testing

It's an and-function

and it has the combinational logic for the datapath.

26ASYNC 2015 - Naturalized Communication and Testing

We add the GO control signal in the tail of the and-function,

and we call it go.

The go signal comes with its own arbiter

so we can safely stop self-timed actions in full flight.

The green box with the arbitrated nand-gate and the go signal

is called "Mister GO" (MrGO).

When go is high

MrGO unfreezes the joint, and allows it to run as usual.

When go is low

MrGO acts like a proper stopper and will stop and freeze the joint action.

We use the scan chain to deliver the individual go signals.

27ASYNC 2015 - Naturalized Communication and Testing

The proof of the pudding is in the eating.

So, let's do a test.

ASYNC 2015 - Naturalized Communication and Testing 28

Here is a FIFO with 5 joints.

Joint number 3 has a cowboy hat - that's a counter.

Your task should you decide to accept it

is to test the counter at speed.

You can do this in three steps.

Initialize, run, and evaluate.

NOTE:

for proper alignment, the text has been hidden by making it white,

and uncovered in the next few slides by making it black.

29ASYNC 2015 - Naturalized Communication and Testing

To initialize the system, you first freeze all the joints.

You do this by making all the go signals low

as indicated by the red stop signs.

You have now stopped every action in this FIFO.

ASYNC 2015 - Naturalized Communication and Testing 30

Next, you set the state.

To run one Data item through this FIFO,

you make the first link full

and the other links empty.

You set the counter value to let's say zero.

ASYNC 2015 - Naturalized Communication and Testing 31

Then you clear the runway by unfreezing joints 3 and 4.

ASYNC 2015 - Naturalized Communication and Testing 32

And that's your initial state.

You've been very careful

and kept the first and last joints frozen,

to keep other test inputs out

and to keep your test results in.

Goodonya!

ASYNC 2015 - Naturalized Communication and Testing 33

You're about to unfreeze the entry to the runway,

by making the go signal of joint number 2 high.

That's the go signal with the hand-cursor.

You know things will happen fast when you do that.

So, you're gonna pay close attention

to make sure you see the blue Data move from left to right

and to see it update the counter.

GO!

ASYNC 2015 - Naturalized Communication and Testing 34

<SELF-TIMED>

ASYNC 2015 - Naturalized Communication and Testing 35

<SELF-TIMED>

ASYNC 2015 - Naturalized Communication and Testing 36

<SELF-TIMED>

ASYNC 2015 - Naturalized Communication and Testing 37

<SELF-TIMED>

ASYNC 2015 - Naturalized Communication and Testing 38

Now you scan the counter data out

and check if it's one.

Well-done!

<next slide ends the talk>

39ASYNC 2015 - Naturalized Communication and Testing

We have two working silicon experiments: Weaver and Anvil.

They both use MrGO and JTAG-scan-access for test, debug, and characterization.

What's more - they're both at the conference.

LIVE demos and tests are available.

Just ask Swetha, Hoon, Nav, Chris, or Ivan.

We are here until Thursday.

40ASYNC 2015 - Naturalized Communication and Testing

ASYNC 2015 - Naturalized Communication and Testing 41

42ASYNC 2015 - Naturalized Communication and Testing

43ASYNC 2015 - Naturalized Communication and Testing

ASYNC 2015 - Naturalized Communication and Testing 44

The green graph is below parts of the original Mousetrap, because we used 6-4 GasP.

Using 4-6 or 5-5 Gasp would take the green graph completely above the original one.

45ASYNC 2015 - Naturalized Communication and Testing

46ASYNC 2015 - Naturalized Communication and Testing

From the paper.

Note the special "delete" button in the top-right corner: ⊗

We added this especially for Jens Sparso

who did not like the advertisement look and feel.

47ASYNC 2015 - Naturalized Communication and Testing

ASYNC 2015 - Naturalized Communication and Testing 48

The Weaver's throughput of 6 Giga Data Items per second

correspond to 3.5 Terabits per second !!!

• The Weaver is an 8x8 crossbar.

• Words of 72 bits each, also known as "Data items."

• Non-blocking, totally concurrent.

• TSMC 40 nm CMOS.

• 6 x 109 Data items per second per channel

= 430 Gigabits per second per channel

= 8 x 430 Gigabits per second

~ 3.5 Terabits per second

• Parts suitable for Network-on-Chip

49ASYNC 2015 - Naturalized Communication and Testing

50ASYNC 2015 - Naturalized Communication and Testing

This picture is the equivalent of traditional scan test with one GO control.

Evaluating prior to unfreezing the joint allows us to detect premature actions.

51ASYNC 2015 - Naturalized Communication and Testing

Minor differences to testing the normally-opaque data capture version

in the previous slide.

52ASYNC 2015 - Naturalized Communication and Testing

ASYNC 2015 - Naturalized Communication and Testing 53

54ASYNC 2015 - Naturalized Communication and Testing

ASYNC 2015 - Naturalized Communication and Testing 55

56ASYNC 2015 - Naturalized Communication and Testing

