
Defect-Oriented Testability for
Asynchronous IC’s

MARLY RONCKEN

Invited Paper

For a CMOS manufacturing process, asynchronous IC’s are
similar to synchronous IC’s. The defect density distributions are
similar, and hence, so are the fault models and fault-detection
methods. So, what makes us think that asynchronous circuits
are much harder to test than synchronous circuits? Because the
effectiveness of best known test methods for synchronous circuits
drops when applied to asynchronous circuits? That may very
well be a temporal hurdle. Many test methods have already been
reevaluated and successfully adapted from the synchronous to
the asynchronous test domain. The paper addresses one of the
final hurdles:IDDQ testing. This type of test method, based on
measuring the quiescent power supply current, is very effective for
detecting (resistive) bridging faults in CMOS circuits. Detection
of bridging faults is crucial, because they model the majority of
today’s manufacturing defects.IDDQ fault effects are sensitized
in a particular state or set of states and can only be detected if
we stop the circuit operation right there. This is a problem for
asynchronous circuits, because their operation is self timed.

In the paper, we quantify the impact of self timing on the
effectiveness ofIDDQ-based test methods for bridging faults, and
propose a Design-for-Test (DfT) approach to develop a low-cost
DfT solution. For comparison, we do the same for logic voltage
testing and stuck-at faults. The approach is illustrated on circuits
from Tangram, the asynchronous design-style employed at Philips
Research, but it is applicable to asynchronous circuits in general.

Keywords—Asynchronous circuits, bridging faults, DfT,IDDQ,
self timed, stuck-at faults, testability.

I. INTRODUCTION

From a design perspective, asynchronous circuits promise
advantages over synchronous realizations in a number of
application areas [1]. They can be designed for average-
case rather than worst-case performance and have a higher
degree of modularity because there is no global clock. In-
stead, there is a self-timed protocol that automatically puts
inactive circuitry in standby mode, which results in lower
power dissipation and better electromagnetic compatibility.

Manuscript received February 2, 1998; revised September 4, 1998.
The author was with Philips Research Laboratories, Eindhoven,

The Netherlands. She is now with Strategic CAD Laboratories,
Intel Corporation, Hillsboro, OR 97124–5961 USA (e-mail: mron-
cken@ichips.intel.com).

Publisher Item Identifier S 0018-9219(99)00889-0.

From a test perspective, the essential distinction between
asynchronous and synchronous circuits is the self-timed
computation paradigm in the first versus a lock-stepped,
globally clocked computation in the latter. Common tech-
niques for voltage and current testing, like scan and ,
are applied when the state is quiescent. Self timing can
get in the way and reduce the effectiveness of these test
techniques because it offers fewer quiescent states. But
self timing can also work to the advantage, especially
in a request-acknowledge implementation style such as
handshake signaling, because of its self-checking properties
[2], [3].

From a technology perspective, there is no distinction be-
tween manufacturing asynchronous or synchronous CMOS
circuits, and hence the manufacturing defects are similar
for both design styles. Most defects in modern CMOS
processes can be categorized as shorts or opens, with a
significantly smaller probability for opens [4]. The prob-
ability for shorts is highest in the metal and polysilicon
interconnect layers, followed by gate oxide shorts. Research
has shown that these shorts can be modeled as (resistive)
interconnect bridging faults and transistor bridging faults
[5], [6].

So, the fault models are the same, but the effective-
ness of best known test methods may be different when
shifting from synchronous to asynchronous circuits. Since
the survey in [3], many best known test methods have
been reevaluated and adapted from the synchronous to
the asynchronous test domain. Testability for asynchronous
circuits is getting mature. Synchronous partial scan solu-
tions are built into asynchronous synthesis methodologies
[7]–[10], and also self-timed solutions are available [11].
In addition to these externally controlled test structures,
Built-In Self Test (BIST) has been applied to asynchronous
micropipeline designs [12]. The logic redundancy in the
speed-independent design style has been tackled [13]. And
last but not least, automatic test pattern generation can be
done for stuck-at faults [14], delay faults [15], [16], and
bridging faults [17].

0018–9219/99$10.00 1999 IEEE

PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999 363

And yet, this paper will not be the follow-up survey
to [3], because we feel that the most essential element
in testing asynchronous circuits has not been addressed
properly. That element is the self timing or autonomy which
is present in the computation model of every asynchronous
design methodology, and even in some of the new syn-
chronous design styles that we see today. So, rather than
giving a general overview of how best known test methods
were successfully adapted from the synchronous to the
asynchronous domain, we follow up on [17] and focus on
self-timed test issues and solutions.

The organization of the paper is as follows. Section II
is an introduction to defect-oriented fault modeling and
testing, where we build a fault model for the defect types
that are common in modern CMOS manufacturing pro-
cesses, explain the fault effects and also the detection
mechanisms using voltage and testing. In Section III,
we analyze the characteristics of self-timed design and their
implications on the test quality and costs. Section IV is the
technical core of the paper. Here, we quantify the lack
of quiescent states in terms of lost fault coverage. We
classify the essential quiescent states by grading undetected
faults, and develop a Design-for-Test (DfT) approach to
make these states quiescent during test. We demonstrate
this approach for a small circuit and three large-scale IC’s
developed in Tangram, the asynchronous design method
used by Philips [18], [19].

II. DEFECT-ORIENTED FAULT MODELING AND TESTING

The purpose of testing manufactured very large scale
integration (VLSI) circuits is to check whether the expected
quality and reliability of the circuit have been realized.
Assuming that the correctness of the IC design and of the
underlying physical processing models have been estab-
lished, the origins of functional failures and of diminished
performance and reliability are defects introduced during
the manufacturing process. In a mature manufacturing
process, the vast majority of such failures originate from
so-called spot defects that are caused by local process
disturbances, such as a short between metal wires caused by
a contaminating particle sticking to the positive photoresist
before the exposure step in the metal lithography: see
photograph in [20, Fig. 3]. Fig. 1 shows another photograph
of a spot defect in the form of a short between two metal
interconnect lines. By targeting the fault effects originating
from spot defects, we have a way to predict and control the
effectiveness and efficiency of testing procedures.

A. Fault Modeling

Various methods and tools have been developed
to model spot defects and analyze the resulting local
deformations in the IC structure to derive the fault
effects [20]–[23]. This approach, known as inductive fault
analysis, is the best known method for defining realistic
fault models for testing manufactured circuits. Inductive
fault analysis for modern (i.e., positive photoresist) CMOS
technologies has shown that most spot defects can be

(a)

(b)

Fig. 1. Scanning electron microscope photos of a short between
conducting lines: (a) overview and (b) detail. (Philips Electronics
Nijmegen, MOS4YOU.)

categorized as resistive shorts between conducting lines,
some as gate-oxide shorts, and relatively few as opens
in conducting lines and vias [4], [24].

In this paper, we focus on the first two categories,
resistive shorts between conducting lines and gate-oxide
shorts. In the first category, we consider resistive shorts
between conducting nodes that, based on connectivity, have
a high probability of being physically close to each other
when fabricated. For gate-oxide shorts we use the six-
transistor short model introduced in [25], which considers
all (pairwise) resistive shorts between the four MOS transis-
tor terminals: gate, source, drain, and substrate or bulk (
for -MOS and for -MOS transistors). Although this is
an oversimplification because gate-oxide shorts may exhibit
nonlinear instead of simple ohmic behavior, it can be shown
that tests targeted for the six-transistor model will
also cover gate-oxide shorts [6]. We will discuss in
Section II-B.

The resistances for shorted interconnect nodes are typi-
cally below 500 , but measurements by [5] on process-

364 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 2. Icon, schematics, and behavior for (a) asynchronous latch, or (generalized) C-element, and
(b) asynchronous control circuitSEQ for sequential execution. The six transistors in the state-holding
part (keeper) of the C-element are of minimal size. The asynchronous operations are controlled by
handshaking, using request and acknowledge signals. The� and� symbols in theSEQ icon identify,
respectively, the requesting side and the acknowledging side of the handshake channelsa; b, andc,
and the numbers forb and c indicate the sequential order, i.e., firstb then c. The implementation
of SEQ is based on four-phase handshake signaling, as indicated by the grey-colored regions in
the cycle behavior. The “=” symbols in both schematics indicate isochronic forks, with relative
timing assumptions for the forked transitions. For the isochronic fork inba, the assumptions are:
ba0# arrives at the C-element beforear0#, and ba1" arrives at theNOR gate beforex1 #. Both
assumptions are easy to implement, because the transitions are separated by at least one internal
gate delay. Similar assumptions hold for the isochronic fork inar .

related defect monitoring wafers also report small percent-
ages in the range of 500 to 20 k that vary from batch
to batch. Measurements by [26] on four gate-to-source
transistor shorts show values ranging from 800to 4.7
k . Compared to the on-impedance of an MOS transistor,
500 is low and 20 k is high. To make sure that our fault
evaluation is representative for the complete range of short
resistances, we will model both a low-resistive value (of
100) and a high-resistive value (of 10 k) for each short.
We call the resulting resistive short models bridging faults.

1) Bridging Faults: In our analysis, the bridging faults
are generated from the circuit schematics. We first lump
nodes and transistor terminals that alias the same signal
into a single node, and then generate low and high resistive
shorts for the lumped nodes. As an example, consider the
asynchronous control circuitSEQ in Fig. 2(b). The nodes
in this component are likely to be kept together on silicon
because the connectivity to other components is very sparse.
Therefore, we consider all bridging faults between the 14
(lumped) nodes:

• power, and ground or bulk: ;
• interconnect: ;
• additional nodes inside the C-element:
• two additional nodes inside theNAND and NOR.

This gives a total of 91 low-resistive 100-bridging faults
and 91 high-resistive 10-k bridging faults.

The probability of these bridging faults can vary signifi-
cantly for different realizations of the module:

• power or ground bridges have a higher probability
in technologies that use power and ground lines for
shielding in interconnect layers;

• two nodes inside different (logic) gates are more
likely to bridge when the gate transistor networks are
combined into a single complex gate;

• a metal or polysilicon interconnect node outside a
(logic) gate very unlikely bridges to an internal node in
the diffusion layer, but the probability increases when
the latter is routed inside the gate via metal or poly.

By considering all 91(2) bridging faults, we get a better
idea for the test implications of changes in the realization.
Our objective is to develop a DfT strategy for bridging
faults that are hard to detect due to the self-timed operation
of the circuit.

B. Testing Bridging Faults

Bridging faults can affect the behavior of a CMOS circuit
in several ways. The most salient fault effect for testing is a
high quiescent power supply current, or , measured for
opposite (logic) voltage values across each of the bridged
nodes. For today’s technologies, the faulty value is
typically several orders of magnitude higher than the value
of the corresponding transistor leakage current in the fault-

RONCKEN: DEFECT-ORIENTED TESTABILITY 365

(a)

(b)

Fig. 3. Feedback fault effect for a 10-k
 bridging fault in the C-element between interconnect
nodeb and keeper nodey [circuit schematics in Fig. 2(a)]. The operation of the C-element is as
performed in the context of control circuitSEQ, with a quiescent state every 50 ns: (a) fault-free
behavior and (b) for 10-k
 bridging. Because nodey is weakly driven by the keeper, the bridge to
b easily overwritesy, causing the keeper forward drive to flip and invert the originally conflicting
voltage driven onto nodey. This happens, for instance, in the time interval 150–200 ns. In this
way, any voltage conflicts across the bridge are resolved. The fault can be detected by logic voltage
testing, but not byIDDQ testing.

free circuit [27]. Whether or not this will still be the case
for deep submicron CMOS technologies the next ten years
is unclear [28], but various approaches are being developed
to reduce the leakage current and preserve the ability for

testing [29], [30].
Bridging faults in combinational circuits become -

detectable by driving conflicting voltages across the bridge,
even when the bridging fault creates a feedback path that
causes the circuit to oscillate [31]. In sequential circuits,
however, the bridging fault may create a feedback path
that eliminates the conflict by overwriting or disconnecting
the voltage drives across the bridge. In such cases the fault
cannot be detected by testing, and voltage-based test

methods are needed [32]. An example is shown in Fig. 3 for
a bridging fault between the interconnect nodeand keeper
node in the C-element. Because the keeper transistors are
of minimal size, easily overwrites the keeper state via the
bridge, even for a bridge resistance as high as 10 k. Thus,
any voltage conflict across the bridge is resolved and
testing will not detect the fault.

Self-timed execution, typical for asynchronous circuits,
may lead to longer bridging-induced feedback paths than
normally encountered in synchronous circuits. For example,
a low-resistive bridging fault between the nodesand
in circuit SEQ creates a feedback path from rising to

rising (by the bridge) to falling (by the self-timed

366 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

(a)

(b)

(c)

Fig. 4. Fault effects for a bridging fault between the interconnect nodesbr and aa in control
circuit SEQ: (a) fault-free behavior and (b) for 10-k
 bridging and (c) for 100-
 bridging. The
circuit [see Fig. 2(b)] is quiescent every 50 ns. The 10-k
 bridge leads to slightly reduced voltage
levels which can be detected byIDDQ but not by voltage testing. The 100-
 bridge creates a global
feedback path that resolves the voltage conflict across the bridge, but changes the logic behavior.
Similar to the local feedback created by the bridging fault in the C-element as shown in Fig. 3, the
fault effect can be detected by logic voltage testing but not byIDDQ. In conclusion, detection of
a bridging fault betweenbr andaa requires logic voltage testing to catch the lower-resistive fault
effects andIDDQ testing to catch higher-resistive fault effects.

RONCKEN: DEFECT-ORIENTED TESTABILITY 367

Fig. 5. Detail of the 10-k
 bridging fault simulation in Fig. 4(b), showing the increased path
delay fromaa rising to ar falling compared to the fault-free situation. For high-resistive bridging
faults, such as in this case, the changes in propagation delay typically are marginal, and the circuit
will function correctly.

environment) to falling (by SEQ) to falling (by the
bridge). This is reflected in Fig. 4(c). The fault can be
detected by logic voltage testing, but not by because
the feedback path resolves the original bridge conflict for

rising and low by making both nodes low. For a high
resistance, the conflicting voltage values across the bridge
will slightly degrade, but the functionality of the circuit is
not affected. In this case, the fault can be detected by
but not by logic voltage testing, as is shown in Fig. 4(b).

1) Dynamic Fault Effects:Logic voltage failures and ele-
vated are static fault effects. Bridging faults can also
change the dynamic behavior of the circuit, for instance
by increasing some propagation delays. Fig. 5 shows a
small increase in the propagation delay from rising
to falling due to the 10-k bridging fault between
nodes and in circuit SEQ. Studies of delay faults
due to bridges show that large changes in gate delays
are not very likely [33], [34]. Typically, the gate output
transition slows down by only a limited amount before
a logic voltage failure results, but minor speed ups are
also possible. Test techniques for delay faults typically
target path delays [35] which are usually larger and will
therefore miss most of the high-resistive bridging fault
delays. An exception is the delay test method proposed in
[36], which enables detection of relatively small increments
in gate delays, and also targets multiple gate-delay faults
reflecting spill-over effects by resistive bridging faults from
inside a gate into neighboring gates. Still, slightly increased
or decreased delays that do not cause immediate failures
cannot be detected by delay fault test techniques, while
the corresponding current-drive fault effects usually can be
detected by testing.

2) Reliability: The reverse side of the medal for be-
ing more successful than other test methods in detecting
faults that do not visibly affect the functionality of the

circuit is ’s nomination for yield loss [37]. There
is strong evidence, however, that these so-called benign

failures can become living time bombs in the field.
Experiments reported in [38] indicate that the resistances of
gate-oxide shorts have a tendency to change with time, and
the simulation results in [33] show that the circuit operation
can be very sensitive to such changes. In other words,
benign gate-oxide shorts can reduce the mean time to failure
as well as the lifetime of an IC. In addition, degraded
voltage levels due to bridging faults make the circuit more
vulnerable to noise, which can lead to intermittent failures
not anticipated by the noise calculations for the fault-free
design. Therefore, in this paper we take the position that
a benign bridging fault, -detectable or not, should be
subjected to a reliability analysis to judge whether it needs
detection or not.

III. SELF-TIMED TEST ISSUES

From now on, we focus on the (logic) voltage and
detection of static fault effects in asynchronous circuits. The

in is for quiescent, and although both detection
methods are applied when the circuit state is assumed to be
stable, or quiescent, the detection characteristics for each
method are different.

• failures can be observed directly, whereas logic
failures usually need to be propagated to latches and
output pins to become observable.

• failures typically do not propagate with state
transitions, whereas logic failures typically do.

This suggests that the effectiveness of highly de-
pends on the set of quiescent states available for detection,
whereas this seems to be less the case for logic testing.
Because self timing typically reduces the set of quiescent
states, the effectiveness of may be too low for
asynchronous design styles, unless adequate DfT measures

368 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

are taken. As such, DfT for bridging faults in asynchronous
circuits may be more expensive than DfT for typical
logic fault models, like stuck-at faults. To quantify how
much more expensive, we evaluated the DfT requirements
and costs for both stuck-at and bridging faults, which is
presented in Section III-B.

The outline of this section is as follows. First, we
give a more detailed explanation of why quiescent states
are important for detecting bridging faults and why they
are sparse in self-timed operations. Then, we illustrate
why the obvious solution by elimination of self timing
during testing, using full-scan DfT, is too expensive. The
conclusion of this section is that we need a more tailored
DfT approach to enable high-quality, low-cost bridging
fault detection.

A. Quiescent States

For high-resistive bridging faults, often the only visible
fault effect is an elevated . Typically the current-drive
fault effect is sensitized in a particular state or set of states
and can only be detected if we stop the operation right
there. In a truly synchronous circuit the state transitions in
the circuit operation are controlled by one or more external
clocks, and stopping the operation in the current state is not
a problem. With self-timed state transitions the granularity
for stopping the operation externally becomes coarser,
and the capability for detecting current-drive fault effects
thus becomes weaker. Without DfT for creating additional
quiescent states, the effectiveness of testing for
asynchronous circuits may become too low to guarantee
good test quality. Quantitative analysis for the Tangram
design style has shown that the test quality without DfT is
indeed too low: see [17] or Fig. 9 in the present paper.

B. Costs for Eliminating Self Timing Using Full-Scan DfT

A general DfT solution would be to eliminate all self
timing when testing the circuit, which can be done by
cutting all internal feedback loops using full-scan DfT. This
works for stuck-at faults as well as for bridging faults, but
it can be relatively expensive due to the use of distributed
control.

• While clocked designs usually have centralized con-
trol, asynchronous design methods typically use dis-
tributed control. The number of latches is larger in a
distributed implementation. Full-scan DfT techniques,
in which all latches are modified, are thus more ex-
pensive for asynchronous designs.

• Asynchronous circuits typically use set-reset type
latches (cf. Fig. 2) that need more expensive scan
modifications than clocked data latches.

Table 1 shows how expensive this can become in practice.
Presented are three asynchronous industrial benchmarks,
designed and fabricated by Philips using Tangram [18],
[19]. Design DDD is a low-power (single-rail) DCC error
detector [39], [40]. The 80C51 microcontroller (originally
from Intel) is a first prototype of the asynchronous version
designed by Philips Research and the low-power division

Table 1
The Ratio of Latches in Self-Timed Control
Escalates for Full-Scan DfT

of Philips Semiconductors Z̈urich [41]. The third design is a
low-power asynchronous ADPCM Speech Codec according
to DECT standard.

The last column in Table 1 shows how the ratio of
latches in the self-timed control escalates when full-scan
DfT is used. The percentages are relative to the original
total latch set in the third column. The extra (clocked) data-
path latches in the full-scan solution are real percentages
taken from [10]. The percentages for extra control latches
are based on [7] and [13]. The solution in [7] with one addi-
tional scan latch per set-reset latch gives the lower bounds,
because it cannot generate all test pattern combinations,
and extra dummy latches may be needed to support a given
test suite. In the worst-case scenario this may lead to one
additional scan latch plus dummy latch for each set-reset
latch, similar to the dynamic scan solution in [13], which
explains the upper bounds.

Because the full-scan area overhead was unacceptable
even for the lower-bounds, the designs were made partially
scannable [8], [10], [17]. For the ADPCM design we used
the tailored DfT approach discussed in Section IV, which
is geared towards creating a small but sufficient collection
of quiescent states to achieve high test quality.

IV. TAILORED TESTABILITY FOR SELF TIMING

In this section, we develop a DfT method tailored to
self-timed test issues in asynchronous circuits, and based
on fault grading. This method will enable high stuck-at and
bridging fault coverage for relatively low costs compared
to standard full-scan methods.

We start with fault analysis to determine which faults
can escape detection. Undetected faults are subjected to
a reliability analysis to determine whether detection is
really needed. If detection is needed, we do inductive fault
analysis to find out whether the fault probability can be
reduced by using an alternative realization. For those faults
that still need detection, we find additional quiescent states
for which the fault effect becomes visible and develop DfT
to create these states.

To quantify the DfT needs for bridging faults in relation
to stuck-at faults (which may need fewer quiescent states),
we follow the above procedure for both fault models.
We use circuitSEQ to illustrate this procedure and the
resulting DfT method developed for Tangram. The analysis
is supported by analog fault simulations using in-house
tools based on SPICE [42] and a 0.8-m CMOS cell
library with 5-V power supply. Simulation setup and results
are described in Section IV-A. Section IV-B focuses on

RONCKEN: DEFECT-ORIENTED TESTABILITY 369

Fig. 6. Simulated configuration and fault-free behavior for three control componentsSEQ driving
four data paths� (see also Fig. 7). Faults are injected in the grey-coloredSEQ component, and the
fault effects are tested in the two initial and final quiescent states.

the collection of faults that initially escape detection, and
Section IV-C presents the resulting DfT solution and costs.

A. Fault Analysis Setup and Results for CircuitSEQ

As an example, we use the configuration in Fig. 6 to
analyze the testability of the grey-coloredSEQ component,
for which we inject one fault at a time and compare the
resulting behavior against the fault-free behavior. Each
simulation starts at the topmostSEQ by raising the request
for topmost channel , and ends when the corresponding
acknowledge rises. The start-up first causes the middleSEQ

to complete its operation, before the topmost data-path is
enabled. The middleSEQ first lets the grey-coloredSEQ

sequentially execute the data-path operations forand ,
before enabling the middle data-path operation.

1) Data-Path Enable Signals:The data paths in Tangram
use single-rail data encoding, as in clocked data paths.
Fig. 7 shows the interface between handshake control and

Fig. 7. Handshake interface between the control and a single-rail
data path. A four-phase handshake overbr andba generates a pulse
on ben, which makes it possible to capture the results from the
combinational logic in the level-sensitive latches in a way similar
to clocked data paths. A circuit can have many data paths that may
share combinational logic and latches but typically have their own
handshake control channel.

370 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

Fig. 8. Two possible fault effects for branchba1 stuck-at-0 [see Fig. 2(b)]. This input stuck-at
fault violates the isochronic fork assumption “ba1 " arrives at theNOR gate beforex1 #,” which
is an indication for potential hazardous behavior. The hazard in this case is interference between
the data-path operations forb and c, which are supposed to be nonoverlapping. Depending on the
delay for the operation inb versusc, the fault effect changes from “probably benign” whenben
andcen are hardly overlapping (top three windows) to “likely hazardous” when there is significant
overlap (bottom three windows).

data path for channel in our simulation setup. The hand-
shake request signal is delayed to match the execution
time for the combinational logic in the data-path operation.
The delayed request signal, now referred to as data-path
enable signal , latches the results of the operation into the
data-path write latches. To safely generate the handshake
acknowledge , which is supposed to signal that the
corresponding data-path phase has completed, there is an
additional delay matching for the local distribution of .
A four-phase handshake ongenerates a pulse on to
open and close the level-sensitive data-path latches just like
in a clocked data path.

2) Fault Detection: The overall simulation offers exactly
two quiescent states: the initial state before start up (at 0
ns) and the final state (at 20 ns). Because faults may affect
the initial state, we first analyze the possible initial states
for the faulty circuit and start a separate fault simulation
run for each of these (at most two runs per fault were
needed). Detection is possible in both the initial and final
state, where we test for elevated and inspect the logic
voltage of the start-up acknowledge signal, data-path enable
signals, and data-path latches. We assume that whenever
the data paths are enabled in the wrong order or either one
is skipped or executed more than once, then at least one
of the data-path latches will have a faulty logic value. In
Section IV-C2, we show how this assumption is realized.

3) Fault Injection and Results:Fig. 9 shows the simu-
lated fault coverage, when injecting all 14 input and 16
output stuck-at-1/0 faults, plus a subset of 16(2) bridging
faults, from and to the set of output stuck-at
nodes:

• input stuck-at nodes: ;
• output stuck-at nodes: .

A node stuck-at fault is modeled by disconnecting the node

Fig. 9. Simulated fault coverage for control componentSEQ.

from the driving net and connecting it (via a 100-bridge)
to either in the case of a stuck-at-1 or in the
case of a stuck-at-0. The explanation for the low coverage1

is similar for both fault models: the self-timed behavior
offers too few quiescent states to distinguish fault-free from
fault-affected behavior.

B. Classification of Undetected Faults into Quiescent States

At first sight, it comes as a surprise that voltage detection
also requires intermediate quiescent states. However, from
earlier studies we know that stuck-at faults can lead to
premature transitions [43] and thus xcreate races between
signals that may or may not turn out hazardous. An example
is given in Fig. 8, showing two possible fault effects for the
same input stuck-at fault, one likely benign the other likely
hazardous. Branch stuck-at-0 causes a premature rising
transition , enabling data path while data path is still
active. Depending on the data-path delays, the pulses for

1The figures are somewhat different from those presented in [17]
because we use a slightly different library.

RONCKEN: DEFECT-ORIENTED TESTABILITY 371

and may or may not overlap. Although the fault effect
is not per sevisible when tested, it is noise sensitive and
thus a reliability risk which needs to be targeted by DfT.

The fault can be detected independent of the data-path
delays by creating an additional quiescent state between

rising prematurely as a result of the fault and rising
as intended by the design.

• The premature transition is excited for , which
subsequently causes (by design) (by stuck-
at-0) and hence .

• The designed transition is excited for , causing
(see handshake expansion) and hence.

The only candidate in the handshake expansion that sep-
arates the two excitation transitions and without
changingSEQ is the state with low and still high.
Voltage inspection in this new quiescent state shows that

is high in the presence of the fault, and low for the fault-
free circuit. In this way, the fault is detected independent
of the data-path delays.

Similar evaluations to nail the remaining undetected
faults yield three classes of additional quiescent states in
the handshake expansion ofSEQ [see Fig. 2(b)].

Class 1: Hold handshake from request to acknowledge:

• high and still low;
• low and still high;
• high and still low;
• low and still high.

Class 2: Hold handshake from acknowledge to request:

• high and still high.

Class 3: Hold between internal transitions.
1) DfT Cost Perspectives for Classes 1–3:A hierarchical

configuration of handshaking components, like the one
we simulated, yields a hierarchy of handshake expansions
which unfold like a telescope. A newly created quiescent
state at the end of the unfolded hierarchy can be shared by
all levels in the hierarchy. In Tangram, unfolding occurs
typically between the request phase and the correspond-
ing acknowledge phase [cf. dark-grey color scheme for
the handshake expansion in Fig. 2(b)]. As a result, the
following was observed.

• Class 1 has the lowest-cost DfT perspectives, because
the extra quiescent states for the grey-coloredSEQ

also suffice for SEQ components higher up in the
configuration. By way of illustration, note that “high
and still low” implies that also “ high and still
low,” and that “ low and still high” implies “
low and still high.”

• Class 2 cannot take advantage of the unfolding and
will require local DfT per component, which can be
relatively expensive as we have seen in Section III-B.

• Class 3 is independent of the unfolding mechanism,
and likely very expensive in DfT because it requires
every singleSEQ component to have additional states.

2) Getting Rid of Classes 2 and 3:From the cost per-
spectives in Section III-B, we conclude that Class 1 may
be worth implementing, whereas Class 2 and 3 are better

avoided. Here, we will show that the latter two can be
ignored when testingSEQ, without impacting the reliability.

Class 2 targets just one fault, which is the bridging fault
between metal interconnect nodeand node inside the
C-element. With in the diffusion layer, the probability
of this fault is low enough to ignore Class 2.

Class 3 targets four bridging faults: betweenand the
internalNAND node, between and the internalNOR node,
between and , and between and . Only the
last one gives a marginal increase in delay, namely from

to , because the C-element pull-up path controlled
by initially has to fight the keeper pull-down path via the
bridge. With a keeper of minimal size, the conflict period
will be very short and insignificant for aging. Thus, we can
ignore Class 3.

C. Tailored High-Quality Low-Cost DfT Solution

Fig. 10 shows the new circuit configuration, with DfT
to create the additional quiescent states of Class 1. The
DfT circuitry, calledHOLD, is injected in the leaf nodes of
the control hierarchy, at the handshake interface between
control and data path. A straightforward implementation of
HOLD is shown in Fig. 10(b) and is explained in Section III-
C1. Section IV-C2 shows how the data-path enable sig-
nals can be observed by scanning the data-path, and how
HOLD and data-path scan cooperate. Section IV-C3 gives
an overview of performance and costs.

1) HOLD Implementation for Class 1:The HOLD circuitry
has three global signals , and , to lock-step the
state transitions to and from the quiescent states in Class 1.
In normal operation, their respective values are high, low,
high, making the circuit transparent. In test mode all three
values are initially low, forcing the circuit to halt in the first
quiescent state, where is high and low for the fault-
free circuit. Here, we raise to inspect the (supposedly
high) voltage level of and to measure . Before
stepping to the next quiescent state, with low and
high for the fault-free circuit, we first close the set-reset
latch for down-transitions by raising . Then we raise
to go to the next state, where we measure and inspect
the (supposedly low) voltage level of . From here, we
step to the first quiescent state in the next handshake by
subsequently lowering , etc.

Fault analysis of thisHOLD implementation shows that all
relevant stuck-at and bridging faults can be tested without
further DfT needs [17].

Figs. 3–4 in the beginning of the paper are actual fault
simulations for the new configuration with thisHOLD DfT
built into the leaf nodes, which explains the intermediate
quiescent states.

2) Data-Path Scan:We can either directly inspect the
voltage level of data-path enable signals, or indirectly by
scanning the data-path latches. We do the latter, because
it also enables us to test the data paths. Our scan DfT is
synchronous [10] because of the lower costs, but self timed
is also possible [11].

To see whether is high, we check whether the write
latches of the data path are being written (see Fig. 7). In

372 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

(a) (b)

Fig. 10. New circuit configuration with (a)HOLD DfT and (b) a straightforward implementation
for HOLD. The delay for the DfT circuitry is compensated in the delay-matchings for the data-path
operation (see Fig. 7).

Fig. 11. Simulated fault coverage forSEQ with HOLD DfT.

order to see this, the old and new latch values must be
different. A scan chain through the latches enables us to
control the difference by shifting values into the latches
when is still low. Then we pulse to pulse and
latch the new results into the scan chain, which are then
shifted out for comparison. We conclude that is high if
and only if the old scan values are different from the new
results. This can be done while we scan in and apply test
stimuli for the data path and scan out the responses.

To see whether is low, we check whether the write
latches are not being written, which takes two more scan
operations. We conclude that is low if and only if the
old and new values are the same.

3) Performance and Costs:Fig. 11 gives an overview of
the stuck-at and bridging fault coverage forSEQ in the new
configuration withHOLD DfT. The 5(2) bridging faults

Table 2
Costs of HOLD DFT for Self-Timed Control

that remain undetected correspond to the ones evaluated in
Section IV-B2, which we judged to be either unlikely or
benign.

Fault simulations for other Tangram control components
using the sameHOLD DfT to create quiescent states of
Class 1 show equally high fault coverage [17]. For all these
components, we could eliminate the need for quiescent
states of Class 3, whereas Class 2 was only needed for
specific multiplexer configurations.

Table 2 gives an overview of theHOLD costs and test per-
formance for the three asynchronous IC benchmarks from
Philips, introduced in Section III-B. The second column
shows the percentage ofHOLD’s relative to the number
of set-reset and data-path latches. Note that this is two
to nine times lower than the latch percentage needed for
full-scan control, which was given in Table 1. To get an
idea of what this means in terms of cell-area overhead:
the (nonoptimized)HOLD DfT led to an increase of 8%
for the ADPCM, while the full-scan control solution (with
optimized scan flipflops) would have added 24%.

The third column gives the number of voltage tests for
checking the data-path enable signals. The percentage rela-

RONCKEN: DEFECT-ORIENTED TESTABILITY 373

tive to the total number of voltage tests for control and (full-
scan) data paths is proportional to the control area: 35%,
48%, and 17% versus 40%, 40%, and 20% (see Table 1).

The last column gives the number of tests for the
self-timed control (includingHOLD DfT), which is relatively
high due to the distributed nature of the control that is kept
intact by our DfT method. With a 100-kHz monitor
[44] the test times will still be good, though.

One final remark on speed and power: the extra delay
and activity introduced by theHOLD circuitry are usually
negligible in comparison to the average handshake activity,
and can often be compensated in the delay matchings for
the single-rail data-path operations.

V. CONCLUSION

Self timing is one of the most essential elements in an
asynchronous computation model. Besides offering low-
power and average-case performance advantages, self tim-
ing can get in the way when the design needs to be tested
because there are fewer quiescent states to observe. As a
result, voltage and -based test methods become too
ineffective, which we illustrated by fault simulation and
analysis. We showed that standard full-scan solutions are
too expensive, and we developed a tailored DfT approach
to create a small but sufficient collection of quiescent
states to restore the effectiveness of both test methods.
We demonstrated this approach for asynchronous control
circuits in Tangram, which resulted in theHOLD DfT
solution that is needed for both stuck-at and bridging faults.
While our development approach towards such a high-
quality, low-cost DfT solution can be used for various styles
of asynchronous circuits, the costs of the solution are tied
to the class of missing quiescent states, which may differ
per style.

ACKNOWLEDGMENT

The author gratefully acknowledges E. Bruls for his
inspiring cooperation in the fault analysis and wishes to
thank J. Kessels, A. Mettler, and E. Woutersen for the many
constructive discussions on the test approach.

REFERENCES

[1] G. Birtwistle and A. Davis, Eds.,Asynchronous Digital Circuit
Design. New York: Springer-Verlag, 1995.

[2] P. A. Beerel and T. H.-Y. Meng, “Semi-modularity and testa-
bility of speed-independent circuits,”Integr. VLSI J., vol. 13,
no. 3, pp. 301–322, 1992.

[3] H. Hulgaard, S. Burns, and G. Borriello, “Testing asynchronous
circuits: A survey,”Integr. VLSI J., vol. 19, no. 3, pp. 111–131,
1995.

[4] E. Bruls, “Quality and reliability impact of defect data analysis,”
IEEE Trans. Semiconduct. Manufact., vol. 8, pp. 121–129, Feb.
1995.

[5] R. Rodrı́guez-Monta˜nes, E. M. J. G. Bruls, and J. Figueras,
“Bridging defects resistance measurements in a CMOS
process,” inProc. Int. Test Conf., 1992, pp. 892–899.

[6] J. Segura, C. De Benito, A. Rubio, and C. F. Hawkins, “A
detailed analysis of GOS defects in MOS transistors: Testing
implications at circuit level,” inProc. Int. Test Conf., 1995, pp.
544–551.

[7] M.-D. Shieh, C.-L. Wey, and P. D. Fisher, “A scan design
for asynchronous sequential logic circuits using SR-latches,”

in Proc. Midwest Symp. Circuits and Systems, 1993, pp.
1300–1303.

[8] M. Roncken, “Partial scan test for asynchronous circuits illus-
trated on a DCC error corrector,” inProc. Int. Symp. Advanced
Research in Asynchronous Circuits and Systems, Salt Lake City,
UT, 1994, pp. 247–256.

[9] A. Khoche and E. Brunvand, “A partial scan methodology for
testing self-timed circuits,” inProc. IEEE VLSI Test Symp., NJ,
1995, pp. 283–289.

[10] M. Roncken, E. Aarts, and W. Verhaegh, “Optimal scan for
pipelined testing: An asynchronous foundation,” inProc. Int.
Test Conf., 1996, pp. 215–224.

[11] V. Scḧober and T. Kiel, “An asynchronous scan path concept
for micropipelines using the bundled data convention,” inProc.
Int. Test Conf., 1996, pp. 225–231.

[12] O. Petlin and S. Furber, “Built-in self-testing of
micropipelines,” in Proc. Int. Symp. Advanced Research
in Asynchronous Circuits and Systems, Eindhoven, The
Netherlands, 1997, pp. 22–29.

[13] L. Lavagno, M. Kishinevsky, and A. Lioy, “Testing redundant
asynchronous circuits,” Dep. Comput. Sci., Technical Univ.
Denmark, Lyngby, Tech. Rep. ID-TR:1993-124, 1993.

[14] A. Khoche and E. Brunvand, “Critical hazard free test genera-
tion for asynchronous circuits,” inProc. IEEE VLSI Test Symp.,
NJ, 1997, pp. 203–208.

[15] M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Saldanha, and
A. Taubin, “Partial scan delay fault testing of asynchronous
circuits,” in Proc. ICCAD, 1997, pp. 728–735.

[16] S. M. Nowick, N. K. Jha, and F.-C. Cheng, “Synthesis of
asynchronous circuits for stuck-at and robust path delay fault
testability,” IEEE Trans. Computer-Aided Design, vol. 16, pp.
1514–1521, Dec. 1997.

[17] M. Roncken and E. Bruls, “Test quality of asynchronous
circuits: A defect-oriented evaluation,” inProc. Int. Test Conf.,
1996, pp. 205–214.

[18] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and F.
Schalij, “The VLSI-programming language Tangram and its
translation into handshake circuits,” inProc. Europ. Conf.
Design Automation(EDAC), 1991, pp. 384–389.

[19] K. van Berkel, “Handshake Circuits: An asynchronous ar-
chitecture for VLSI programming,”International Series on
Parallel Computation,vol. 5. Cambridge, U.K.: Cambridge
Univ. Press, 1993.

[20] W. Maly, “Realistic fault modeling for VLSI testing,” inProc.
Design Automation Conf.(DAC), 1987, pp. 173–180.

[21] J. P. Shen, W. Maly, and F. J. Ferguson, “Inductive fault anal-
ysis of MOS integrated circuits,”IEEE Design Test Comput.,
vol. 2, pp. 13–26, June 1985.

[22] H. Walker and S. W. Director, “VLASIC: A catastrophic fault
yield simulator for integrated circuits,”IEEE Trans. Computer-
Aided Design, vol. 5, pp. 541–556, Apr. 1986.

[23] A. Jee and F. J. Ferguson, “Carafe: An inductive fault analysis
tool for CMOS VLSI circuits,” inProc. IEEE VLSI Test Symp.,
NJ, 1993, pp. 92–98.

[24] F. J. Ferguson and J. P. Shen, “Extracting and simulation of
realistic CMOS faults using inductive fault analysis,” inProc.
Int. Test Conf., 1988, pp. 475–484.

[25] W. Mao, R. K. Gulati, D. K. Goel, and M. D. Ciletti, “QUI-
ETEST: A quiescent current testing methodology for detecting
leakage faults,” inProc. Int. Conf. Computer-Aided Design
(ICCAD), 1990, pp. 280–283.

[26] C. F. Hawkins and J. M. Soden, “Electrical characteristics and
testing considerations for gate oxide shorts in CMOS IC’s,” in
Proc. Int. Test Conf., 1985, pp. 544–555.

[27] J. M. Soden, C. F. Hawkins, R. K. Gulati, and W. Mao, “DDQ
testing: A review,”J. Electron. Testing: Theory Applicat., vol.
3, pp. 291–303, 1992.

[28] T. W. Williams, R. Kapur, M. R. Mercer, R. H. Dennard, and
W. Maly, “ DDQ testing for high performance CMOS—The
next ten years,” inProc. Europ. Design and Test Conf.(EDAC-
ETC-EuroASIC), 1996, pp. 578–583.

[29] M. Sachdev, “Deep sub-micronDDQ testing: Issues and so-
lutions,” in Proc. Europ. Design and Test Conf.(EDAC-ETC-
EuroASIC), 1997, pp. 271–278.

[30] A. Keshavarzi, K. Roy, and C. F. Hawkins, “Intrinsic leakage
in low power deep submicron CMOS IC’s,” inProc. Int. Test
Conf., 1997, pp. 146–155.

[31] A. Rubio, M. Roca, and E. Sicard, “DDQ testing of oscillating

374 PROCEEDINGS OF THE IEEE, VOL. 87, NO. 2, FEBRUARY 1999

bridging faults in CMOS combinational circuits,”Proc. Inst.
Elect. Eng. G, vol. 140, no. 1, 1993.

[32] R. Rodrı́guez-Monta˜nes and J. Figueras, “Analysis of bridging
defects in sequential CMOS circuits and their current testabil-
ity,” in Proc. European Test Conf., 1994, pp. 356–360.

[33] H. Hao and E. J. McCluskey, “Resistive shorts within CMOS
gates,” inProc. Int. Test Conf., 1991, pp. 292–301.

[34] H. T. Vierhaus, W. Meyer, and U. Gläser, “CMOS bridges and
resistive transistor faults:DDQ versus delay effects,” inProc.
Int. Test Conf., 1993, pp. 83–91.

[35] A. K. Pramanick and S. M. Reddy, “On the computation of
the ranges of detected delay fault sizes,” inProc. Int. Conf.
Computer-Aided Design(ICCAD), 1989, pp. 126–129.

[36] P. Franco and E. J. McCluskey, “Delay testing of digital circuits
by output waveform analysis,” inProc. Int. Test Conf., 1991,
pp. 798–807.

[37] P. Nigh, W. Needham, K. Butler, P. Maxwell, and R. Aitken,
“An experimental study comparing the relative effectiveness of
functional, scan,DDQ, and delay-fault testing,” inProc. IEEE
VLSI Test Symp., NJ, 1997, pp. 459–464.

[38] C. F. Hawkins and J. M. Soden, “Reliability and electrical
properties of gate oxide shorts in CMOS IC’s,” inProc. Int.
Test Conf., 1986, pp. 443–451.

[39] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
and F. Schalij, “Asynchronous circuits for low power: A DCC
error corrector,”IEEE Design Test Comput., vol. 11, pp. 22–32,
Summer 1994.

[40] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken,
F. Schalij, and R. van de Wiel, “A single-rail re-implementation
of a DCC error detector using a generic standard-cell library,” in
Proc. 2nd Working Conf. Asynchronous Design Methodologies,
London, 1995, pp. 72–79.

[41] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D.
Gloor, and G. Stegman, “An asynchronous low-power 80C51
microcontroller,” in Proc. Int. Symp. Advanced Research in
Asynchronous Circuits and Systems, San Diego, CA, 1998, pp.
96–107.

[42] B. Atzema, E. Bruls, M. Sachdev, and T. Zwemstra, “Computer-
aided testability analysis for analog circuits,” inProc. Workshop
on Advances in Analog Circuit Design, 1995.

[43] A. Martin and P. Hazewindus, “Testing delay-insensitive cir-
cuits,” in Proc. UC Santa Cruz Conf. Advanced Research in
VLSI, 1991, pp. 118–132.

[44] K. Baker and A. Hales, “Quality test action group (QTAG):
Plug and play DDQ testing for test fixtures,”IEEE Design Test
Comput., vol. 12, pp. 53–61, Fall 1995.

Marly Roncken received the M.Sc. degree in
mathematics and computer science from the
University of Utrecht, The Netherlands.

From 1985 to 1997, she was a Researcher
at Philips Research Laboratories, Eindhoven,
The Netherlands, in the area of VLSI design
automation and test. She was responsible for
the test operations and test research and devel-
opment in the VLSI Programming and Silicon
Compilation Project for asynchronous circuits
(Tangram). In 1997, she joined Intel Strategic

CAD Laboratories, Hillsboro, OR. Her main interests include VLSI fault
grading and test methodologies, and design for test and manufacturability.

RONCKEN: DEFECT-ORIENTED TESTABILITY 375

