
This is part 2 of our ShanghaiTech Lecture on Asynchronous Computing.

We will show how we separate - from the ground up -

communication and storage from computation and flow control,

and how we make them equal partners in asynchronous computing.
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Here are the icons for our building blocks.

The stick-figure in the middle is a computing element.

We call it a joint.

It works on data, but can also do flow control.

The data flow from left to right, in the direction of the arrow.

Data come in from the left, and computed results go out on the right.

The two boxes left and right of the stick-figure 

bring the data to and from the computation.

We call each box a link.

The box on the left carries the input data.

The box on the right carries the output results.

A joint may have zero or more input links 

and zero or more output links.

<CLICK>

A link connects at most two joints, 

one to give data to it 

and the other to take data from it.

Links and joints alternate.

2



The computer scientists in the audience will appreciate that 

this link-joint model can create a sequential finite state machine

<CLICK>

by storing the next internal state in a separate feedback link,

labeled feedback_out

<CLICK>

which is then copied by a separate joint

<CLICK>

onto another feedback link,

labeled feedback_in

to become the internal state input for the next computation step.

The copy operation in the feedback path is necessary 

because a link NEVER reads AND writes data at the same time.

Note:

This will become clear when we explain the protocol for links and joints,

which we do in the next couple of slides.

We can do much more than sequential state machines.

The whole point of links and joints is to do parallel computing

distributed over space and time.
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Here is an example of a simple joint 

that copies data from its input link in to its output link out.

The joint can either do nothing or act.

The joint acts when link in is full and link out is empty.

Like this:

<CLICK>

We use blue for full and white for empty.

Full means that the data stored in the link are valid.

Empty means that the data stored in the link are irrelevant and can be replaced.

When the joint acts it

copies the data, drains link in, and fills link out

like this:

<CLICK>

Link in is now empty

and link out is now full.

By making link in empty and link out full,

the action enables other actions in neighboring joints.

But it disables itself!

It is this self-disabling that makes asynchronous computing self-timed.

It's what makes it "tick" - without a clock.
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I mentioned earlier that we want to compute over space and over time.

By separating communication and storage in links 

and computation and flow control in joints, 

we distribute actions over space - right from the start.

But what about time?

How is time distributed.

Links and joints act when they can.

Each action is local and can take a variable amount of time.

As example:

the computation for this joint starts when in is full and out is empty.

The time taken by the computation is a function of

<CLICK>

(1) the decision time to take this action

and

<CLICK>

(2)  how long it takes the joint to complete this action 

- in this case: how long it takes to copy, fill, and drain.
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For those of you who are into formal methods, 

it may be interesting to know that we use Edsger Dijkstra's guarded commands

to specify what this joint can do.

Our guarded command notation is very similar to what's on this slide.

• The when part is the guard.

• <CLICK>

• The what part is the command.

• <CLICK>

The decision which guarded command to pick is deterministic in this case,

because this joint has exactly one guarded command.

We will discuss non-deterministic joints later.
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What about links?

What's the protocol for links?

Well, as you probably already expect,

a link has TWO guarded commands.

One to fill an empty link, making it full, 

and another one to drain a full  link, making it empty.

When an empty link is filled.

it stores the data that it receives

it stores its new full state information,

and then it transports both to its other end - like this:

<CLICK>

Storing the link's data and full state information

is an atomic action with the filling joint.

The link's contribution to time is its transport delay.
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Likewise:

When a full link is drained.

it stores its new empty state information,

and transports it to the other end, like this:

<CLICK>

Storing the link's empty state information

is an atomic action with the draining joint.

The link's main contribution to time is its transport delay.

8



We can build a First In First Out buffer, or FIFO,

by connecting multiple links and joints in series, 

as in this picture.

This FIFO has three joints: joint1-2-3.

They're instances of the joint you saw a few slides ago.

They copy data from their input link to their output link,

whenever the input link is full and the output link is empty.

As a reminder, the left-side of this slide shows 

the guarded command specification for each joint.

The FIFO has four links: link1-2-3-4.

Given that the links store the data, 

this FIFO can store up to 4 data items.

Initially, this FIFO has no relevant data, because all its links are empty.

Let's fill link1 every time it's empty 

and let's drain link4 every time it's full,

and see what happens.

<CLICK - ANIMATION  STOPS AT ROW 3>

Notice that joint1 and joint3 can now operate in parallel,

because their input links are full and their output links are empty.

As a result, all links will change state in parallel.

<CLICK TO GET ROW 4>

This is no longer a sequential finite state machine.

This is a parallel machine.
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This is the end state of the previous slide.

Note that joint2 can act in parallel with the external fill and drain environment.

As a result, all four links will change state in parallel.
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<STARTS AT ROW1 with empty-full-empty-full>

<CONTINUES AUTOMATICALLY to full-empty-full-empty>

And again - all four links can change state in parallel.

<CLICK to end at ETCETERA>

Note that we're back in the same full-empty state as in the topmost FIFO;

only the data are different.

If we sustain the filling and draining, then 

this FIFO will be operating at a maximum number of data items per cycle.

In other words, this slide gives you a snapshot 

of the FIFO operating at its maximum throughput.

Keep that thought... 

because in the next two slides

we will show how you measure and represent throughput

of an asynchronous self-timed system.
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FIFOs play a big role in on-chip communication.

Here is a link-joint representation of our Weaver chip, 

an 8x8 crossbar, built in 2015 in 40nm CMOS by TSMC.

Rectangles are links. 

Dots are joints.

The yellow area in the NW corner is the crossbar. 

There are 10 ring FIFOs with 40 to 48 links each.

They go around like a folded ribbon.

Eight go through the crossbar where they can pass data to any of the other eight. 

Data circulate clockwise.

A scan interface and re-loaders in the SE corner let us initialize and test the chip.

Ring counters in the NE corner increment each time a data item zips by.

We use these counters to  measure the throughput for each ring in the Weaver.

We measure the throughput by 

checking how many data items are counted per second.



Here are the throughput results.

The horizontal axis shows the number of full links per ring. 

The vertical axis shows the throughput of each ring 

measured in Giga Data Items per second.

The graphs show the throughput for the various rings, for various occupancies.

The throughput is lowest 

when the FIFO is completely full with data or completely empty.

With two full links, the throughput is twice as high as with one full link.

With two empty links the throughput is twice as high as with one empty link.

The throughput is highest when the FIFO is 60% full.

This gives the graphs a tent-like shape.

This is why these graphs are known as "canopy graphs."

A canopy is a tent-like roof structure.

In the Weaver, spaces move faster than data - empty moves faster than full.

This explains why the right-hand slopes of the graphs are steeper 

than the left-hand slopes, and why the highest throughput occurs 

not when 50% of the links are full but when 60% of the links in the ring are full.

I show this slide for two reasons

• One, to show how to measure performance without clocks.

• Two, to emphasize how fast link and joint designs are.

Each ring runs at about 6 GigaDataItems per second

- much faster (~2x) than a globally clocked design.

For 8 crossbar rings with 72 bit-wide data, 

that's 3.5 Terabits per second (Tb/s) for the full crossbar.
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Links and joints have a circuit implementation, 

which behaves exactly as their guarded command specifications.

As example, let's look at the circuit implementation of a basic FIFO stage

that copies data from link in to link out.
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The input link can be implemented as follows.

You can see the interfaces: 

• full, empty, fill, drain, and data

Data go from left to right.

The flipflops at the top store the incoming data.

The two flipflops at the bottom together store the full-or-empty state.

Fill comes in on the left, 

makes an empty link full,

and transports that full state information 

to the other end - on the right.

Drain comes in on the right,

makes a full link empty,

and transports that empty state information 

to the other end - on the left.
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The joint can be implemented as a simple AND gate

for ANDing a full in with an empty out.

If the AND goes high, 

the joint drains link in

and fills link out.

The joint also has combinational logic 

to connect and copy the data from link in to link out.
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The output link can have the same implementation as the input link.

It could also be implemented with a different circuit

that uses a different handshake protocol.

The good news about the link-joint model is that it unifies 

existing asynchronous self-timed circuit families.

You can use whichever family fits best for your application.

If you need speed, use GasP - as we did in the Weaver.

If you want to use standard industry tools, use Click - as we do on this slide.
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You can make any joint you like, 

one that copies data as I showed earlier,

one that adds or sorts,

one that merges data streams, 

or selectively connects data streams,

ANYTHING you like.

BUT:

to keep the connection to circuit implementations with robust interfaces

we have the following design rules:

A joint must

• Use and drain only FULL input links

• This also means that the data it computes on 

must be from full input links

A joint must

• Use and fill only EMPTY output links

It must

• Execute a guarded command as an atomic action

And if more than one guarded command is enabled, it must 

• pick one using arbitration

Ivan will discuss arbitration in the next talk.

A link must also

• Execute a guarded command as an atomic action
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Why do we do this?

We do this because it fits our bigger vision.

The link-joint model with its full-empty protocol is simple enough 

so that computer scientists and electrical engineers can both work with it.

Starting at the link-joint model and above are the algorithms.

<CLICK>

The questions and answers here relate to design exploration

for domain-specific applications.

Starting at the link-joint model and below are the circuit implementations.

<CLICK>

The questions and answers here relate to electrical integrity

and technology mapping.

The questions and answers above and below the link-joint model

are sufficiently different to want to shield 

the peculiar details from each other.

Links and joints make a good shield and a good hardware-software interface.

They're the new RTL (Register Transfer Level) 

for space-and-time distributed computing.

<CLICK>

Many upcoming systems are distributed over space and time.

I mention a few on this slide: 

• neuromorphic computing (see top)

• and DNA-RNA computing (see bottom)

• both of which - by the way - are of a self-timed nature !
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