
Page 1

Good afternoon.

My introduction will set the stage for the rest of our talks.

Chronos = time. Syn = same. A = not.

Asynchronous means “not at the same time.”

Marly and I started the Asynchronous Research Center (ARC)

in 2009.

Page 2

Marly Roncken and I married in 2006

and we do research together.

We worked separately on asynchronous systems,

Marly in The Netherlands, I in the USA.

We met at the asynchronous conference, ASYNC, in 1994.

She won the best paper award, I had given a keynote speech.

This slide shows some of the places we have worked.

I’m now 80 years old – it’s impolite to ask a woman’s age.

Page 3

This ShanghaiTech Lecture has five parts.

My introduction describes today’s “clocked” design paradigm

and the forthcoming asynchronous paradigm.

Arbitration is the only logic unique to self-timed systems.

Page 4

Fifty years ago as a young man I wrote Sketchpad.

(That may be why I was invited to come here today)

But our talks today are about another subject.

Marly and I will talk about a long overdue paradigm shift.

A Paradigm is how we think about and do things.

In USA we eat with a knife and fork.

In China you use chopsticks.

Page 5

I wrote sketchpad for the largest computer of its day, TX-2.

TX-2 filled a large laboratory.

TX-2 ran at 100K operations/second,

one every ten microseconds.

In that much time light goes about 3 km.

Page 6

The clocked paradigm for logic design is almost universal.

It is easy to understand because it ignores transport delay.

Page 7

Clocked design is easy to understand

because it ignores data transport delay.

All Universities teach it.

All engineers know it.

Nearly all equipment uses a clock to pace its logic.

Page 8

Chess is an apt metaphor for a clocked system.

because pieces move instantly when they move.

Each move takes zero time.

Between moves the state of the board is stable.

Progress goes forward step by step.

What could be simpler?

Page 9

Let me ask you a question:

Which runs faster -

a Horse (that I would call a Knight)

or a Chariot (that I would call a Rook or a Castle)?

Page 10

Which runs faster is meaningless

because they both move instantly to their next position.

Page 11

The result is that Chess players think only about position.

They think about WHERE but never about WHEN.

Strategy ignores WHEN.

Page 12

Advances make transistors faster and chips bigger.

Now transport delay (that we used to ignore) matters.

That’s good for electronics but hard on designers.

Their simple way of thinking must be replaced.

Page 13

Asynchrony is inevitable

because it conforms to Einstein’s view of Physics.

Space and Time are intimately related.

We got away with ignoring transport delay.

But now we no longer can.

Page 14

I used Chess as a metaphor for clocked design.

Football is an apt metaphor for self-timed design.

It happens over area.

Each player is independent.

Each thinks and runs at his own best pace.

Delay matters: strategy must involve both where and when.

Page 15

Football players run as fast as they can.

How long it takes to get in position matters.

Transport delay matters.

Including transport delay makes strategy harder.

Page 16

The title of my SSIST 2018 talk on Monday was

“STOP THE CLOCK.”

We must stop playing football with chess thinking..

Page 17

Continuing to think chess when playing football is a bad plan.

We can do better, and that’s what we’re here to talk about.

Page 18

Self-timed data transport announces when data arrive.

Self-timed operations say when they are done.

The self-timed paradigm does logic on these “done” signals

to keep actions in sequence.

Page 19

The clocked paradigm encourages us

to look at an entire system

and understand the steps it does.

Each step happens all at once everywhere.

But the world isn’t like that.

Different things happen at different places and different times.

Looked at from the outside, a bee hive is hard to understand.

But the bees don’t think so – each knows what to do.

Page 20

A software subroutine returns more than an answer.

The “return” from a subroutine says that it’s done.

That sort of reporting lets us use logic gates

to keep actions in their proper sequence.

Page 21

THE MOST IMPORTANT THING ABOUT A PARKING SPACE

is whether or not you can park there: Is it FULL or EMPTY?

Ordinary computers don’t know

whether their registers are FULL.

A 32-bit clocked register represents exactly 232 states.

Only a programmer knows if a register holds meaning NOW.

When you start a program

do the values in main memory have meaning?

Or are they left over from an earlier user?

Page 22

The full input Link is colored blue.

The empty output Link is blank, so the Joint can ACT

Doing so fills the output Link and drains the input Link.

Although only one input and one output Link appear,

Joints can serve many Links.

Page 23

Links are mostly wires

with just enough logic

to tell whether a Link is EMPTY or FULL of data.

Joints are mostly logic

with local wires to connect their logic gates.

If you take only one thing from today’s talks

remember that logic and communication
must be equal partners.

Page 24

Marly invented the Link and Joint model.

She published it in ASYNC 2015.

She is going to say a lot more about it.

