
1

Asynchronous Computing
4. Initialization, Test, and Debug: Action versus State

Marly Roncken and Ivan Sutherland
Asynchronous Research Center (ARC)

Maseeh College of Engineering and Computer Science
Portland State University

July 2018

slide 1 of 40 Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 2 of 40

clean interface between
• computer scientists

• electrical engineers

clean interface between
• computer scientists

• electrical engineers

for
• design

• test

Vision

A
ft

e
r:

 K
e

e
s

va
n

 B
e

rk
e

l.
 H

a
n

d
s
h

a
k
e

 C
ir
c
u

its
,

F
ig

.
1

.1
.

C
a

m
b

ri
d

g
e

 U
n

iv
e

rs
it
y

P
re

s
s
,

1
9

9
3

.

application
neuromorphic, biological-inspired, etc.

algorithm
abstraction, composition,
design exploration, etc.

circuits
circuit family, layout,

logical effort, static timing, etc.

hardware
FPGA, flexible electronics, DNA, etc.

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 3 of 40

so MANY signals – so LITTLE access

� Like software

� so many lines – so few exports

� use

� interactive code debug

� to set states

� and breakpoints for single-step code, etc.

� Like hardware

� so many wires – so few pins

� use

� scan to share pins to read or write states

� MrGO to control actions

combine the best of both worlds

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 4 of 40

Test control (1/3): none
� external signals only

2

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 5 of 40

Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 6 of 40

Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 7 of 40

Test control (2/3): scan
� [Eichelberger-Williams 1977]

� global action + state control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 8 of 40

Test control (3/3): scan + GO-per-action
� [Roncken et al. 2015]

� local action + state control

3

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 9 of 40

Test control (3/3): scan + GO-per-action
� [Roncken et al. 2015]

� local action + state control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 10 of 40

GO: (individual) local action control

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 11 of 40

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

joint

link in link out

emptyfull

joint

link in link out

fullempty

Building blocks: action reminder

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 12 of 40

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building blocks: action with GO control

run

4

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 13 of 40

WHAT to do:
• copy data

• drain in

• fill out

WHEN to act:

in is full

and

out is empty

and

GO
GO

joint

link in link out

emptyfull

GO

joint

link in link out

fullempty

Building blocks: action with GO control

run

joint

link in link out

emptyfull

stop + freeze

no action

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 14 of 40

Building blocks: design with GO control

GO

design reminder

joint linklink

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 15 of 40

Building blocks: design with GO control

fillout

emptyout

drainin

fullin

drainout

Dstoredout

fulloutAout

Rout

Ain

Rin
fillin

emptyin

Din DoutDstoredin

copy

design reminder

joint linklink

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 16 of 40

Building blocks: design with GO control

fillout

emptyout

drainin

fullin

DoutDstoredin

design reminder

joint

copy

5

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 17 of 40

Building blocks: design with GO control

fillout

emptyout

drainin

fullin

DoutDstoredin

joint

• go is high (GO) : run

• go is low () : stop and freeze

• arbiter for safe stop : "proper stopper"

• scan chain delivers go signals

Solution MrGO:
pronounced "Mister GO"

go

MrGO

copy

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 18 of 40

MrGO: dedicated action control

out

in

go

icon

• go is high (GO) – grant in high to make out low

• go is low () – keep out high

• arbiter for safe stop – "proper stopper"

• scan chain delivers go signals

6 6

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 19 of 40

� Two working silicon experiments: Weaver and Anvil

� use link-joint building blocks with full-empty interfaces
� and MrGO + JTAG-scan for test, debug, characterization

iv
a
n

c
h
ris

n
a
v

h
o
o
n

s
w

e
th

a
m

a
rl
y

Get real!

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 20 of 40

At-speed test and debug
using MrGO + scan

6

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 21 of 40

Testing a counter at speed

INITIALIZE
1. freeze joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

? ? ? ?

joint 1 2 3 4 5

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 22 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

? ? ? ?

joint 1 2 3 4 5

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 23 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway"

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 24 of 40

GO GO

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

joint 1 2 3 4 5

full empty
0

7

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 25 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze "runway" entry

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 26 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

0

GO GO

joint 1 2 3 4 5

GO GO

joint 1 2 3 4 5

full empty
0

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 27 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

0

GO GO

joint 1 2 3 4 5

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 28 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

0

GO GO

joint 1 2 3 4 5

GO

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

8

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 29 of 40

GO GO

joint 1 2 3 4 5

GO

01

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 30 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 31 of 40

Testing a counter at speed

INITIALIZE
1. freeze all joints

2. set state

• full-empty links
• counter data

3. unfreeze "runway" (3,4)

RUN
1. unfreeze entry (2)

2. wait for action to finish

EVALUATE
• read counter data

GO GO

joint 1 2 3 4 5

full empty
0

1

GO GO

joint 1 2 3 4 5

GO

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 32 of 40

Testing a burst of data
using MrGO + scan

9

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 33 of 40

Testing a burst of data at speed

INITIALy"

empty

GO GOGO GO

full
0

takeoff runway landing runway
under test

FINAL

2

under test

empty

GOGO GO

full

GOGO

fullempty

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 34 of 40

Characterization of throughput
using MrGO + scan

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 35 of 40

Performance characterization (Weaver)

0

1

2

3

4

5

6

7

0 10 20 30 40 50

G
ig
a
 D
a
ta

 I
te
m
s/
se
co
n
d

Number of Data Items

Throughput vs Occupancy

Ring 0

Ring 1

Ring 2

Ring 3

Ring 4

Ring 5

Ring 6

Ring 7

Ring 8

Ring 9

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 36 of 40

Performance characterization

DO (ALL > i > 0 links)

counter=0
run 1 second with i full links
arbitrated stop
read counter

OD y"

FINAL for i ~ 60% links

GO

6G
full

GO GO GO GOGO

joint (N+1)~1 2 3 4 5 6 ... N

emptyfull full

10

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 37 of 40

MrGO-scan: operation rules

� Informal:

� don't scan the system when it's running, except to stop it

� More formal:

� separate initialization-or-inspection from computation

� stop actions before scanning state that's used by those actions

� when changing go signals first change those getting disabled

� use three separate scan chains for go, full-empty, and data

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 38 of 40

Summary

� Actions and states are equal partners

� from the bottom up

� MrGO

� controls each action with a clean start and stop

� separates initialization from computation

� scan

� reads and writes the states of data, full-empty, go signals

� Interfaces matter

� design them for collaboration and re-use

� MrGO-scan interface

� works for computer scientists and electrical engineers

� unifies interactive debug for code and silicon

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 39 of 40

clean interface between
• computer scientists

• electrical engineers

for
• design

• test

Vision (picture)

A
ft

e
r:

 K
e

e
s

va
n

 B
e

rk
e

l.
 H

a
n

d
s
h

a
k
e

 C
ir
c
u

its
,

F
ig

.
1

.1
.

C
a

m
b

ri
d

g
e

 U
n

iv
e

rs
it
y

P
re

s
s
,

1
9

9
3

.

application
neuromorphic, biological-inspired, etc.

algorithm
abstraction, composition,
design exploration, etc.

circuits
circuit family, layout,

logical effort, static timing, etc.

hardware
FPGA, flexible electronics, DNA, etc.

GO

Asynchronous Computing — 4. Initialization, Test, and Debug: Action versus State slide 40 of 40

Vision (text)

We want to use this clean and simple interface to enable

computer scientists and electrical engineers to collaborate

and to design and test— jointly—the systems of the future

whose computations—we believe—will be distributed

over space and time and will be of a self-timed nature.

