

 Home | Help

AbstractPlus - Print Format < Back to Previous Page

GasP: a minimal FIFO control

Sutherland, I. Fairbanks, S.
Sun Microsyst. Labs, Palo Alto, CA;

This paper appears in: Asynchronous Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium
on
Publication Date: 2001
On page(s): 46-53
Meeting Date: 03/11/2001 - 03/14/2001
Location: Salt Lake City, UT, USA
ISBN: 0-7695-1034-5
References Cited: 10
INSPEC Accession Number: 6964559
DOI: 10.1109/ASYNC.2001.914068
Posted online: 2002-08-07 00:20:11.0

Abstract
The GasP family of asynchronous circuits provides controls for simple pipelines, for branching and joining pipelines, for
round-robin scatter and gather for data dependent scatter and gather and for join on demand through arbitration. The family
is designed so that each stage operates at the speed of a three-inverter ring oscillator Test chips in 0.35 micron technology
exhibit throughput in excess of 1.5 giga data items per second (GDI/s). Between GasP pipeline stages a single wire carries
both request and acknowledge messages, also recording the FULL or EMPTY state of each pipeline stage. GasP control
circuits rely on careful choice of transistor widths to equalize the delay in logic gates. Assurance of uniform gate delays
permits use of self-resetting logic forms that have very low logical effort

Index Terms
Inspec

Controlled Indexing
CMOS logic circuits asynchronous circuits delays logic gates pipeline processing

Non-controlled Indexing
0.35 micron GasP arbitration asynchronous circuits data dependent scatter join on demand logic
gate delay minimal FIFO control pipelines round-robin scatter self-resetting logic forms throughput
transistor widths

Author Keywords
Not Available

Medical Subject Heading (MeSH Terms)
Not Available

PACS Codes
Not Available

DOE Thesaurus Terms
Not Available

References

No references available on IEEE Xplore.

Citing Documents

1 Lazy transition systems and asynchronous circuit synthesis with relative timing assumptions, Cortadella, J.;
Kishinevsky, M.; Burns, S.M.; Kondratyev, A.; Lavagno, L.; Stevens, K.S.; Taubin, A.; Yakovlev, A.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
On page(s): 109-130, Volume: 21, Issue: 2, Feb 2002

2 Asynchronous gate-diffusion-input (GDI) circuits, Morgenshtein, A.; Moreinis, M.; Ginosar, R.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 847- 856, Volume: 12, Issue: 8, Aug. 2004

3 GALDS: a complete framework for designing multiclock ASICs and SoCs, Chattopadhyay, A.; Zilic, Z.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 641- 654, Volume: 13, Issue: 6, June 2005

Page 1 of 2Welcome to IEEE Xplore 2.0: GasP: a minimal FIFO control

11/3/2009http://ieeexplore.ieee.org/xpl/absprintf.jsp?arnumber=914068

4 High performance asynchronous design using single-track full-buffer standard cells, Ferretti, M.; Beerel,
P.A.
Solid-State Circuits, IEEE Journal of
On page(s): 1444- 1454, Volume: 41, Issue: 6, June 2006

5 An Asynchronous Low-Power High-Performance Sequential Decoder Implemented With QDI
Templates, Ozdag, R.O.; Beerel, P.A.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 975-985, Volume: 14, Issue: 9, Sept. 2006

6 Direct Mapping of Low-Latency Asynchronous Controllers From STGs, Sokolov, D.; Bystrov, A.; Yakovlev,
A.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
On page(s): 993-1009, Volume: 26, Issue: 6, June 2007

7 Surfing Pipelines: Theory and Implementation, Suwen Yang; Winters, B.D.; Greenstreet, M.R.
Solid-State Circuits, IEEE Journal of
On page(s): 1405-1414, Volume: 42, Issue: 6, June 2007

8 MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines, Singh, M.; Nowick, S.M.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 684-698, Volume: 15, Issue: 6, June 2007

9 A Highly Scalable GALS Crossbar Using Token Ring Arbitration, Singh, T.; Taubin, A.
Design & Test of Computers, IEEE
On page(s): 464-472, Volume: 24, Issue: 5, Sept.-Oct. 2007

10 The Design of High-Performance Dynamic Asynchronous Pipelines: Lookahead Style, Singh, M.; Nowick,
S.M.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 1256-1269, Volume: 15, Issue: 11, Nov. 2007

11 The Design of High-Performance Dynamic Asynchronous Pipelines: High-Capacity Style, Singh, M.;
Nowick, S.M.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on
On page(s): 1270-1283, Volume: 15, Issue: 11, Nov. 2007

12 Elastic Circuits, Carmona, J.; Cortadella, J.; Kishinevsky, M.; Taubin, A.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
On page(s): 1437-1455, Volume: 28, Issue: 10, Oct. 2009

© Copyright 2009 IEEE – All Rights Reserved

Page 2 of 2Welcome to IEEE Xplore 2.0: GasP: a minimal FIFO control

11/3/2009http://ieeexplore.ieee.org/xpl/absprintf.jsp?arnumber=914068

Gasp: A Minimal FIFO Control

Ivan Sutherland and Scott Fairbanks
Sun Microsystems Laboratories, Palo Alto, California, USA

Abstract

The G a s p family of asynchronous circuits provides
controls f o r simple pipelines, fo r branching and joining
pipelines, f o r round-robin scatter and gathel; f o r data-
dependent scatter and gathel; and for join on demand
through arbitration. The family is designed so that each
stage operates at the speed of a three-inverter ring
oscillator: Test chips in 0.35 micron technology exhibit
throughput in excess of 1.5 giga data items per second
(GDIh).

Between G a s p pipeline stages a single wire carries both
request and acknowledge messages, also recording the
FULL or EMPTY state of each pipeline stage. G a s p
control circuits rely on careful choice of transistor widths
to equalize the delay in logic gates. Assurance of uniform
gate delays permits use of self-resetting logic forms that
have very low logical effort.

1. Definitions

Let us start by considering the meaning of some terms.
In referring to the condition of latches, we use the words
“transparent” and “opaque” to avoid the ambiguity of
“open” and “closed.” In referring to the parts of a pipeline
we use the words “PLACE’ and “PATH” to distinguish two
kinds of circuits: a PLACE holds data whereas a PATH
controls the flow of data between PLACEs. Along an
asynchronous pipeline PATHS and PLACEs alternate so
that each PATH has a predecessor and successor PLACE.
The word “stage” describes one alternation, as in “forward
latency per stage,” but fails to specify a precise boundary.
A stage usually includes a complete PLACE, as in “the
stage is FULL,” and may include either its predecessor
PATH or its successor PATH or part of each.

PATH and PLACE in this context sometimes seem
counterintuitive. In common use a path along which we
walk takes us from place to place, a notion true in our
circuits topologically but not geometrically. The geometric
difference comes from the ability of every wire in a CMOS

circuit to store information: PLACEs include the wires that
hold information, and those wires have geometric extent,
whereas PATHs include the tiny CMOS transistor switches
through which information flows from PLACE to PLACE.
Think of a PATH as the door between corridor-like
PLACES, a useful metaphor.

2. Introduction

In the past few years our group has sought speed by
reducing the complexity of asynchron’ous control circuits.
The resulting control circuits seem to use the fewest
transistors required to move data asynchronously through a
series of latches, and they run corres~pondingly fast. Our
circuits depend on the designer’sfaith iin correct timing “in
the small,” faith bolstered by the careful timing analysis
described in [7] . Our faith in timing exlends not only to the
“bundled data convention” that assures correct operation of
the data path, but also, and to a much greater extent than
ever before, in the control circuits as well. Our circuits use
measurement very sparingly and are therefore
asynchronous only “in the large.” This is a marked contrast
to Delay Independent circuits that use measurement to
accommodate wide variation in component delays.

Some years ago Molnar [4] articulated the basic control
requirement for an asynchronous pipeline. When two
successive PLACEs have the states IFULL-EMPTY, the
PATH between them must copy data forward and change
their states to EMPTY-FULL. Molnar’s “asp*” control
system used a flip-flop in each PLACE to record its state
and a NAND gate in each PATH to detect the conditions
prerequisite to action. When the NAND gate “fired”, i.e.
when its output went LO, it advanced the data and changed
the state of the flip flops in the two adjacent PLACEs.
Molnar’s asp* circuit was symmetric in form, and so its
forward latency and reverse latency were the same. The last
three letters in the name Gasp acknowledge its asp*
ancestry.

Seeking to exceed the speed of Molnar’s asp* circuits,
others in our group built a FIFO using the “transition” or
non-return-to-zero control described in the Micropipelines

46
1522-8681/01 $10.00 0 2001 EEE

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

paper [8]; we reported performance for this FIFO in [5] . In
the same technology it operates faster than Molnar’s asp*
circuit, though, to tell the truth, only because of the dual
data-path favored by its transition logic convention. Its
important contribution, however, was that its forward and
reverse latency differed because of the inversion required
on only one input of the Muller C-element. Seeking
minimum forward latency, we placed the inverter in the
reverse path, relegating the longer two-gate delay to the
reverse direction and reducing the forward latency to its
minimum: one gate-delay per stage.

We have since learned, however, that in very fast
asynchronous circuits it is better to make the forward
latency long and the reverse latency short. The reason is
that it takes time to copy data forward through a latch, but
no time at all to move emptiness backwards. To copy data
requires a state change at the output of data latches, but to
move emptiness requires only a declaration of willingness
to overwrite the old data value. In this regard our early
Micropipeline design blundered by relegating the longer
delay to the reverse direction. As you will see, the Gasp
circuits described here have a forward latency of four gate-
delays and a reverse latency of two gate-delays. Their cycle
time is therefore six gate-delays, or precisely the cycle time
of a three-inverter ring oscillator.

One can make a symmetric circuit whose forward and
reverse latency are both three gate-delays per stage. Indeed,
Molnar explored, but never published, such a circuit form
which he called “dynamic asp*.” An odd number of gate-
delays of latency requires that a rising transition in one
PLACE correspond to a falling transition in the adjacent
PLACES and therefore requires two forms of PATH circuit.
Molnar had difficulty finding a latch fast enough to keep up
with a three gate-delay forward latency. The Gasp circuits
described here have even numbers of gate-delays of both
forward and reverse latency, albeit those numbers differ,
and Gasp circuits can thus use identical, albeit asymmetric,
PATH circuits. At first the lack of symmetry caused us
conceptual grief, but this has subsided with growing
experience.

Behind Gasp lie three useful lessons from the theory of
Logical Effort [9]. First, eliminating unnecessary
transistors tends to make a circuit go faster because every
transistor consumes charge at its input, retarding the action
of its driver. Second, conditioning transistors in advance
can remove the speed-limiting burden of driving them from
components that lie on critical timing paths. And third,
calculating transistor widths carefully can balance the
effort of successive logic gates, not only to reduce overall
delay, but also to give all gates nearly uniform delay. A
companion paper [71 shows how we use SPICE to calculate
transistor widths.

Our design sequence for Gasp control circuits is
unusual. At the early stages of logic gate design we assume
uniform delay for all logic gates in the control circuits.
This assumption simplifies logic design and encourages
use of self-resetting logic gates with low logical effort. To
equalize the performance of each pipeline stage, all control
circuits use the same number of logic gates, usually three
or five, in every closed loop.

After finishing the logic design we pick transistor
widths to realize the assumed uniformity of gate delay,
using the methods described in [7]. The final transistor
widths take into account post4ayout wire loads. The choice
of actual gate delay is arbitrary, but choosing a shorter
value for the uniform gate delay gives more speed at the
cost of more area and more power. The logic loop with the
worst logical effort turns out to establish a minimum
achievable gate delay. Surprisingly, even substantial
capacitive loads from wires have no impact on the
theoretical minimum achievable gate delay, because larger
transistors could theoretically drive them as quickly as
desired. In practice capacitive load of wires does affect the
transistor widths required and careful use of post-layout
stray capacitance is important to proper function. We have
not explored the impact of wire resistance.

The final result of these design steps is a balanced
design in which complex pipeline stages use wider
transistors to run as quickly as simple pipeline stages, and
simple pipeline stages save power and area with narrower
transistors, thus running no faster than complex stages.

3. The basic Gasp circuit

Each PATH circuit controlling the flow of data between
stages must act only when both its predecessor PLACE is
FULL and its successor PLACE is EMPTY. The simplest
circuit to detect such a condition is a pair of series
transistors, preferably of N-type. Embedding these
transistors in a NAND gate adds to them a pair of parallel
P-type transistors whose sole function is to reset the logic
function’s output when it no longer need be active; another
reset mechanism may be preferable.

When the two series N-type transistors both conduct,
their output will go LO and we say the PATH hasjred. As
Molnar pointed out, a PATH must accomplish three things
when it fires: (1) it must make data latches momentarily
transparent; (2) it must declare its successor stage FULL,
and (3) it must declare its predecessor stage EMPTY.
Starting another action may also be useful, namely (4) to
reset the output of the series N-type transistors to the
inactive or HI state.

47

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

HI = EMPTY
LO = FULL

forward latency = a b c d
reverse latency = x y
three-inversion loops: a b y, c d x, r s t

I . self-reset I I . self-reset I

\ \
\ \

PLACE ‘I PA PLACE ‘I PA
I

c

I I

data in I

l I 1 data latch
I I data latch 1

Figure 1. Gasp with self-resetting NAND

Instead of storing the FULL or EMPTY state of the
predecessor and the successor stages in flip-flops, Gasp
circuits store each state on a single wire that we call a state
conductor. This use of a single shared wire is similar to van
Berkel’s single track handshaking [lo]. A master clear
signal establishes the initial condition of each state
conductor, but the figures in this paper omit master clear.
To retain the state for an indefinite period requires also a
keeper, a pair of small inverters back-to-back, whose
opposition to change is easily overcome by the transistors
that drive the state conductor.

In a Gasp pipeline each PLACE has a state conductor to
indicate whether it is FULL or EMPTY. Each PATH
attaches an N-type or P-type transistor to its adjacent
PLACE’S state conductor to force it to the FULL or
EMPTY state by driving it HI or LO. Although one may
assign either state encoding to any state conductor, it is
simplest to understand Gasp circuits using the state
encoding HI = EMPTY, LO = FULL for all state
conductors.

Figure 1 shows three PLACES and two PATHS using
one form of Gasp circuit. Each PLACE holds a data item in
data latches and holds the FULL or EMPTY state of its
data latches on a state conductor with a keeper. The figure
omits master clear circuits that set the state of each PLACE
to EMPTY. Each PATH contains a Gasp control circuit and
the pass transistors through which the data flow from
PLACE to PLACE.

out

Given the series stack of N-type transistors and the state
encoding, the rest of the PATH circuit is simple. As seen in
Figure 1, the output of the N-type transistor NAND stack
[b & x] serves the four purposes 1 - 4 stated above, with the
circuit connections for each purpose correspondingly
labeled: (1) The latch drive signal from inverter [cc] is a
short positive pulse suitable for making the N-type
transistor pass gates [p] momentarily transparent to copy
data forward. (2) Inverter [c] and N-type transistor [d] drive
the successor state conductor LO, meaning FULL. (3) P-
type transistor [y] drives the predecessor state conductor
HI, meaning EMPTY. And (4) delaying inverters [r & s]
and P-type transistor [t] reset the NAND function after a
short delay.

Notice that the preceding state cortductor enters the N-
type transistor NAND function at [b] through inverter [a]
but the succeeding state conductor enters directly at [XI.
This makes the NAND function detect the condition LO-
HI, which has the meaning FULL-EMPTY.

Notice also that this circuit is buili from three loops of
three inversions each. The predecessor loop [a b y] involves
the predecessor state conductor, an inverter, the NAND
stack, and the P-type drive transistor. The successor loop [c
d x] involves the successor state conductor, the NAND
stack, an inverter, and the N-type drive transistor. The reset
loop [r s t] involves the NAND output, two inverters in
series, and the P-type reset transistor.

48

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

I I data latch I I

Figure 2. Gasp with twin state conductors

The forward latency per stage of this circuit is four gate-
delays [a b c d] and its reverse latency per stage is two gate-
delays [x y]. In the forward direction, a falling transition,
meaning FULL, on the predecessor state conductor travels
via inverter [a], the NAND stack [b & x], another inverter
[c] and the N-type driving transistor [d] to become a falling
transition on the successor state conductor, declaring it
FULL. In the reverse direction, a rising transition, meaning
EMPTY, on the successor state conductor travels via the
NAND stack [x & b] and the P-type driving transistor [y] to
become a rising transition on the predecessor state
conductor, declaring it EMPTY. The cycle time of six gate-
delays is the sum of the forward and reverse latency and is
also, as previously mentioned, the characteristic period of
the three-inverter loops in the circuit.

As we shall do in some figures, one can draw an
ordinary NAND-gate symbol to represent the self-resetting
NAND function formed by transistors [x b t] and inverters
[r SI. Moreover, one can even replace the self-resetting
NAND gate itself with an ordinary NAND gate, depending
on the change of state in the adjacent state conductors to
reset the NAND gate. Although the self-resetting NAND
gate has lower logical effort, an ordinary NAND gate with
suitable transistor widths will also serve. In either case, the
more compact notation of the standard NAND symbol
usually aids understanding.

In complex connections of Gasp circuits such as
described in [3], a separation of state conductors often
proves useful. For example, Figure 2 shows a Gasp circuit
with two separate state conductors, s l and s2, in the middle
PLACE. The two drive transistors, d l and d2, in the
preceding PATH drive both state conductors LO, and the
two drive transistors, [yl] and [y2], in the following PATH
drive both state conductors HI. Other path circuits may also
establish FULL or EMPTY states as suggested by
transistors [d4] and [y51.

Although the PATHS in Figure 2 drive both state
conductors from each end, only one PATH monitors the
state of each. In this example, only the left PATH monitors
the state of sl , via the input to NAND [b], and only the
right PATH monitors the state of s2, via the input to its
inverter [a]. As seen by the left PATH, s l has the state
encoding HI = EMPTY and LO = not EMPTY, as seen by
the right PATH, s2 has the state encoding LO = FULL and
HI = not FULL. In a more complex connection several
Gasp circuits might drive or monitor each state conductor.
A companion paper [3] describes many such circuits and a
notation for them. It is also possible to make a symmetric
form of Gasp circuit using twin state conductors to achieve
equal forward and reverse delay.

49

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

Y

P - AA BB
P cc

input-limited operation

Figure 3a. Input-limited, LO is FULL

filling output-limited operation

Figure 3b. output-limited, 1-0 is FULL

4. Timing

Careful control of transistor widths, as described in the
companion paper [7], makes all gate-delays nearly
identical. Indeed, because we give each transistor a width
proportional to its load, all logic gates operate not only
with nearly uniform delay but also with nearly uniform rise
time. Thus the wave-forms seen on different wires have
similar. shape and differ only in phase, as seen in the
idealized output of Figure 3a and 3b. Simulation output
from SPICE looks remarkably like these idealized wave
forms. *

Now let us consider how two PATHS like those of
Figure 1 drive the state conductor between them. After the
first PATH uses transistor [d] to drive the state conductor
LO, meaning FULL, the second PATH will take at least
three gate-delays to drive the state conductor HI again
using transistor [y]. Moreover, by the time the second
PATH turns on transistor [y] to drive the state conductor
HI, the first PATH will have turned off transistor [d] and
thus will have ceased driving the state conductor LO.

Consider next what happens at maximum throughput,
assuming that all gate delays match. At maximum
throughput the gate signals on both N-type transistors [b &

x] in each NAND stack are identical, because a fresh empty
space and a fresh data item arrive at exactly the same time.
Moreover, because the gate delays match, the input signal
to N-type drive transistor [d] in one PATH matches the
input to P-type drive transistor [y] in the next PATH. In
effect transistor [d] in one PATH and transistor [y] in the
next PATH behave like a single quasi-inverter driving the
state conductor, even though they are separated in space.

At less than maximum throughput the input signals to
the two N-type transistors [b & x] iin the NAND stack
differ. One becomes HI before the other, but which one
goes HI first depends on whether tlhe FIFO is source-
starved and waiting for a data item or sink-starved and
waiting for an empty space. Similarl,y, the quasi-inverter
formed by transistor [d] in one PATH and transistor [y] in
the next PATH gets two different input signals in this case,
but the input to the P-type transistor [y] is never lower in
voltage than the input to the N-type transistor [d].

The logical effort of this circuit is remarkably small. In
the forward direction, ignoring branching effort, the logical
effort is 2/3 for the NAND stack, ancl 1/3 for the N-type
drive transistor, for a 2/9 product. In tlhe reverse direction,
again ignoring branching effort, the logical effort is 213 for
the NAND and 213 for the P-type drive, for a 419 product.
This remarkably low logical effort, rleduced to less than
one in both directions by use of self-resetting circuits,

50

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

pulse, to
data latches

Figure 4. Gasp with two successor places

contributes to the speed of Gasp circuits. The very low
logical effort of Gasp circuits also allows them to drive
wide data paths via a single amplifier, labeled [cc] in many
of the figures. Avoiding multiple amplifier stages is
important to retaining an adequate pulse width to activate
the latches.

5. The family

Figures 4-7 show other Gasp circuits. The unconditional
Branch of Figure 4 acts when its predecessor PLACE
[place01 is FULL and both successor PLACES [placel and
place21 are EMPTY. It combines inputs from its two
successor state conductors in a three-deep NAND stack [b
XI x2] and uses two N-type driver transistors [dl and d2] to
declare the two successor state conductors FULL.
Similarly, the unconditional Join circuit, not illustrated, has
separate predecessor state conductors, all of which must be
LO, meaning FULL, before it takes action. The additional
AND function can appear in the NAND stack, as in the
Branch circuit, or as a NOR replacement for inverter [a] of
Figure 1. Separate P-type driver transistors, like transistors
[yl and y21 in Figure 2, declare the separate predecessor
state conductors EMPTY.

A companion paper [3] describes round-robin

data in

Figure 5. Data conditional Gasp

configurations for branching and merging that use
additional state conductors to indicate which of several
parallel circuits, like those shown here; should be the next
to fire.

Data conditional circuits require extra care. They must
drive the successor state conductor LO, meaning FULL,
only when suitable data are present. Note in Figure 1 that
the N-type transistor [d] in the control circuit and the N-
type pass gate transistor [p] in the data path are both one-
inverter distant from the output of the NAND function.
Thus [d] and [p] conduct concurrently. Provided the input
data are in the right time relationship for the data latches,
any input data bit is also in the proper time relationship
with the control to condition a second N-type transistor [q]
seen in Figure 5. This extra transistor prevents or permits
driving the successor state conductor LO depending on the
data input value. Notice that the data input to the circuit,
rather than the data output, controls the action.

The circuit of Figure 6 is a form of Gasp that uses a
different encoding for its state conductors: HI means FULL
and LO means EMPTY. This circuit has two N-type NAND
stacks [c y] and [cc yy] with parallel inputs. One stack [cc
yy] drives the predecessor state conductor directly while
the other stack [c y] forms the NAND that activates the
remaining functions. Because their inputs are connected in
parallel, falling transitions of both stacks always coincide
in time. Rising transitions may differ in time because they
respond to other inputs.

Figure 6 also shows a P-type transistor driver [ddl] with
a self-resetting loop to drive its reset transistor [e]. Such a
self-resetting driver accommodates a wired-OR for input
from another Gasp circuit via transistor [dd2]. Because the
duration of the latch pulse depends on the loop delay of the
reset loop, its transistor widths must be carefully chosen.

51

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

self-reset .
self-reset ,

HI = FULL
LO=EMPTY .r(d

from NAND
in another
Gasp PATH

pulse to
data latches

Figure 6. Another Gasp form

Although its logical effort is slightly higher, the “HI
means FULL” form of the Gasp circuit seen in Figure 6 is
preferable to the “LO means FULL” form of Figure 1 for
three reasons. First, it offers two series stages of
amplification [a & b] in the forward direction between the
predecessor state conductor and the NAND stacks, either
or both of which could perform logic. Second, between the
successor state conductor and the NAND stacks it places
the inverter [x] whose threshold provides extra noise
immunity. And third, it has four levels of inversion [a b c
ddl] rather than three levels in the forward direction
between the predecessor state conductor and the latches.
Moreover, in the reverse direction between the successor
state conductor and the latches it has three levels of
inversion [x y ddl] rather than two. These extra levels of
inversion provide enough electrical amplification to drive
even the heavy loads imposed by the many latches in wide
data paths.

Perhaps most important, two series stages of
amplification, [a & b] in the circuit of Figure 6
accommodate arbitration, as shown in Figure 7. Here, a
Mutual Exclusion (ME) element [a & aa] and its
metastability guard [b & bb] replace the two series
amplifiers. This circuit provides a clean choice as to
whether the NAND stack will or will not fire, even if the
external stop input arrives at an unfortunate moment. We
use this circuit as a “proper stopper” to interrupt the flow of
data without damaging either the existence of, or the value
carried by, a data item, A similar Demand-Join circuit gives
contending inputs access to a common output.

HI = FULL

predecessor

stop data latches

Choose threshold of inverters
b and bb to avoid metastability.

Figure 7. Gasp with arbitration

6. Test chips

Our group at Sun Microsystems has now built several
test chips using Gasp circuits. One, called “First Gasp,”
demonstrates FIFO rings and the data conditional
forwarding shown in Figure 5. Another, called “Vanilla,”
measures the behavior of Gasp circuits near maximum
throughput. It includes three variants (of Gasp called 412,4/
4 and 614: the two numbers describe the number of gate-
delays of forward and reverse latency. The circuits of
Figures 1 - 7 are all of the 412 Gasp form. The 414 Gasp
form adds two extra inverters in the reverse direction to
make the circuit symmetric. The 614 Gasp form adds two
extra inverters in both the forward and reverse direction,
reducing the care required in picking lransistor widths. It is
a more conservative design than shown in this paper and
operates at the speed of a five-inverter ring oscillator.

’Another Gasp test chip is the “Square FIFO’ described
in [7]. It uses many circuits like that of Figure 2 to scatter
entries to a number of parallel FIFOs and, later on, to
gather them up again in sequence. It 11s built with ordinary
NAND gates, as seen in Figure 2, rather than the self
resetting forms. When the circuit drives the state
conductors to their new state, they reset the NAND.

We have also built and tested two more elaborate chips.
One called FLEETzero is reported separately in [l].
Another elaborate test chip, called “135,” is under test as
this is written. The t35 chip includes alternating Join
circuits, unconditional Join circuits, a data-conditional
switch, as in Figure 5, and proper stoppers, as in Figure 7.

52

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

The t35 chip detects mismatched values in two high-speed
35-bit data streams, but after combining two such streams
and computing error bits, its data path reaches a width of
105 bits, demonstrating the ability of Gasp control circuits
to drive large loads. The t35 control circuits operate as
expected, but there remain some difficulties with
surrounding logic. We expect to report full operation of the
chip in the near future.

Gasp circuits have proven remarkably resistant to
changes in power supply voltage. As reported in [l] the
“cargo rings” on the FLEETzero chip run correctly with
power supply voltage anywhere between 1.2 and 4.8 volts
with a nominal voltage of 3.3 volts. Other test chips
experience similar latitude.

7. Conclusion

Gasp circuits reduce asynchronous pipeline control to
its minimal form. They involve an AND function and a
mechanism for changing the state of predecessor and
successor stages. Because they are pulse circuits they enjoy
very low logical effort, reduced still further by the use of
self-resetting logic. In addition to providing high speed,
this very low logical effort obviates the need for additional
control signal amplification, even in systems with wide
data paths.

The Gasp family is designed so that each stage operates
at the speed of a three-inverter ring oscillator. Test chips in
0.35 micron technology exhibit throughputs in excess of
1.5 giga data items per second (GDUs). Gasp circuits
simulated in a 0 . 1 8 ~ technology easily achieve the
throughputs reported in [6].

Gasp circuits suffer from dependence on time, albeit
only in small local areas. Careful balance of transistor
widths to match delays is crucial to making Gasp circuits
work. Devotees of delay insensitivity may claim that this
denies the whole point of asynchronous design. We feel,
however, that Gasp combines the best of both the
synchronous and asynchronous worlds. Circuits designed
to operate in a fixed known time are logically simpler and
faster than circuits that check completion every cycle;
through faith we gain speed. Gasp circuits are based on the
faith that circuits designed to operate in a known time will
do so, faith bolstered by using logical effort as the basis for
design. We prefer to reserve asynchronous measurement of
completion for higher level functions such as sequencing
complex operations, conjunction of data in complex
pipeline networks, dealing with metastability in arbitration,
and waiting for the arrival of fresh data or empty space in

long-distance communication.

8. References

[13 W. S. Coates, J.K. Lexau, I . W. Jones, S. M. Fairbanks, and
Ivan E. Sutherland, “FLEETzero: An Asynchronous
Switching Experiment,” Proc. of the Seventh International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2001.

[2] W. S. Coates, J.K. Lexau, I. W. Jones, S. M. Fairbanks, and
Ivan E. Sutherland, “FLEETzero: An Asynchronous
Switching Experiment,” Proc. of the Seventh International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2001.

[3] J. Ebergen, “Squaring the FIFO in Gasp,” Proc. of the
Seventh International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 2001.

[4] C. E. Molnar, 1. W. Jones, W. S. Coates, and J. K. Lexau,
“A FIFO Ring Performance Experiment,”
Proc. of the Third International Symposium on Advanced
Research in Asynchronous Circuits and Systems,
pp. 279-289, April 1997.

[5] C.E. Molnar, I.W. Jones, W. S . Coates, Lexau, S . M.
Fairbanks and I. E. Sutherland, “Two FIFO Ring
Performance Experiments,” Proceedings of the IEEE, No. 2
Vol. 87 Feb. 1999, February 1999.

[6] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato,
and K. Jenkins, “Asynchronous Interlocked Pipelined
CMOS Circuits Operating at 3.3-4.5 GHz,” Proc. of the
IEEE International Solid-state Circuits Conference, 2000.

[7] I . E. Sutherland and J. K. Lexau, “Designing Fast
Asynchronous Circuits,” Proc. of the Seventh International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2001.

[8] I.E. Sutherland, “Micropipelines,” Communications of the
ACM, Volume 32, No.6, pp. 720-738, June 1989.

[9] I. E.Sutherland, B. Sproull, and D. Harris,
Logical Effort: Designing Fast CMOS Circuits,
Morgan Kaufmann Publishers, Inc., 1999.

[IO] K. van Berkel and Bink, “Single-Track Handshaking
Signaling with Application to Micropipelines and
Handshake Circuits,” Proc. of the Second International
Symposium on Advanced Rese,arch in Asynchronous
Circuits and Systems. 1996.

53

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on November 3, 2009 at 21:11 from IEEE Xplore. Restrictions apply.

	Sutherland_GasP_ASYNC2001-1
	Sutherland_GasP_ASYNC2001-2.pdf

