
This is part 4 of our ShanghaiTech Lecture on Asynchronous Computing.

We will show how we separate - from the ground up - action from state,

and how both are equally important

to initialize, test, and debug asynchronous systems.
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This is a reminder of our bigger vision.

The link-joint model provides a clean interface

between computer scientists and electrical engineers

so they can communicate 

without overloading each other with unnecessary details.

The goal of this talk is to extend that interface 

<CLICK>

so it covers not only design 

but also initialization, test, and debug.
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The top picture shows a link-joint view of our Weaver chip.

The bottom picture shows the packaged chip on its test board.

The key problem with test and debug of software and hardware

is that there are so many signals to test but test access is limited.

Software code has many lines but few exports.

To debug their code,  

programmers use interactive code debuggers

to set states 

and to set breakpoints to single-step through the code,

or to execute big chunks of code until the next breakpoint,

where they check what happened to the relevant states.

A hardware chip, like the Weaver, has many wires but few external pins.

To debug their chip,

IC designers use a scan test interface

to set states through a limited number of pins

so they can read and write states

while they single-step through the chip operations.

We have added a separate control mechanism, called MrGO,

to start and stop individual actions.

<CLICK>

The combination of scan and MrGO

forms the basis of a very powerful code and silicon debugger, 

which combines the best of both worlds.

It can be used in design as well as in test.
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At the bottom of this slide you see

what a circuit looks like from the point of view of testing,

when there's no test control built into the circuit.

A tester knows there's data and there are links,

and that a data bit has a binary value of type 0 or 1,

and that a link has a binary value of type full or empty.

BUT...

the tester can see only external data and links;

it cannot see internal data and links.

For most circuits, most of the green area you see is internal to the chip.

The tester can control and observe the green area only INDIRECTLY... 

by running the circuit as is.

That is a big problem, and one that's not new to modern chip designs.

It was already a big problem in 1977,  when at IBM,

Edward Eichelberger and Thomas Williams presented a test control

solution that became a standard in the test world.

[next slide]
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Today it's know as scantest or simply scan.

Scan refers to special test circuitry to control the state of a circuit, globally.

It comes with a special mode, to turn the circuit action on and off,

while the tester reads or writes data bits and links in the circuit.

In the test world, that special mode is often called a test mode.

In this presentation, I call it a GO signal.

The traditional scan test approach comes with one GO signal.

* When it's high, or enabled, it allows the circuit to act as usual.

* When it's low, or disabled, it stops all circuit action.

On this page, you see the new 3D vision of the tester.

This is what the tester sees of a circuit with scan.

The difference in what the tester sees with scan and without it is enormous.

Look at what the tester could see before

[BACK one SLIDE] 

and look at what it sees now

[FORWARD to this slide]

Scan is an eye opener.

Where the tester was blind before, now it can see any internal signal it wants.

* It can read, and write any single data bit, counters, guards - you name it.

The data bits are shown here on the left axis in this 3D test space.

* It can read and write any link.

The links are lined up here on the right axis.

* And it can enable or disable the global circuit action,

through the one and only GO control bit here on the vertical axis.

5



The red line indicates what a tester can control

in a globally clocked synchronous circuit - with scan.

It can read and write anything on this red line.

But it might not want to do that.

To save area or power, 

it might want to control only the most important data.

For instance, the counters and the guards, 

and perhaps one data item to load and unload data 

for indirect control to the remaining data. 

If only part of the data are scanned, it's called a partial scan test.

If all data are scanned, it's called a full scan test.

Note that the red line ignores the links 

- no links are scanned for reading or writing.

This is because clocked systems don't use links.

Links with their full-empty communication interfaces 

are unique to self-timed design.
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In 2008, the VLSI group at Sun Microsystems Laboratories, 

led by Ivan, made Infinity.

Infinity is a self-timed chip design that uses scan.

It lives here in this 3D test space.

*   It scans every link,

*   all the counters (for throughput analysis), 

*   and it can load and unload one data item

- to set data items beyond its control

- using the normal self-timed operation of the circuit.

This scan design was sufficient to test and debug Infinity.
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To see what we're still missing requires that we recognize 

that a self-timed system isn't about global action.

The actions of a self-timed system are self-generated 

and widely distributed in both space and time.

It's both these properties , self-generation AND distribution,

that traditional scan test and clocked design fail to support.

* Self-generation cannot be mimicked by the rigid ticks of a global clock.

The ticks of a self-timed circuit vary and adapt.

Only by embracing their variety and adaptivity

can we support at-speed test and debug

of self-timed circuits and systems.

This implies that we control each and every action, individually.

Instead of global control, we make the control local.

For distributed actions, local control makes good sense too.

So, instead of one GO control for all, 

we take two, or three, or a few ...or all.

"All GO control" here at the top of the vertical axis

indicates that there is an individual GO control signal for 

each and every local action.

The idea is that by locally enabling or disabling actions, we can carve out 

test paths, test tunnels, and various test areas for self-timed actions.

This supports initialization, parallel testing,

and single-step, multi-step test, and at-speed test and debug.
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Our latest chip, the Weaver, lives <HERE>:

it scans all GO control signals,

it scans every full-empty state,

it scans the counters,

and it can load and unload one Data item.

The test examples later in this talk come from the Weaver.
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So, how do we GO there?

10



The first step is to recognize self-timed actions.

Here is a reminder of what a self-timed action looks like.

When link in is full (blue) AND link out is empty (white)

copy the data

drain in

and fill out.

NOTE:

We target computation and flow control actions.

These are in the joints.

The actions in a link are partly shared with the neighboring joint

- e.g. store data and full is shared with the filling joint,

- e.g. store empty is shared with the draining link,

and partly a (link) transport delay away 

from becoming shared with the joint on the other end,

when the other end selects a guard 

with the resulting transported change in full-empty,

and acts upon it.

From a semantics point of view: joints act, links transport.

We need to fine-tune our terminology to better reflect this.
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To control this action 

we add a GO control signal to the and-function in the when part of the action.

We leave the what part as is.

Now:

When link in is full (blue) AND link out is empty (white) AND GO is enabled

copy the data

drain in

and fill out.

When GO is enabled, the action runs as before.
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But when GO is dis-abled

the action stops and freezes.
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Where do we add this GO control?

Well ... the and-function is located in the joint

so the joint gets the GO control.

Here is a reminder of what a joint looks like

<CLICK to NEXT SLIDE>
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This is one of the FIFO circuits from my earlier talk 

about links and joints.

It has a joint and two Click links.

Because the GO control is in the joint, and not in the links,

we can ignore the links here.

Let's ignore the links.

[next slide]
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So what do we have now?

We have an AND gate 

plus some combinational logic in the datapath

to copy the data from in to out.

And that's it... for the FIFO.
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We are now ready to add GO control.

We add GO control by adding a GO control signal after the AND gate,

and we call that signal go.

The go signal comes with its own arbiter - the green box.

so we can safely stop self-timed actions in full flight.

The green box is called "Mister GO" (MrGO).

Do you remember Ivan's talk about arbitration (part 3)?

MrGO arbitrates between a low GO signal, to stop the action,

and a high input signal coming from the AND gate, to continue the action.

The arbiter either stops the action, if the low go signal wins,

or it continues the action if the high AND signal wins.

If the action continues because the high AND signal won the race, 

then the output of MrGO will go low 

and its inversion used here will go high

and the joint will drain in and fill out... and then it will self-reset.

As soon as it self-resets, the AND gate will go low, 

and the go signal will grab the arbiter and stop the next action.

MrGO is a non-blocking arbiter that's fair to the loser.

To summarize: The green box is called "Mister GO" (MrGO).

<CLICK>

When go is high 

MrGO unfreezes the joint action, and allows it to run as usual.

When go is low

MrGO acts like a proper stopper and will stop and freeze the joint action safely.

We use the scan chain to deliver the individual go signals.
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This is a transistor level implementation of MrGO.

Do you recognize the arbiter circuit from Ivan's talk about arbiters?

MrGO arbitrates between 

a high in signal to make out low 

and a low GO signal to keep out high.
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We have two working silicon experiments, called Weaver and Anvil.

Both use links and joints with full-empty interfaces

and MrGO with an industry-standard JTAG scan interface for test, debug, and 

characterization.

<CLICK for "MrGO approved" STAMP>

Both the Weaver and Anvil have passed all tests 

that we, our students, and our visitors have thrown at them.
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The proof of the pudding is in the eating.

So, let's do a test.
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Here is a FIFO with 5 joints.

Joint  number 3 has a cowboy hat - that's a counter.

We will test the counter at speed.

We can do this in three steps, called

Initialize, run, and evaluate.

NOTE: 

for proper alignment, the text has been hidden by making it white,

and uncovered in the next few slides by making it black.
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To initialize the system, we first freeze all the joints.

We do this by making all the go signals low

as indicated by the red stop signs.

We use a scan chain to initialize the go signals.

This will stop every action in the FIFO.
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Next, we set the state.

To run one DATA item through this FIFO,

we make the first link full 

and the other links empty.

We also set the counter.

In this case, we choose to make the counter zero.

Again, we use a scan chain to initialize the links and the counter.
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Then we open the landing runway by unfreezing joints 3 and 4.

We use a scan chain to set these two GO signals.
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And that's our initial state.

Note that we kept the first and last joints frozen.

This confines the test setup.

Other test inputs cannot get in, 

and our test results cannot escape.
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The test is now ready for take-off.

We permit it to take off by making the go  signal of joint number 2 high.

That's the go signal at the hand-cursor.

We call joint 2 "the gate keeper".

We use the scan chain to enable this GO signal.

As soon as the go signal  at the hand-cursor is high,

the data in the blue (full) link will make three moves, going left to right,

and increase the counter value by 1.

This will all happen at speed,

without any interaction from me.

At speed in this presentation is 1 second per move.

It will take 3 seconds for the blue data to move from left to right.

In the Weaver, which is 40nm CMOS,  each move is ONLY 100 picoseconds.

So the blue data will zip through in 300 picoseconds.

Here we GO!
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<SELF-TIMED>
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<SELF-TIMED>
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<SELF-TIMED>
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<SELF-TIMED>

30



After 300 picoseconds, we scan the counter data out 

to validate that it's now 1.

AND SO IT IS !!!
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We can easily extend the previous test

to test a burst of data items

at speed 

through the counter.
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At the top-left, we set up a take-off runway 

with as many full links with data items as we want in the burst.

At the top-right, we set up a landing runway

with as many empty links as are needed 

to store the results generated in this test.

As before, we kept the first and last joints in each runway frozen.

to confine the test setup, 

so other test inputs cannot get in,

and our test results cannot escape.

Then we unfreeze the gate keeper, 

which is the joint with the handcursor.

We let the circuit run its course,

and then scan out the data captured by the landing runway.
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Remember the canopy graphs that we use to characterize throughput?
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Here is a reminder.

These are the canopy graphs measured from the Weaver chip.

We've seen them earlier in my talk about link and joint building blocks.

The graphs show the throughput for the various ring-FIFOs in the Weaver.

The horizontal axis shows the number of full links in the ring.

The vertical axis shows the throughput measured as the number of GigaDataItems

per second counted by each ring counter.



This is how we measure the throughput for those canopy graph:

• We initialize the ring counter to zero.

• We make i links full and the other links empty.

• We run the system by enabling the go signal of the gate-keeper.

The gatekeeper is the joint at the yellow handcursor. 

• After 1 second we disable that go signal.

• Then we read out the counter value.

The link-joint picture on the bottom of the slide 

shows that with 60% of the links full

the ring counter counts 6 Giga Data Items in a single second.

Let's go back to the canopy graph

<GO BACK TO PREVIOUS SLIDE>

See: the canopy graphs of the eight rings that go through the crossbar

show a throughput of 6 Giga Data Items per second when the ring is 60% full,

that is when 28-29 of the links are full.

<FORWARD TO THIS SLIDE>

NOTE: 

no boundary joints here - only a gatekeeper,

because the experiment is already contained by the ring.
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There are a few rules to make MrGO and scan work together.

The crux is to avoid interference between test and circuit operations.

Informally, this boils down to:

• Don't scan the system when it's running, except to stop it.

More formally, it's a good idea to

(1) Stop the actions in a joint before scanning state in or out of links 

that are used by those actions.

(2) First change go signals that are being disabled 

before you enable go signals.

(3) Use three separate scan chains for go, full-empty, and data. 
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I'd like to end by reminding everyone of our vision.

The link-joint model 

with its full-empty protocol 

and with its local action-state control 

provides a clean and simple interface

for hardware-software co-design-and-test.

We want to use this clean and simple interface to enable

computer scientists and electrical engineers to collaborate 

and to design and test - jointly - the systems of the future 

whose computations - we believe - will be distributed 

over space and time and will be of a self-timed nature.
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