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Abstract—This paper describes an investigation of potential
advantages and pitfalls of applying an asynchronous design
methodology to an advanced microprocessor architecture. A pro-
totype complex instruction set length decoding and steering unit
was implemented using self-timed circuits. [The Revolving Asyn-
chronous Pentium® Processor Instruction Decoder (RAPPID)
design implemented the complete Pentium II® 32-bit MMX
instruction set.] The prototype chip was fabricated on a 0.25-
CMOS process and tested successfully. Results show significant
advantages—in particular, performance of 2.5–4.5 instructions
per nanosecond—with manageable risks using this design tech-
nology. The prototype achieves three times the throughput and
half the latency, dissipating only half the power and requiring
about the same area as the fastest commercial 400-MHz clocked
circuit fabricated on the same process.

Index Terms—Asynchronous debugging, asynchronous design,
asynchronous testability, domino circuits, handshake protocols, in-
struction length decoding, pulsed logic, relative timing, self-reset
logic, self-timed.

I. INTRODUCTION

T HE OBJECTIVE of this research was to demonstrate the
ability to design high-speed asynchronous circuits [1]

as a potential solution for microprocessor design if and when
clocked design becomes too expensive.

We have designed an asynchronous version of the instruction
length decoder of a commercial 400-MHz clocked processor
[2]. For fair comparison, the prototype was implemented on the
same 0.25- six-metal-layer CMOS process as the commercial
processor. The asynchronous implementation achieved a higher
performance at lower power.

The microarchitecture and circuits of the two designs,
while achieving the same functionality, were substantially
different. The asynchronous architecture exploits multiple
interrelated data-dependent frequency domains and pipelining
techniques that match a particular problem and data, rather
than a chip-wide constraint. For example, the prototype circuit
combines three domains operating at average rates of 3.6 GHz,
900 MHz, and 700 MHz.
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Fig. 1. Instruction set statistics. Bar graphs show relative dynamic frequencies.
Line graphs indicate cumulative frequencies. (a) Instruction length statistics. (b)
Opcode type statistics.

Our asynchronous circuit design employs a novel method-
ology which adds static timing information to handshaking [3].
This enables smaller, more testable, faster, and lower power cir-
cuits. However, it introduces a potential problem of increased
failure rate if timing margins are tight. This difficulty can be
addressed in the future with better design and verification tools
[4]. The asynchronous prototype design uses static and domino
gates from a standard synchronous library, with a few custom
circuits, such as -elements [5].

The design was motivated by the observation that instruction
length decoding could pose a bottleneck in variable length in-
struction set architectures. As reported in [6], our analysis of the
variable length instruction set revealed two principal findings
(Fig. 1). First, the average instruction length is about three bytes,
and instructions longer than seven bytes are rare. Second, very
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Fig. 2. Microarchitecture.

few instruction types are used frequently. The asynchronous de-
sign exploits these findings.

In the rest of this paper, we present the microarchitecture and
circuits, explain the circuit design methodology, and compare
the prototype to a contemporary clocked commercial circuit.

II. M ICROARCHITECTURE ANDBASIC OPERATION

The decoding and steering unit (DU) receives 16-byte-wide
instruction cache lines at its input, extracts the instructions, and
places each instruction separately into output buffers. The core
comprises three stages—abyte unit(BU), a tag unit (TU), and
an instructionsteering switch(SS), as shown in Fig. 2. The BU
receives a 16-byte cache line and speculatively decodes 16 in-
struction lengths in parallel, assuming that each byte starts a new
instruction. The TU in the first byte of an instruction passes a
“tag” downstream to the first byte of the next instruction. The
SS routes instructions on four separate 62-bit crossbar chan-
nels to the output. The TUs are replicated with the four steering
switches. This distributed tagging and switching circuit with 16
columns and four rows is connected in a torus that packs the
bytes into instructions and steers them into four output buffers.
These dimensions are designed to balance the average compu-
tation rates.

A. Input FIFO

The input FIFO (IF) holds 32 16-byte wide instruction cache
lines. The FIFO is an instruction delivery mechanism designed
to operate faster than the DU. Unbiased maximum DU perfor-
mance can be measured by keeping instruction delivery off the
critical path.

The asynchronous FIFO is designed to mimic the micropro-
cessor instruction delivery mechanism and to aid in evaluating
the DU. Each instruction byte in the FIFO contains three addi-
tional bits derived from the branch target buffer (BTB) infor-
mation. One bit each indicates whether this byte is used (),

whether it is the first byte of a predicted taken branch instruc-
tion ( ), and whether it is a branch target (). If a cache line
contains a predicted taken branch, thebit will be set and the
bytes following the end of the branch instruction up to the end
of the cache line are marked as unused; therefore theirbits
are cleared. The bits are also cleared from the beginning of
the next cache line up to the byte containing the branch target
byte with bit set. A target bit will be set in the first cache
line following reset.

Data in the Input FIFO can be recirculated so that a contin-
uous, but repetitive, stream of cache lines can be supplied to the
core. The continuous operation is essential for performance and
power measurements. A second repetitive mode exists where
the cache line at the head of the FIFO is repetitively presented
to the DU.

The FIFO is loaded serially through a scan register. Once the
FIFO is filled, the decoder reads lines from the FIFO. Every byte
in the IF is controlled separately, so the IF effectively consists
of sixteen separate 11-bit-wide parallel FIFOs. This structure
allows the individual bytes to be transferred to the DU when
needed, without having to wait for the DU to accept the next
line in full. The IF is implemented as a Sutherland Micropipeline
where the design of each stage is shown in Figs. 3 and 4.

B. Length Decoding and Steering Unit

The core of the asynchronous circuit is the length decoding
and steering unit. The DU consists of 16 identical blocks, or
columns, one for each input byte, and four output buffers. Each
column consists of a BU, comprising the byte latch, byte con-
trol, and length decoder, and four identical tag units and steering
switches. The length decoder implementation is optimized for
common instructions, such that length decoding for common
opcodes is faster than for rare ones [6]. The TUs and SSs are ar-
ranged in 16 columns and four rows, wrapped around in a torus.
The horizontal toroidal wrap ensures that instructions from dif-
ferent cache lines are correctly packed into the output buffers.
Each SS in the four rows is connected to an output buffer. Each
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Fig. 3. One cell of the FIFO implementation. The two gates on the left are
C-elements, and on the right are multiplexors. The design of these gates are
shown in Fig. 4.

Fig. 4. C-element and multiplexor circuits in the FIFO. The output of the
C-element raises when both inputs raise, and lowers when both inputs lower.
This is a dynamic implementation that requires a week keeper.

line is implemented as a distributed self-resetting pulsed domino
NORgate driven and enabled by the data location in each column
and row.

Each column receives a byte from its line of the instruction
cache at the head of the IF, latches it in the byte latch, and per-
forms a speculative length decoding assuming that an instruc-
tion starts at that byte. Each TU waits for the following three
events to occur (see Fig. 9):

1) TagIn : A tag arrives from one of the neighboring
columns upstream, indicating that this is the first byte of
an instruction.

2) InstRdy : Length calculation for the column is com-
pleted and the instruction is ready, meaning that all the
instruction bytes are ready in their byte latches.

3) SSRdy: The SS of the row is ready to issue a new instruc-
tion.

If all three of these events occur, which may happen in any
order, the TU performs the following three operations in par-
allel:

1) sends a tag to the TU in the column of the next instruc-
tion’s first byte in the next row;

2) transfers the instruction bytes, along with additional in-
formation on the length and prefixes, to its row’s SS,
which in turn forwards them to the output buffer;

Fig. 5. Computation cycles and execution rates.

3) notifies the BUs in its column that the instruction data has
been transferred from the byte latch to the SS.

That is, once the (speculative) length calculation has been
completed at the column receiving the tag and the SS in the
row of the receiving TU is ready (InstRdy andSSRdy have
been asserted), the next tagged TU can immediately perform the
above three operations.

When a BU is notified by one of its four TUs that the instruc-
tion has been transferred to the SS (operation 3 above), it opens
its byte latch, which permits decoding of the next instruction
to begin if it is available. The BU also notifies the other BUs
containing the remaining bytes of this instruction that they may
open their byte latches. In this way, the length decoding (which
is a long latency operation) of bytes from the next cache line
starts as soon as the bytes from the previous line have been con-
sumed.

1) Balanced Design:The columns and rows are arranged
in a torus. Hence each row is a ring around that torus. As the
tag wraps around the torus and crosses from column 15 back
to column 0, it falls to the next row. TUs in the fourth row
send the tag to the first row. The operation would be balanced if
the tagged column had decoded the length of the instruction by
the time the tag arrives. Similarly, the corresponding SS would
have had to complete the transfer of the previous instruction be-
fore the tag arrives. Thus, in a perfectly balanced situation, the
TagIn , InstRdy , andSSRdy events would occur simulta-
neously. Unfortunately, this is not always the case because the
latency of length decoding depends on the opcode, and special
case handling of branches, long instructions, and prefixes incurs
a longer latency.

The following example demonstrates the path of the tag
through the TUs, assuming a sequence of 3-byte-long instruc-
tions, as shown by the arrows in Fig. 2: Column 0 row 0
column 3 row 1 column 6 row 2 column 9 row 3
column 12 row 0 column 15 row 1 column 2 row 2 .

Operation of the asynchronous circuit consists of independent
self-timed cycles. The major cycles are (see Fig. 5):

1) The length decoding and instruction ready cycle. This
cycle accepts a byte from the IF, decodes the instruction
length (as all necessary bytes become available), and gen-
erates the Instruction Ready flag (based on the calculated
length and the Byte Ready bits from the byte latches of
the remaining bytes in the instruction).
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Fig. 6. Average delay optimization for the common case. Inputs labeled by
probability. Circuit (b) speeds up the average delay by optimizing the common
input signal at the expense of the less common signals.

2) The steering logic cycle. This cycle aligns instruction
bytes from the byte latches and forward them to the
output buffer over the SS.

3) Tag cycle. This cycles forward the tag to the start of the
next instruction, and synchronizes the above two cycles.

Each cycle has its characteristic cycle time that can be inde-
pendently optimized based on performance targets. The length
decoding cycle is optimized for common instructions [6]. The
tag cycle is optimized for common lengths, as discussed below.
The steering logic cycle is matched to the throughput and la-
tency of the output buffers. We can compose these cycles, using
asynchronous protocols, in a scalable fashion to achieve the
target system performance. This architecture is scalable in both
the horizontal (length decoding cycle) and vertical (steering
logic cycle) dimensions. We can increase the performance
through additional parallelism (and area) by adding rows and
columns to achieve the target performance.

Each cycle is balanced if its function can be completed just
before its results are required. The cycle times are determined
by the scale and wrap factors. Assuming an average instruc-
tion length of three, each 16-byte cache line holds about five
instructions. Therefore the length decoding and tag cycles are
balanced if theTagIn to TagOut latency is one-fifth of the
decoding latency. The SS latency is four times the tag cycle la-
tency, hence the TU and SS rows are scaled to four instances
to keep the steering logic cycle balanced relative to the other
two. TheTagIn to TagOut latency is the critical path and re-
ceive the primary focus in the design; the other two cycles were
scaled to match the average tag cycle time. Balancing pipelines
with significant variation in response time, as is the case with
this design, can be difficult [7]. We have recently developed a
stochastic performance analysis tool that can help further opti-
mize the design by considering synchronization point locations
and delay distributions [8].

These three intertwined cycles demonstrate one advantage of
the asynchronous solution. The tag cycle operates at an average
rate of 3.6 GIPS (close to 4.5 GIPS in some of the tests, as re-
ported below), consuming on average 720 million cache lines
per second. Lines with fewer than five instructions (average
length greater than three bytes) are consumed faster, whereas
lines with more than five (shorter) instructions are consumed
slower. The tag cycle, being the central point of gathering and
distributing instructions, is the performance-critical component
in this architecture. The steering logic cycles are shielded from
variations in the length decoding cycle by the tag cycle.

The length decoder is optimized for common opcodes. Our
benchmark analysis indicates that 15% of the opcode types are
used 90% of the time (see Fig. 1). Asynchronous circuits can be
optimized for the common case as shown in Fig. 6. The length

Fig. 7. Part of the logic decoding the length-one one-hot signal. Note that
signalsl1-4 and l1-5 are faster than the other terms. The logic cones for
l1-2 and l1-3 are not shown for clarity. Gates with inputs on the top are
footed domino gates, this input being the “clock” or reset signal.

decoding for common opcodes is done using domino logic; fur-
thermore, the decoding of the most common opcodes is pushed
closer to the outputs [6] as shown in Fig. 7. Rare opcodes are
decoded using aNOR–NOR programmable logic array (PLA).
Fig. 7 shows optimization for the common case. Notice how the
common signalsl1-4 and l1-5 skip directly to the front of
the one-hot decoder.

2) Handling Long Instructions:The decoding and steering
unit is optimized for instructions up to seven bytes long,
which constitute 99.8% of the cases. Longer instructions (up to
11 bytes) are handled through a separate, slower protocol. Thus,
each TU can directly tag the seven TUs in seven neighboring
columns downstream in the next row down, and be tagged
by any of the seven TUs in the seven neighboring columns
upstream in the previous row up. The tags are sent via dedicated
point-to-point lines. There are seven tag lines at the input and
output of each TU.

Instructions longer than seven bytes are transferred to two
steering switches and output buffers in two consecutive rows.
The first four bytes (head) of the instruction are transferred to
the SS in the row containing the tagged TU for the instruction’s
first byte, and the remaining bytes (tail) are transferred to the SS
in the next row down.

If the calculated length is greater than seven, the BU waits
for a tag to arrive. If this column is tagged, the BU signals the
column containing the fifth byte of the instruction that it holds
the first byte of the instruction’s tail. The length of the instruc-
tion is also passed to the fifth column through three dedicated
lines. The fifth byte’s BU modifies its length to 4, 5, 6, or 7 (for
total instruction length of 8, 9, 10, or 11, respectively) and sends
an acknowledgment to the first byte’s column. Upon receiving
this acknowledgment, the first byte’s column modifies its length
decoder’s output to four. The tagged TU in that column then op-
erates as if the instruction length were four. The first four bytes
of the instruction are transferred to the SS (together with an in-
dication that it is the head of a long instruction), and the tag is
sent to the TU in the fifth byte’s column, in the next row down.
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Fig. 8. Branch control circuitry, labeled for row 0 column 0. Interaction with
the TU circuit shown.

The fifth byte’s column operates as if it were the first byte of a
short instruction. It transfers the tail to the SS in the tagged TU’s
row, and sends the tag to the first byte of the next instruction.

Instruction prefix bytes, including length-modifying prefixes,
are handled in a similar manner.

3) Handling Branch Instructions:When a cache line con-
tains a predicted taken branch instruction, the tag should be
routed from the TU of the branch instruction’s first byte to the
TU of the branch target’s first byte. The target always resides
in the next cache line (since the fetch unit is designed to fetch
the target cache line of predicted taken branches), so the bytes
in between the branch and the target instruction are skipped.

The first bytes of the branch and target instructions are
marked in the Input FIFO with and bits, respectively, and
the unused bytes in between the branch and target instructions
have their used () bits reset. The and bits from the
byte latch are routed to all four TUs in that column. When a
branch instruction is tagged, the corresponding TU foregoes
forwarding the tag to the first byte following its length since
that byte may not be the start of the target instruction. Instead,
BranchTagIn is sent to the next row that asserts theinject
signal as shown in Fig. 8. Each row has a localinject signal
that is routed to all TU’s in that row. The column’s bit will
assert theBranchTarget signal. When a row’sinject
signal and a column’s bit are both asserted, the branch
tag is generated for that TU and the row’sinject signal is
de-asserted. This mechanism forward the tag from the branch
to the target instruction without tagging intermediate bytes.
From that point onward, the operation continues normally.

Logic decoding the , , and bits is not implemented in
the prototype. They are supplied pre-decoded in the IF.

III. D ECODERCIRCUITS

We briefly describe two principal circuits in the prototype.
The TU circuit demonstrates the use of pulse logic and reduced

Fig. 9. TU circuit (simplified for clarity). Branch control circuitry shown in
Fig. 8.

handshake, whereas the byte control circuit provides some in-
sight into the complexity of the design.

A. Tag Unit Circuit

The TU is responsible for transferring the tag from the
column containing the first byte of an instruction to the column
containing the first byte of the next instruction. There are seven
TagIn inputs to each TU, and sevenTagOut outputs (Fig. 9).
Additionally, specialTagIn and TagOut lines are used for
branch handling.

Transferring the tag to the next TU involves a full request–ac-
knowledge handshake cycle if a speed-independent protocol
were used [9]. That would require aTagOutAck acknowledge
signal for each of the sevenTagOut outputs. Such a structure
will significantly complicate and slow down the TU logic and
wiring. In order to simplify the implementation, theTagOut
signals are implemented as self-timedpulses, eliminating
the need for acknowledgment signals. However, the pulsed
implementation is correct only under the following timing
assumptions [10], [3]:

1) When a TU sends the tag pulse to the next TU, the re-
ceiving TU is ready to accept it, i.e., the self-resetting
signalTagArrived (Fig. 9) is off;

2) theTagOut pulse is wide enough to cause a state tran-
sition in the receiving TU, i.e., theTagArrived signal
becoming asserted;

3) the TagOut pulse is narrow enough so that it is
de-asserted before theTagArrived indication in the
receiving TU is de-asserted.

The first assumption is satisfied by the microarchitecture.
When a TU sends the tag downstream, it resets its internal
TagArrived line. The next time this TU can receive a tag
is after the tag has wrapped around the torus horizontally
and vertically. The tag must make at least four hops (over the
four rows) before returning to the same TU. This delay can
be guaranteed to be longer than the time it takes to reset the
TagArrived line.

The second and third assumptions are satisfied by careful
circuit design. TheTagOut outputs are generated from the
TagArrived signal, which is in turn generated by a self-re-
setting circuit.

This timed circuit was “hand-designed” with the relative
timing methodology [3] and time-verified with ATACS [11].
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Fig. 10. Byte unit block diagram.

Current advances in synthesis allow us to automatically synthe-
size this circuit [12]. The circuits implementing the handshake
interfaces between the TU, the byte control and the SS were
also optimized using similar timed circuits and Relative Timing
methodology.

B. Byte Unit Circuit

The BU is shown in Fig. 10. Each byte latch is a simple
transparent latch. Length decoding may require, for some in-
structions, bits from the following three bytes. In addition, if a
length-modifying prefix byte precedes the instruction, or if the
byte is part of a long instruction, additional control bits from up-
stream are required. The length decoder produces seven one-hot
encoded length bits. The decoder is implemented as a multistage
unfooted domino PLA [6].

The byte control (BC) finite state machine (FSM) acknowl-
edges the IF as soon as an incoming byte is latched. If the byte
is marked unused (theU bit is set), the BC issues a pulse on
the ByteRdy line. Otherwise, it closes the latch and initiates
length decoding (by asserting theLatch/Decode signal), and
asserts (nonpulsed)ByteRdy . The instruction ready control
(IR) waits for both the locally decoded length and theByteRdy
signal from neighboring columns downstream (for length

), before generatingInstRdy for the TU. The BC circuit is
shown in Fig. 11. Many FSMs such as the byte control were
designed using the 3-D synthesis tool [13], [14] and optimized
using the relative timing methodology [3]. The actual circuits
employ some pulsed signaling (TagAck is pulsed) and partial
handshakes.

Fig. 11. Byte control FSM.Req andAck signals interface the FIFO to the
BU.

Once a tag arrives at the column (TagArrived in Fig. 9
is set), the length decoder is notified (this signal is needed for
handling prefixed and long instructions). Furthermore, once the
tag is sent out (one of theTagOut signals in Fig. 9 is set),
implying also that all bytes of the present instruction have been
steered out through the SS, the AckGen FSM (AG) instructs IR
and BC to get the next byte. IR then sends the corresponding



STEVENSet al.: ASYNCHRONOUS INSTRUCTION LENGTH DECODER 223

Fig. 12. Circuit layout plot (3.1� 3.5 mm).

Preempt signals (acknowledgingByteRdy ) downstream to the
remaining bytes of the instruction so that the length decoders for
these columns can abort and reset upon receiving thePreempt
signals.

At the (nonfirst-byte) columns that do not receive the tag, the
LDs may output the length and the IRs may generateInstRdy .
However, as soon asPreempt is receivedInstRdy is lowered
before a tag can arrive at this byte column. The length decoders
will be reset and a new length calculated beforeInstRdy is
re-asserted and a new length is generated.

IV. PROTOTYPETEST RESULTS AND COMPARISONS

The prototype was fabricated in May 1998 using a 0.25-m
six-metal-layer flip-chip technology. The layout plot is shown
in Fig. 12, and only shows the first three layers of metallization
so that the circuit structure can be more easily seen. The proto-
type was tested successfully, and the results are explained and
analyzed below.

A. Performance

Decoding and steering performance of the test chip was mea-
sured at 2.5–4.5 instructions per nanosecond for average in-
struction streams. This is approximately three times the peak
performance of the fastest synchronous three-issue product in
the same fabrication process clocked at 400 MHz, achieving a
peak decoding and steering performance of 1.2 instructions per
nanosecond. The asynchronous decoder’s performance is very
data-dependent, and these results are valid for an average in-
struction stream containing common instructions of up to seven
bytes long. The asynchronous design is not optimized for un-
common instructions, and the effects of rare, long, branch, and
prefixed instructions on performance are not reported. Note that
the steering logic issues four instruction streams rather than
three, so the comparison is not completely fair.

Performance of the test chip is reported at nominal
(1.8 V) and temperature (27C). The prototype was measured

at varying levels of for a subset of the instructions, and was
determined to be operational in the range 1.0–2.0 V. The test
chips were not tested above 2.0 V. Note that a synchronous
processor operating at a fixed clock frequency can tolerate a
very narrow range of environmental conditions (e.g., 1.9–2.1 V
for the 400-MHz processor [2]). A certain margin is required
to ensure that the clocked circuit operates across the specified
range. However, no margins need be introduced into the asyn-
chronous design since the circuits are not constrained to operate
at a certain frequency. Rather, under unfavorable conditions,
such as low voltage, the asynchronous circuit simply slows
down. Thus, our asynchronous prototype can operate under the
wider range of 1.0–2.0 V.

The latency from the byte latch to the output buffer for
common length-two instructions has been found to be only
42% of the 400-MHz clocked circuit’s latency. The main
reasons for the reduced latency are the absence of clock bound-
aries at which the fast data must wait, and the ability to pipeline
at frequencies matching data-path delays. In a clocked design
with a multiple issue rate, several instructions are transferred
on the clock edge. Since the first instructions becomes ready
before the last (due to the serial nature of length decoding),
they must wait before they are transferred to the next pipe
stage. In the asynchronous implementation, every instruction
is transferred as soon as it becomes available and the time for
which an instruction waits is not frequency-dependent.

Table I contains measured performance data for some
individual instructions. Tests X0–X8 use different mixes of
length-one and length-two instructions. These nine tests consist
of a 16-byte-wide cache line filled with 0 to 8 length-two
instructions followed by 16 to 0 length-one instructions (test
X consists of length-two instructions followed by 16-2
length-one instructions). All the length-two instructions in the
X tests could be fully length decoded using only the first byte.
Test I0 consists of eight length-two instructions containing
ModR/M length information in the second byte, complicating
length calculation [15]. A noise problem with some instructions
resulted in a violation of the setup time at the length decoder
inputs, so we opted to use a single cache line for testing all
instructions. The single cache line is repeatedly read from the
head of the input FIFO, keeping the FIFO loop off the critical
path.

The measured performance numbers were compared to those
obtained with the COSMOS switch-level unit-delay simulator
[16], and found to have an excellent correlation. This enabled
us to estimate the performance of tests that failed on silicon.

B. Power

The measured power of the test chips is compared to the sim-
ulated power of the logic performing the length decoding and
instruction steering of the comparable clocked circuit. The com-
parison was made using the integer power tests from the com-
mercial clocked processor power test suite. The results show that
the asynchronous decoder consumes about one-half the energy
of the clocked design.

Since execution times differ greatly between these designs,
we calculated the energy required to execute one loop of the
test program. For the sake of power measurements, the FIFO
was placed in a “frozen” debug mode where it repeatedly sup-
plied the first cache line to the asynchronous core. This made
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TABLE I
ASYNCHRONOUSDECODERPERFORMANCETESTS

disassociating the FIFO power from the power dissipated by the
decoder core easier. Therefore we measured the power of each
instruction individually. The inner loop of the integer power test
contains ten different instructions, so we generated ten separate
tests, each measuring the power of one of the instructions. Each
such test consisted of one instruction from the test set padded by
length-one instructions to the end of the line. The power of each
individual instruction was calculated by subtracting the power
of the length-one instructions. The power for the complete test
was calculated by multiplying the frequency of each instruction
in the test by the occurrence count. These results compare pro-
cessors executing at different speeds and only compare a small
set of instructions. A more accurate comparison, which is be-
yond the scope of this research, should include a power-perfor-
mance curve over a larger instruction mix, as well as measuring
a real instruction stream rather than employing the frozen debug
mode.

The prototype was not optimized for low power. Its superior
efficiency is due only to its asynchronous design and our spe-
cific asynchronous design methodologies. For example, clocked
methodology typically requires data to move between latches
each clock cycle. In this design, data (instruction bytes) are
latched in the byte latch and directly transferred to the output
buffer only if and when the bytes are needed.

C. Area

The area of the prototype was compared to the area of a
400-MHz clocked circuit performing the similar functionality
designed on the same 0.25-process. While we had layout and
schematics for both designs, calculating an accurate comparison
was time consuming due to the following issues, and resulted in
some minor inaccuracies:

1) The three-issue instruction steering logic in the clocked
design contained considerably more functionality than
the comparable four-issue circuit in the asynchronous de-
sign.

2) Significant differences existed between the floorplans.

3) The prototype does not handle the instruction pointer, il-
legal opcodes, and bogus branches.

4) Some of the clocked circuits contain unrelated logic, and
isolating the relevant parts is difficult.

5) The prototype layout was not optimized for density due
to resource limitations.

Our analysis shows that the test chip occupies 22% larger
area than the clocked design, which is a very reasonable area
penalty for the improvements in throughput, latency and power.
Furthermore, our analysis indicates that there is no evidence of
a large area penalty inherent to asynchronous design.

D. Silicon Debugging

Debugging an asynchronous circuit on silicon without direct
probing may be an issue since the circuit is self-timed, that is,
it is impossible to stop the clock and scan out the state signals.
This is especially true with the self-resetting pulsed circuits used
in the asynchronous design, since by the time the circuit stops
the signals have already returned to their initial states.

A special debug feature was designed to facilitate silicon de-
bugging. Eight bits in the scan-in chain are dedicated to this
feature. Each bit, when reset, blocks the resetting of a set of in-
ternal state signals. Additional logic required to implement this
blocking is minimal. In most cases, it just required adding one
input to an existing gate (Fig. 13). When the bit is reset, the
self-resetting loop is disabled and the entire circuit will eventu-
ally halt. The circuit state can then be scanned out for inspec-
tion. Alternatively, operation can be resumed by removal of the
debug bit value.

All these additions were made off the critical paths (the reset
path is usually noncritical). Frozen state signals can be scanned
out and observed. The debugging logic enabled us to identify
three different timing-related failures of the first silicon in a very
short time.

A pulse signal that was designed to drive a single local gate
was later changed to drive an additional distant gate. The addi-
tional load from the gate and wire exceeded the pulse drive ca-
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Fig. 13. TU circuit showing thedebug signal which captures the
TagArrived pulse.

pability. Through the debugging logic we were able to identify
the failing signal. This bug prevented the circuit from operating.
Subsequently, the silicon was modified to enable testing of the
circuit.

Another timing related bug led to too short a delay on a
precharge control line for a clocked domino PLA. This resulted
in malfunctioning of the rare instructionNOR–NOR PLA, which
was consequently excluded from testing. The third bug, men-
tioned previously, is a noise condition on certain instructions
that resulted in insufficient data setup to the length decoders.

Timing analysis was not performed on the prototype circuit,
other than through designer-driven spice runs. These bugs
would have been discovered with a complete timing validation
flow [3], [4].

E. Testability

Fault analysis of the prototype provides evidence that testa-
bility is no reason to avoid asynchronous design. In fact, the
fault coverage was no worse than that of similar synchronous
circuits. Almost all uncovered faults in the asynchronous de-
sign would also be uncovered in similar clocked circuits. How-
ever, some issues specific to asynchronous design have been
identified. Asynchronous circuits are sequential in nature due to
the handshake protocols implemented with finite state machine
controllers. Unlike clocked circuits, it is unreasonable to apply
scan techniques to convert asynchronous circuits into combina-
tional blocks due to the large state space of the distributed and
autonomous handshake control [17]. Further, synchronization
points are decoupled, which complicates observing the global
state space with a clocked tester. Another testability issue with
timed asynchronous circuits is the potential necessity of mod-
eling delay faults.

Since full scan is unreasonable, we opted to use built-in
self-test (BIST) to avoid invading the structural design with
flops. Cellular automata (CA) [18] were designed to generate
test vectors targeted at the terms in the decode PLA of the
instruction set [19]. We used one BIST block to test the entire
asynchronous circuit (approximately 120 000 transistors). The
BIST structures were attached to the interfaces of this block
after the design was complete, and thus no logic modifications
or design for testability (DfT) were applied to the decoder core.
A CA signature analyzer validates correctness by observing the
output signals and some important internal states. The BIST
scan and debug scan are integrated and share the same flops.
The BIST and debug logic has a small impact on performance

and area, estimated at 5% latency penalty (no throughput
penalty) and 5% area penalty.

One modification was made to the cellular automaton to gen-
erate the sequential patterns needed to test for two-opcode in-
structions which were too rare to be automatically generated by
the automaton. A similar modification was required to generate
sequences of prefixes that modified the lengths of subsequent
instructions, but was not implemented. The BIST and signature
analyzer are clocked at a frequency slow enough to guarantee
stability of all nodes at observation time. The circuit still runs at
full speed internally.

A 95.9% stuck-at fault coverage was achieved using the
COSMOS switch-level fault simulator [16]. Untargeted
faults—some sequences of prefix instructions and debug
logic—were not included. The BIST logic was not imple-
mented on silicon due to schedule constraints. It was designed
at schematics level and simulated. Faults were simulated in
one column only, and only in one of the TUs in this column, in
order to keep runtime reasonable (145 CPU days). We expect
the coverage for all blocks to be nearly identical independent
of their position in the array.

The majority of the uncovered 4.1% of the faults were not due
to the shortcomings of BIST, but rather to the circuits and design
style used. The uncovered faults consisted mainly of unobserv-
able keeper faults, pulse degradation faults in domino keepers
(see below), and redundant circuits which were not removed
with the relative timing methodology [3]. Other than redun-
dancy, the same types of faults appear in clocked circuits [20],
[21].

The circuit in Fig. 14 demonstrates an undetected fault
specific to pulsed circuits used in the prototype. Normally,
the dominoNAND gateG self-reset is controlled by the seven
gate delay feedback pulse throughr . A stuck-at-zero fault on
the keeper in gateG leads to an early reset through the three
gate delay feedback pathd. This type of fault may or may not
result in failure in the actual circuit and should be simulated
for realistic noise, coupling, etc., to determine if the shortened
pulse results in failure.

V. DISCUSSION

The comparison of synchronous and asynchronous circuits
made in the previous section is limited by the fact that we did
not have a separate clocked chip implementing the same func-
tionality of our asynchronous prototype. Thus for data such as
power, we had to resort to simulation and indirect estimates.
However, actual throughput, delay, and silicon area character-
istics of the clocked design have been employed in this compar-
ison.

We summarize some of our key observations below. In the
early design stage, we learned how to optimize asynchronous
circuits mainly for high performance at the microarchitecture
level.

1) Optimize for the common cases. The tagging circuit is
optimized for instructions up to seven bytes long, and the
length decoder for common instructions [6].

2) Employ timing assumptions, direct signaling, and pulsed
logic to avoid the full handshake overhead [3].

3) Use a one-hot domino circuit with automatic completion
detection, e.g., for the length decoder.
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Fig. 14. Pulse length fault. (a) Self-resetting domino circuit generating a seven
gate delay pulse. (b) Stuck-at-zero fault on domino keeper of gateG. (c) Dotted
waveforms show pulse degradation under fault, arrows show causality.

4) Scalable parallel operation can balance the various oper-
ational rates for performance: Four rows of tagging units
and output buffers match the tagging time to the instruc-
tion steering time.

5) Preempting asynchronous circuits is possible. The length
decoder is preempted, reset, and restarted in bytes that do
not start an instruction, as well as in the case of prefixes
and long instructions.

6) Global synchronization is decoupled. Wide synchroniza-
tion is inefficient in asynchronous design. The synchro-
nization can at times be deferred by splitting the architec-
ture into concurrent paths and moving the synchroniza-
tion to a less expensive location. For example, the pro-
totype does not synchronize all sixteen cache line bytes
at the input; rather, the bytes proceed along concurrent
paths, and only get synchronized at the most opportune
time by the TUs.

In the later stages of the design, key observations were mostly
related to methods for asynchronous control circuit optimiza-
tions [3].

1) Relative timing assumptions were used to simplify the
control circuits thus increasing their performance.

2) Relative timing assumptions were added to the formal
verification tool ANALYZE [22].

3) Pulsed pipeline control simplified the circuit and in-
creased performance.

4) A footed rather than unfooted domino may yield a faster
circuit due to relaxed race conditions.

Self-timed circuits are a potential solution to future design
problems like delay variations and clock distribution. We are in-
vestigating the adaptive synchronization scheme for communi-
cation among units on-chip in the presence of large clock skew
[23] and a scheme to embed self-timed modules without sig-
nificant latency penalty in globally synchronous systems [24].
We are also designing a complete CAD system for timed cir-
cuit design [25]–[27], and are working on DfT solutions for the
undetectable faults in self-timed circuits. Such CAD and design
techniques are a potential solution to the issues we will face in
the future, given current trends of increasing clock frequency,
interconnect delays, and delay variations.

VI. CONCLUSION

Our novel design methodology for asynchronous circuits and
systems has resulted in a circuit that achieves three times the
performance of its high-performance commercial synchronous
counterpart, incurring half the latency and consuming half the
power, at a comparable silicon area. We have found that the main
limitation to exploiting this potential is the lack of appropriate
CAD tools [4].
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