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clean interface between 
• computer scientists 

• electrical engineers

clean interface between 
• computer scientists 

• electrical engineers

for 
• design

• test
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application
neuromorphic, biological-inspired, etc.

algorithm
abstraction, composition,
design exploration, etc.

circuits
circuit family, layout,

logical effort,  static timing, etc.

hardware
FPGA, flexible electronics, DNA, etc.
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so MANY signals – so LITTLE access

� Like software

� so many lines – so few exports

� use

� interactive code debug

� to set states

� and breakpoints for single-step code, etc.

� Like hardware

� so many wires – so few pins

� use

� scan to share pins to read or write states

� MrGO to control actions

combine the best of both worlds
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Test control (1/3): none
� external signals only
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Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control
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Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 7 of 40

Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control
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Test control (3/3): scan + GO-per-action
� [Roncken et al. 2015]

� local action + state control
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Test control (3/3): scan + GO-per-action
� [Roncken et al. 2015]

� local action + state control
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GO: (individual) local action control
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WHAT to do:
• copy data

• drain in

• fill out

WHEN to act: 

in is full 

and

out is empty

joint

link in link out

emptyfull

joint

link in link out

fullempty

Building  blocks: action reminder
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WHAT to do:
• copy data

• drain in

• fill out

WHEN to act: 

in is full 

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building  blocks: action with GO control

run
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WHAT to do:
• copy data

• drain in

• fill out

WHEN to act: 

in is full 

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building  blocks: action with GO control

run

joint

link in link out

emptyfull

stop + freeze

no action
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Building  blocks: design with GO control

GO

design reminder

joint linklink
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Building  blocks: design with GO control

fillout

emptyout

drainin

fullin

drainout

Dstoredout

fulloutAout

Rout

Ain

Rin
fillin

emptyin

Din DoutDstoredin

copy

design reminder

joint linklink
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Building  blocks: design with GO control

fillout

emptyout

drainin

fullin

DoutDstoredin

design reminder

joint

copy
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Building  blocks: design with GO control

fillout

emptyout

drainin

fullin

DoutDstoredin

joint

• go is high (GO)    : run

• go is low  (       )    : stop and freeze

• arbiter for safe stop : "proper stopper"

• scan chain delivers go signals

Solution MrGO: 
pronounced "Mister GO"

go

MrGO

copy
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MrGO: dedicated action control

out

in

go

icon

• go is high ( GO )    – grant in high to make out low

• go is low  (         )    – keep out high

• arbiter for safe stop – "proper stopper"

• scan chain delivers go signals

6 6
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� Two working silicon experiments: Weaver and Anvil

� use link-joint building blocks with full-empty interfaces
� and MrGO + JTAG-scan for test, debug, characterization
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Get real!
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At-speed test and debug 
using MrGO + scan



6

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 21 of 40

Testing a counter at speed 

INITIALIZE
1. freeze joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

? ? ? ?

joint 1 2 3 4 5

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

? ? ? ?

joint 1 2 3 4 5
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0
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GO GO

Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

0

GO GO

joint 1 2 3 4 5
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

0

GO GO

joint 1 2 3 4 5

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0
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GO GO

joint 1 2 3 4 5

GO

01

Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO
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Testing a counter at speed 

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO
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Testing a burst of data
using MrGO + scan
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Testing a burst of data at speed 

INITIALy"

empty

GO GOGO GO

full
0

takeoff  runway landing runway
under test

FINAL

2

under test

empty

GOGO GO

full

GOGO

fullempty
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Characterization of throughput
using MrGO + scan
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Performance characterization (Weaver)
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Performance characterization

DO (ALL > i > 0 links) 

counter=0 
run 1 second with i full links
arbitrated stop
read counter 

OD y"

FINAL for i ~ 60% links

GO

6G
full

GO GO GO GOGO

joint (N+1)~1 2 3 4 5 6 ... N

emptyfull full
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MrGO-scan: operation rules

� Informal:

� don't scan the system when it's running, except to stop it

� More formal: 

� separate initialization-or-inspection from computation

� stop actions before scanning state that's used by those actions

� when changing go signals first change those getting disabled 

� use three separate scan chains for go, full-empty, and data 
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Summary

� Actions and states are equal partners

� from the bottom up

� MrGO

� controls each action with a clean start and stop 

� separates initialization from computation

� scan 

� reads and writes the states of data, full-empty, go signals

� Interfaces matter

� design them for collaboration and re-use

� MrGO-scan interface

� works for computer scientists and electrical engineers

� unifies interactive debug for code and silicon

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 39 of 40

clean interface between 
• computer scientists 

• electrical engineers

for 
• design

• test
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application
neuromorphic, biological-inspired, etc.

algorithm
abstraction, composition,
design exploration, etc.

circuits
circuit family, layout,

logical effort,  static timing, etc.

hardware
FPGA, flexible electronics, DNA, etc.

GO
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Vision (text)

We want to use this clean and simple interface to enable

computer scientists and electrical engineers to collaborate

and to design and test— jointly—the systems of the future 

whose computations—we believe—will be distributed 

over space and time and will be of a self-timed nature.


