
 

 Home  |  Help  

  

AbstractPlus - Print Format < Back to Previous Page  
 
GasP: a minimal FIFO control 

Sutherland, I.   Fairbanks, S.    
Sun Microsyst. Labs, Palo Alto, CA; 

This paper appears in: Asynchronous Circuits and Systems, 2001. ASYNC 2001. Seventh International Symposium 
on 
Publication Date: 2001 
On page(s): 46-53 
Meeting Date: 03/11/2001 - 03/14/2001 
Location: Salt Lake City, UT, USA 
ISBN: 0-7695-1034-5 
References Cited: 10 
INSPEC Accession Number: 6964559 
DOI: 10.1109/ASYNC.2001.914068 
Posted online: 2002-08-07 00:20:11.0  

Abstract 
The GasP family of asynchronous circuits provides controls for simple pipelines, for branching and joining pipelines, for 
round-robin scatter and gather for data dependent scatter and gather and for join on demand through arbitration. The family 
is designed so that each stage operates at the speed of a three-inverter ring oscillator Test chips in 0.35 micron technology 
exhibit throughput in excess of 1.5 giga data items per second (GDI/s). Between GasP pipeline stages a single wire carries 
both request and acknowledge messages, also recording the FULL or EMPTY state of each pipeline stage. GasP control 
circuits rely on careful choice of transistor widths to equalize the delay in logic gates. Assurance of uniform gate delays 
permits use of self-resetting logic forms that have very low logical effort 
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Gasp: A Minimal FIFO Control 

Ivan Sutherland and Scott Fairbanks 
Sun Microsystems Laboratories, Palo Alto, California, USA 

Abstract 

The G a s p  family of asynchronous circuits provides 
controls f o r  simple pipelines, fo r  branching and joining 
pipelines, f o r  round-robin scatter and gathel; f o r  data- 
dependent scatter and gathel; and for  join on demand 
through arbitration. The family is designed so that each 
stage operates at the speed of a three-inverter ring 
oscillator: Test chips in 0.35 micron technology exhibit 
throughput in excess of 1.5 giga data items per  second 
(GDIh). 

Between G a s p  pipeline stages a single wire carries both 
request and acknowledge messages, also recording the 
FULL or  EMPTY state of each pipeline stage. G a s p  
control circuits rely on careful choice of transistor widths 
to equalize the delay in logic gates. Assurance of uniform 
gate delays permits use of self-resetting logic forms that 
have very low logical effort. 

1. Definitions 

Let us start by considering the meaning of some terms. 
In referring to the condition of latches, we use the words 
“transparent” and “opaque” to avoid the ambiguity of 
“open” and “closed.” In referring to the parts of a pipeline 
we use the words “PLACE’ and “PATH” to distinguish two 
kinds of circuits: a PLACE holds data whereas a PATH 
controls the flow of data between PLACEs. Along an 
asynchronous pipeline PATHS and PLACEs alternate so 
that each PATH has a predecessor and successor PLACE. 
The word “stage” describes one alternation, as in “forward 
latency per stage,” but fails to specify a precise boundary. 
A stage usually includes a complete PLACE, as in “the 
stage is FULL,” and may include either its predecessor 
PATH or its successor PATH or part of each. 

PATH and PLACE in this context sometimes seem 
counterintuitive. In common use a path along which we 
walk takes us from place to place, a notion true in our 
circuits topologically but not geometrically. The geometric 
difference comes from the ability of every wire in a CMOS 

circuit to store information: PLACEs include the wires that 
hold information, and those wires have geometric extent, 
whereas PATHs include the tiny CMOS transistor switches 
through which information flows from PLACE to PLACE. 
Think of a PATH as the door between corridor-like 
PLACES, a useful metaphor. 

2. Introduction 

In the past few years our group has sought speed by 
reducing the complexity of asynchron’ous control circuits. 
The resulting control circuits seem to use the fewest 
transistors required to move data asynchronously through a 
series of latches, and they run corres~pondingly fast. Our 
circuits depend on the designer’sfaith iin correct timing “in 
the small,” faith bolstered by the careful timing analysis 
described in [7] .  Our faith in timing exlends not only to the 
“bundled data convention” that assures correct operation of 
the data path, but also, and to a much greater extent than 
ever before, in the control circuits as well. Our circuits use 
measurement very sparingly and are therefore 
asynchronous only “in the large.” This is a marked contrast 
to Delay Independent circuits that use measurement to 
accommodate wide variation in component delays. 

Some years ago Molnar [4] articulated the basic control 
requirement for an asynchronous pipeline. When two 
successive PLACEs have the states IFULL-EMPTY, the 
PATH between them must copy data forward and change 
their states to EMPTY-FULL. Molnar’s “asp*” control 
system used a flip-flop in each PLACE to record its state 
and a NAND gate in each PATH to detect the conditions 
prerequisite to action. When the NAND gate “fired”, i.e. 
when its output went LO, it advanced the data and changed 
the state of the flip flops in the two adjacent PLACEs. 
Molnar’s asp* circuit was symmetric in form, and so its 
forward latency and reverse latency were the same. The last 
three letters in the name Gasp acknowledge its asp* 
ancestry. 

Seeking to exceed the speed of Molnar’s asp* circuits, 
others in our group built a FIFO using the “transition” or 
non-return-to-zero control described in the Micropipelines 
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paper [8]; we reported performance for this FIFO in [ 5 ] .  In 
the same technology it operates faster than Molnar’s asp* 
circuit, though, to tell the truth, only because of the dual 
data-path favored by its transition logic convention. Its 
important contribution, however, was that its forward and 
reverse latency differed because of the inversion required 
on only one input of the Muller C-element. Seeking 
minimum forward latency, we placed the inverter in the 
reverse path, relegating the longer two-gate delay to the 
reverse direction and reducing the forward latency to its 
minimum: one gate-delay per stage. 

We have since learned, however, that in very fast 
asynchronous circuits it is better to make the forward 
latency long and the reverse latency short. The reason is 
that it takes time to copy data forward through a latch, but 
no time at all to move emptiness backwards. To copy data 
requires a state change at the output of data latches, but to 
move emptiness requires only a declaration of willingness 
to overwrite the old data value. In this regard our early 
Micropipeline design blundered by relegating the longer 
delay to the reverse direction. As you will see, the Gasp 
circuits described here have a forward latency of four gate- 
delays and a reverse latency of two gate-delays. Their cycle 
time is therefore six gate-delays, or precisely the cycle time 
of a three-inverter ring oscillator. 

One can make a symmetric circuit whose forward and 
reverse latency are both three gate-delays per stage. Indeed, 
Molnar explored, but never published, such a circuit form 
which he called “dynamic asp*.” An odd number of gate- 
delays of latency requires that a rising transition in one 
PLACE correspond to a falling transition in the adjacent 
PLACES and therefore requires two forms of PATH circuit. 
Molnar had difficulty finding a latch fast enough to keep up 
with a three gate-delay forward latency. The Gasp circuits 
described here have even numbers of gate-delays of both 
forward and reverse latency, albeit those numbers differ, 
and Gasp circuits can thus use identical, albeit asymmetric, 
PATH circuits. At first the lack of symmetry caused us 
conceptual grief, but this has subsided with growing 
experience. 

Behind Gasp lie three useful lessons from the theory of 
Logical Effort [9]. First, eliminating unnecessary 
transistors tends to make a circuit go faster because every 
transistor consumes charge at its input, retarding the action 
of its driver. Second, conditioning transistors in advance 
can remove the speed-limiting burden of driving them from 
components that lie on critical timing paths. And third, 
calculating transistor widths carefully can balance the 
effort of successive logic gates, not only to reduce overall 
delay, but also to give all gates nearly uniform delay. A 
companion paper [71 shows how we use SPICE to calculate 
transistor widths. 

Our design sequence for Gasp control circuits is 
unusual. At the early stages of logic gate design we assume 
uniform delay for all logic gates in the control circuits. 
This assumption simplifies logic design and encourages 
use of self-resetting logic gates with low logical effort. To 
equalize the performance of each pipeline stage, all control 
circuits use the same number of logic gates, usually three 
or five, in every closed loop. 

After finishing the logic design we pick transistor 
widths to realize the assumed uniformity of gate delay, 
using the methods described in [7]. The final transistor 
widths take into account post4ayout wire loads. The choice 
of actual gate delay is arbitrary, but choosing a shorter 
value for the uniform gate delay gives more speed at the 
cost of more area and more power. The logic loop with the 
worst logical effort turns out to establish a minimum 
achievable gate delay. Surprisingly, even substantial 
capacitive loads from wires have no impact on the 
theoretical minimum achievable gate delay, because larger 
transistors could theoretically drive them as quickly as 
desired. In practice capacitive load of wires does affect the 
transistor widths required and careful use of post-layout 
stray capacitance is important to proper function. We have 
not explored the impact of wire resistance. 

The final result of these design steps is a balanced 
design in which complex pipeline stages use wider 
transistors to run as quickly as simple pipeline stages, and 
simple pipeline stages save power and area with narrower 
transistors, thus running no faster than complex stages. 

3. The basic Gasp circuit 

Each PATH circuit controlling the flow of data between 
stages must act only when both its predecessor PLACE is 
FULL and its successor PLACE is EMPTY. The simplest 
circuit to detect such a condition is a pair of series 
transistors, preferably of N-type. Embedding these 
transistors in a NAND gate adds to them a pair of parallel 
P-type transistors whose sole function is to reset the logic 
function’s output when it no longer need be active; another 
reset mechanism may be preferable. 

When the two series N-type transistors both conduct, 
their output will go LO and we say the PATH hasjred. As 
Molnar pointed out, a PATH must accomplish three things 
when it fires: (1) it must make data latches momentarily 
transparent; (2) it must declare its successor stage FULL, 
and (3) it must declare its predecessor stage EMPTY. 
Starting another action may also be useful, namely (4) to 
reset the output of the series N-type transistors to the 
inactive or HI state. 
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HI = EMPTY 
LO = FULL 

forward latency = a b c d 
reverse latency = x y 
three-inversion loops: a b y, c d x, r s t 

I . self-reset I I . self-reset I 

\ \ 
\ \ 

PLACE ‘I PA PLACE ‘I PA 
I 

c 

I I 

data in I 

l I 1 data latch 
I I data latch 1 

Figure 1. Gasp with self-resetting NAND 

Instead of storing the FULL or EMPTY state of the 
predecessor and the successor stages in flip-flops, Gasp 
circuits store each state on a single wire that we call a state 
conductor. This use of a single shared wire is similar to van 
Berkel’s single track handshaking [lo]. A master clear 
signal establishes the initial condition of each state 
conductor, but the figures in this paper omit master clear. 
To retain the state for an indefinite period requires also a 
keeper, a pair of small inverters back-to-back, whose 
opposition to change is easily overcome by the transistors 
that drive the state conductor. 

In a Gasp pipeline each PLACE has a state conductor to 
indicate whether it is FULL or EMPTY. Each PATH 
attaches an N-type or P-type transistor to its adjacent 
PLACE’S state conductor to force it to the FULL or 
EMPTY state by driving it HI or LO. Although one may 
assign either state encoding to any state conductor, it is 
simplest to understand Gasp circuits using the state 
encoding HI = EMPTY, LO = FULL for all state 
conductors. 

Figure 1 shows three PLACES and two PATHS using 
one form of Gasp circuit. Each PLACE holds a data item in 
data latches and holds the FULL or EMPTY state of its 
data latches on a state conductor with a keeper. The figure 
omits master clear circuits that set the state of each PLACE 
to EMPTY. Each PATH contains a Gasp control circuit and 
the pass transistors through which the data flow from 
PLACE to PLACE. 

out 

Given the series stack of N-type transistors and the state 
encoding, the rest of the PATH circuit is simple. As seen in 
Figure 1, the output of the N-type transistor NAND stack 
[b & x] serves the four purposes 1 - 4 stated above, with the 
circuit connections for each purpose correspondingly 
labeled: ( 1 )  The latch drive signal from inverter [cc] is a 
short positive pulse suitable for making the N-type 
transistor pass gates [p] momentarily transparent to copy 
data forward. (2) Inverter [c] and N-type transistor [d] drive 
the successor state conductor LO, meaning FULL. (3) P- 
type transistor [y] drives the predecessor state conductor 
HI, meaning EMPTY. And (4) delaying inverters [r & s] 
and P-type transistor [t] reset the NAND function after a 
short delay. 

Notice that the preceding state cortductor enters the N- 
type transistor NAND function at [b] through inverter [a] 
but the succeeding state conductor enters directly at [XI. 
This makes the NAND function detect the condition LO- 
HI, which has the meaning FULL-EMPTY. 

Notice also that this circuit is buili from three loops of 
three inversions each. The predecessor loop [a b y] involves 
the predecessor state conductor, an inverter, the NAND 
stack, and the P-type drive transistor. The successor loop [c 
d x] involves the successor state conductor, the NAND 
stack, an inverter, and the N-type drive transistor. The reset 
loop [r s t] involves the NAND output, two inverters in 
series, and the P-type reset transistor. 
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I I data latch I I 

Figure 2. Gasp with twin state conductors 

The forward latency per stage of this circuit is four gate- 
delays [a b c d] and its reverse latency per stage is two gate- 
delays [x y]. In the forward direction, a falling transition, 
meaning FULL, on the predecessor state conductor travels 
via inverter [a], the NAND stack [b & x], another inverter 
[c] and the N-type driving transistor [d] to become a falling 
transition on the successor state conductor, declaring it 
FULL. In the reverse direction, a rising transition, meaning 
EMPTY, on the successor state conductor travels via the 
NAND stack [x & b] and the P-type driving transistor [y] to 
become a rising transition on the predecessor state 
conductor, declaring it EMPTY. The cycle time of six gate- 
delays is the sum of the forward and reverse latency and is 
also, as previously mentioned, the characteristic period of 
the three-inverter loops in the circuit. 

As we shall do in some figures, one can draw an 
ordinary NAND-gate symbol to represent the self-resetting 
NAND function formed by transistors [x b t] and inverters 
[r SI. Moreover, one can even replace the self-resetting 
NAND gate itself with an ordinary NAND gate, depending 
on the change of state in the adjacent state conductors to 
reset the NAND gate. Although the self-resetting NAND 
gate has lower logical effort, an ordinary NAND gate with 
suitable transistor widths will also serve. In either case, the 
more compact notation of the standard NAND symbol 
usually aids understanding. 

In complex connections of Gasp circuits such as 
described in [3], a separation of state conductors often 
proves useful. For example, Figure 2 shows a Gasp circuit 
with two separate state conductors, s l  and s2, in the middle 
PLACE. The two drive transistors, d l  and d2, in the 
preceding PATH drive both state conductors LO, and the 
two drive transistors, [yl] and [y2], in the following PATH 
drive both state conductors HI. Other path circuits may also 
establish FULL or EMPTY states as suggested by 
transistors [d4] and [y51. 

Although the PATHS in Figure 2 drive both state 
conductors from each end, only one PATH monitors the 
state of each. In this example, only the left PATH monitors 
the state of sl ,  via the input to NAND [b], and only the 
right PATH monitors the state of s2, via the input to its 
inverter [a]. As seen by the left PATH, s l  has the state 
encoding HI = EMPTY and LO = not EMPTY, as seen by 
the right PATH, s2 has the state encoding LO = FULL and 
HI = not FULL. In a more complex connection several 
Gasp circuits might drive or monitor each state conductor. 
A companion paper [3] describes many such circuits and a 
notation for them. It is also possible to make a symmetric 
form of Gasp circuit using twin state conductors to achieve 
equal forward and reverse delay. 
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Y 

P -  AA BB 
P cc 

input-limited operation 

Figure 3a. Input-limited, LO is FULL 

filling output-limited operation 

Figure 3b. output-limited, 1-0 is FULL 

4. Timing 

Careful control of transistor widths, as described in the 
companion paper [7], makes all gate-delays nearly 
identical. Indeed, because we give each transistor a width 
proportional to its load, all logic gates operate not only 
with nearly uniform delay but also with nearly uniform rise 
time. Thus the wave-forms seen on different wires have 
similar. shape and differ only in phase, as seen in the 
idealized output of Figure 3a and 3b. Simulation output 
from SPICE looks remarkably like these idealized wave 
forms. * 

Now let us consider how two PATHS like those of 
Figure 1 drive the state conductor between them. After the 
first PATH uses transistor [d] to drive the state conductor 
LO, meaning FULL, the second PATH will take at least 
three gate-delays to drive the state conductor HI again 
using transistor [y]. Moreover, by the time the second 
PATH turns on transistor [y] to drive the state conductor 
HI, the first PATH will have turned off transistor [d] and 
thus will have ceased driving the state conductor LO. 

Consider next what happens at maximum throughput, 
assuming that all gate delays match. At maximum 
throughput the gate signals on both N-type transistors [b & 

x] in each NAND stack are identical, because a fresh empty 
space and a fresh data item arrive at exactly the same time. 
Moreover, because the gate delays match, the input signal 
to N-type drive transistor [d] in one PATH matches the 
input to P-type drive transistor [y] in the next PATH. In 
effect transistor [d] in one PATH and transistor [y] in the 
next PATH behave like a single quasi-inverter driving the 
state conductor, even though they are separated in space. 

At less than maximum throughput the input signals to 
the two N-type transistors [b & x] iin the NAND stack 
differ. One becomes HI before the other, but which one 
goes HI first depends on whether tlhe FIFO is source- 
starved and waiting for a data item or sink-starved and 
waiting for an empty space. Similarl,y, the quasi-inverter 
formed by transistor [d] in one PATH and transistor [y] in 
the next PATH gets two different input signals in this case, 
but the input to the P-type transistor [y] is never lower in 
voltage than the input to the N-type transistor [d]. 

The logical effort of this circuit is remarkably small. In 
the forward direction, ignoring branching effort, the logical 
effort is 2/3 for the NAND stack, ancl 1/3 for the N-type 
drive transistor, for a 2/9 product. In tlhe reverse direction, 
again ignoring branching effort, the logical effort is 213 for 
the NAND and 213 for the P-type drive, for a 419 product. 
This remarkably low logical effort, rleduced to less than 
one in both directions by use of self-resetting circuits, 
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pulse, to 
data latches 

Figure 4. Gasp with two successor places 

contributes to the speed of Gasp circuits. The very low 
logical effort of Gasp circuits also allows them to drive 
wide data paths via a single amplifier, labeled [cc] in many 
of the figures. Avoiding multiple amplifier stages is 
important to retaining an adequate pulse width to activate 
the latches. 

5. The family 

Figures 4-7 show other Gasp circuits. The unconditional 
Branch of Figure 4 acts when its predecessor PLACE 
[place01 is FULL and both successor PLACES [placel and 
place21 are EMPTY. It combines inputs from its two 
successor state conductors in a three-deep NAND stack [b 
XI  x2] and uses two N-type driver transistors [dl and d2] to 
declare the two successor state conductors FULL. 
Similarly, the unconditional Join circuit, not illustrated, has 
separate predecessor state conductors, all of which must be 
LO, meaning FULL, before it takes action. The additional 
AND function can appear in the NAND stack, as in the 
Branch circuit, or as a NOR replacement for inverter [a] of 
Figure 1. Separate P-type driver transistors, like transistors 
[yl and y21 in Figure 2, declare the separate predecessor 
state conductors EMPTY. 

A companion paper [3] describes round-robin 

data in 

Figure 5. Data conditional Gasp 

configurations for branching and merging that use 
additional state conductors to indicate which of several 
parallel circuits, like those shown here; should be the next 
to fire. 

Data conditional circuits require extra care. They must 
drive the successor state conductor LO, meaning FULL, 
only when suitable data are present. Note in Figure 1 that 
the N-type transistor [d] in the control circuit and the N- 
type pass gate transistor [p] in the data path are both one- 
inverter distant from the output of the NAND function. 
Thus [d] and [p] conduct concurrently. Provided the input 
data are in the right time relationship for the data latches, 
any input data bit is also in the proper time relationship 
with the control to condition a second N-type transistor [q] 
seen in Figure 5. This extra transistor prevents or permits 
driving the successor state conductor LO depending on the 
data input value. Notice that the data input to the circuit, 
rather than the data output, controls the action. 

The circuit of Figure 6 is a form of Gasp that uses a 
different encoding for its state conductors: HI means FULL 
and LO means EMPTY. This circuit has two N-type NAND 
stacks [c y] and [cc yy] with parallel inputs. One stack [cc 
yy] drives the predecessor state conductor directly while 
the other stack [c y] forms the NAND that activates the 
remaining functions. Because their inputs are connected in 
parallel, falling transitions of both stacks always coincide 
in time. Rising transitions may differ in time because they 
respond to other inputs. 

Figure 6 also shows a P-type transistor driver [ddl] with 
a self-resetting loop to drive its reset transistor [e]. Such a 
self-resetting driver accommodates a wired-OR for input 
from another Gasp circuit via transistor [dd2]. Because the 
duration of the latch pulse depends on the loop delay of the 
reset loop, its transistor widths must be carefully chosen. 
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self-reset . 
self-reset , 

HI = FULL 
LO=EMPTY .r(d 

from NAND 
in another 
Gasp PATH 

pulse to 
data latches 

Figure 6. Another Gasp form 

Although its logical effort is slightly higher, the “HI 
means FULL” form of the Gasp circuit seen in Figure 6 is 
preferable to the “LO means FULL” form of Figure 1 for 
three reasons. First, it offers two series stages of 
amplification [a & b] in the forward direction between the 
predecessor state conductor and the NAND stacks, either 
or both of which could perform logic. Second, between the 
successor state conductor and the NAND stacks it places 
the inverter [x] whose threshold provides extra noise 
immunity. And third, it has four levels of inversion [a b c 
ddl]  rather than three levels in the forward direction 
between the predecessor state conductor and the latches. 
Moreover, in the reverse direction between the successor 
state conductor and the latches it has three levels of 
inversion [x y ddl]  rather than two. These extra levels of 
inversion provide enough electrical amplification to drive 
even the heavy loads imposed by the many latches in wide 
data paths. 

Perhaps most important, two series stages of 
amplification, [a & b] in the circuit of Figure 6 
accommodate arbitration, as shown in Figure 7. Here, a 
Mutual Exclusion (ME) element [a & aa] and its 
metastability guard [b & bb] replace the two series 
amplifiers. This circuit provides a clean choice as to 
whether the NAND stack will or will not fire, even if the 
external stop input arrives at an unfortunate moment. We 
use this circuit as a “proper stopper” to interrupt the flow of 
data without damaging either the existence of, or the value 
carried by, a data item, A similar Demand-Join circuit gives 
contending inputs access to a common output. 

HI = FULL 

predecessor 

stop data latches 

Choose threshold of inverters 
b and bb to avoid metastability. 

Figure 7. Gasp with arbitration 

6. Test chips 

Our group at Sun Microsystems has now built several 
test chips using Gasp circuits. One, called “First Gasp,” 
demonstrates FIFO rings and the data conditional 
forwarding shown in Figure 5.  Another, called “Vanilla,” 
measures the behavior of Gasp circuits near maximum 
throughput. It includes three variants (of Gasp called 412,4/ 
4 and 614: the two numbers describe the number of gate- 
delays of forward and reverse latency. The circuits of 
Figures 1 - 7 are all of the 412 Gasp form. The 414 Gasp 
form adds two extra inverters in the reverse direction to 
make the circuit symmetric. The 614 Gasp form adds two 
extra inverters in both the forward and reverse direction, 
reducing the care required in picking lransistor widths. It is 
a more conservative design than shown in this paper and 
operates at the speed of a five-inverter ring oscillator. 

’Another Gasp test chip is the “Square FIFO’ described 
in [7]. It uses many circuits like that of Figure 2 to scatter 
entries to a number of parallel FIFOs and, later on, to 
gather them up again in sequence. It 11s built with ordinary 
NAND gates, as seen in Figure 2, rather than the self 
resetting forms. When the circuit drives the state 
conductors to their new state, they reset the NAND. 

We have also built and tested two more elaborate chips. 
One called FLEETzero is reported separately in [l]. 
Another elaborate test chip, called “135,” is under test as 
this is written. The t35 chip includes alternating Join 
circuits, unconditional Join circuits, a data-conditional 
switch, as in Figure 5, and proper stoppers, as in Figure 7. 
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The t35 chip detects mismatched values in two high-speed 
35-bit data streams, but after combining two such streams 
and computing error bits, its data path reaches a width of 
105 bits, demonstrating the ability of Gasp control circuits 
to drive large loads. The t35 control circuits operate as 
expected, but there remain some difficulties with 
surrounding logic. We expect to report full operation of the 
chip in the near future. 

Gasp circuits have proven remarkably resistant to 
changes in power supply voltage. As reported in [l] the 
“cargo rings” on the FLEETzero chip run correctly with 
power supply voltage anywhere between 1.2 and 4.8 volts 
with a nominal voltage of 3.3 volts. Other test chips 
experience similar latitude. 

7. Conclusion 

Gasp circuits reduce asynchronous pipeline control to 
its minimal form. They involve an AND function and a 
mechanism for changing the state of predecessor and 
successor stages. Because they are pulse circuits they enjoy 
very low logical effort, reduced still further by the use of 
self-resetting logic. In addition to providing high speed, 
this very low logical effort obviates the need for additional 
control signal amplification, even in systems with wide 
data paths. 

The Gasp family is designed so that each stage operates 
at the speed of a three-inverter ring oscillator. Test chips in 
0.35 micron technology exhibit throughputs in excess of 
1.5 giga data items per second (GDUs). Gasp circuits 
simulated in a 0 . 1 8 ~  technology easily achieve the 
throughputs reported in [6]. 

Gasp circuits suffer from dependence on time, albeit 
only in small local areas. Careful balance of transistor 
widths to match delays is crucial to making Gasp circuits 
work. Devotees of delay insensitivity may claim that this 
denies the whole point of asynchronous design. We feel, 
however, that Gasp combines the best of both the 
synchronous and asynchronous worlds. Circuits designed 
to operate in a fixed known time are logically simpler and 
faster than circuits that check completion every cycle; 
through faith we gain speed. Gasp circuits are based on the 
faith that circuits designed to operate in a known time will 
do so, faith bolstered by using logical effort as the basis for 
design. We prefer to reserve asynchronous measurement of 
completion for higher level functions such as sequencing 
complex operations, conjunction of data in complex 
pipeline networks, dealing with metastability in arbitration, 
and waiting for the arrival of fresh data or empty space in 

long-distance communication. 
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