
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 5, AUGUST 2023 1303907

State Access for RSFQ Test and Analysis
Marly Roncken , Member, IEEE, Ebelechukwu Esimai , Graduate Student Member, IEEE, Vivek Ramanathan,

Warren A. Hunt Jr. , and Ivan Sutherland

(Invited Paper)

Abstract—We present means to initialize, to propagate, and to
examine states in an RSFQ circuit that are useful for design as
well as for functional test and analysis. Our RSFQ test strategy
distinguishes states by the information they carry from computa-
tion to computation, and saves costs by ignoring information-free
states. To start, stop, and stall operations that are asynchronous,
we developed a new variety of RSFQ stateholder, called MrGO
after its CMOS counterpart. We include two simulated examples,
a clocked pipelined adder for which we test functionality, and an
asynchronous ring FIFO for which we analyze throughput.

Index Terms—RSFQ circuit, initialization, test and analysis,
information-free state, information mobility, asynchronous.

I. INTRODUCTION

S TATES are so abundant in Rapid Single Flux Quantum
(RSFQ) circuits [2], [12], [22] that it may be too expensive

to access them all for functional test and analysis [1]. In this
paper, we distinguish states by (1) the information they carry
from computation to computation, and (2) the mobility of that
information. We avoid test access to information-free states
that change temporarily during a computation but remain the
same between computations. We judiciously use nondestructive
state readouts to create fixed rather than moving test targets.
To support design, test, and analysis of asynchronous circuits,
we introduce new varieties of stateholders that provide the flow
control necessary to (1) start and stop an operation, and (2) stall
an operation until progress conditions are met.

We simulate two examples in an (R)SFQ MIT Lincoln Lab-
oratory process geometrically equivalent to 270 nm CMOS.
The clocked pipelined adder in Fig. 1 provides test access to
the latch states that store to-add or added data but not to the
information-free states in the adder logic. The asynchronous
ring FIFO in Fig. 3 uses the new stateholders to implement its
protocols and fix locations for initialization and test access.

Manuscript received 9 November 2022; revised 16 February 2023; accepted
20 February 2023. Date of publication 2 March 2023; date of current version
21 April 2023. This work was supported in part by private sponsors through
the Portland State University Foundation and in part by the Mayo Clinic under
Grant SPPDG-052 for “Computing Systems Based on the Link-Joint Paradigm.”
(Corresponding author: Marly Roncken.)

Marly Roncken, Ebelechukwu Esimai, and Ivan Sutherland are with the
Asynchronous Research Center, Maseeh College of Engineering and Com-
puter Science, Portland State University, Portland, OR 97207 USA (e-mail:
marly.roncken@gmail.com).

Vivek Ramanathan and Warren A. Hunt Jr. are with the Department of
Computer Science, The University of Texas at Austin, Austin, TX 78712 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASC.2023.3251949.

Digital Object Identifier 10.1109/TASC.2023.3251949

One can read this paper two ways. The main text serves as
storyline for the examples and key ideas, and the motivations and
strategy behind them. Figures and captions give enough detail
on circuits and simulations for replication.

II. TERMINOLOGY AND NOTATION

The examples in this paper are partitioned into Links that
store and transfer information, and Joints that compute on and
control the flow of information. We use a similar partition in our
CMOS designs [7], [17], [18], [19]. The dual-rail data encoding
in the adder example uses two signals per bit, called T and F. A
pulse comes into either the T bit signal or the F bit signal but
never both. A pulse on T, F, or neither, denoted as [T,F]=[1,0],
[0,1], or [0,0], represents value 1, 0, or nodata, respectively. All
current values in this paper are given in normalized units, Inorm,
of 125e-6 A. All inductance values are given in normalized
units, Lnorm, of 2.632e-12 H. In our RSFQ circuits, we mark
grounded Josephson junctions with symbol � and flying ones
with symbol ×.

III. EXAMPLE 1: CLOCKED PIPELINED ADDER

Pipelining is attractive for streaming long arithmetic calcu-
lations at high throughput. The pipelined adder in Fig. 1 adds
2-bit numbers, x and y, to 1-bit carry input, c, and generates
3-bit sum output, s. The first and leftmost pipeline stage adds
the least significant x, y bits to c and generates a 1-bit carry
output that serves as carry input for the second and rightmost
stage, which adds the most significant bits. By increasing the
number of stages, we can add numbers with increasingly more
bits. The pipeline stages operate in parallel. While the second
stage adds the most significant bits, the first stage adds the least
significant bits of the next x, y to the next c. A demonstration
follows in the first simulation half of Fig. 2, where we show two
consecutive x, y, and c additions.

Links store data to be added or already added. Because these
data change with each addition, Links make superb entry and
exit points for testing functionality of the adder logic, located in
ADD Joints. To this end, we store data in D2 latches [12], which
have two separate input and two separate propagate-and-output
options for normal versus test operations — see Fig. 1(b). Joint
states are information-free, changing during but not between
ADD operations — see Appendix. As a result, we can initialize
and test the Joints by controlling and observing Link latches.
Test access inside ADD Joints is unnecessary. A demonstration
follows in the second simulation half of Fig. 2, where we proffer

1051-8223 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3703-3856
https://orcid.org/0000-0003-2566-6119
https://orcid.org/0009-0004-1444-2544
mailto:marly.roncken@gmail.com
https://doi.org/10.1109/TASC.2023.3251949

1303907 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 5, AUGUST 2023

Fig. 1. Clocked adder with two pipeline stages (a). The first stage has two input Links, L1_xy and L1_c, that store 1-bit dual-rail encoded data that they transfer
by means of a clock to an ADD Joint, J1, which adds the bits. The Joint sends the resulting sum and carry to two output Links, L1_s and L2_c, that store the 1-bit
dual-rail results for later transfer. The second stage is similar, and consists of input Links L2_xy, L2_c, ADD Joint J2, and output Links L2_s, L3_c. Normally,
the first stage acts first. It adds a 1-bit carry input to the least significant bits of 2-bit data inputs x, y. The second pipeline stage must wait until the first stage has
generated a carry bit for it to add to the two most significant x, y bits. The Links use D2 latches to store their data. Panel (b) shows the RSFQ circuit and icon
for a D2 latch. During normal operation, the data in a D2 latch come and go through the Link. However, for initialization, test, and analysis, we can redirect D2
data to come from or go to a scan chain. The picture omits a global clock signal and its fork connections to local Link clocks and D2 prop signals. Also omitted
are a global scanshift signal and its fork connections to the local D2 scan[shift] signals in each Link. Both are present in the simulation for Fig. 2. Absent from
our simulation are serial scan chain connections between D2 scan[in] and scan[out] signals. The RSFQ circuit for Joint ADD is based on Patra et al. [16], and
replicated in the Appendix. Note that ADD has neither a clock nor scan test access.

two consecutive D2-stored test inputs to both Joints, and observe
their D2-stored test responses.

We can extend this approach to larger parts, e.g., test the
2-stage adder as one part and avoid test access to Joints J1,
J2 and Link L2_c whose states are information-free for 2-stage
additions. Testing larger parts increases test time but decreases
circuit area, especially when parts have many internal Links.

The ADD Joints use self-timed dual-rail data and are therefore
clockless. The Links use local clocks that connect to a global
clock to propagate data simultaneously to and from each pipeline
stage. The maximum clock frequency might decrease if we in-
crease the number of pipeline stages — a problem absent in fully
asynchronous and globally asynchronous locally synchronous
(GALS) designs.

IV. EXAMPLE 2: ASYNCHRONOUS RING FIFO

First-In-First-Out (FIFO) buffers are useful for maintaining
throughput between system parts operating at different speeds
and for on-chip at-speed test runways [8], [14]. The ring FIFO
in Fig. 3 copies data from Link to Link around the ring. As in
the adder in Fig. 1, the Links store their data in D2 latches. But
unlike the adder, the ring FIFO lacks a clock that we can stop to
obtain exclusive latch access for scanning test data in or out. In
the ring FIFO, we obtain exclusive test access by stopping one
or more Joints. For this purpose, each Joint has a go-nogo gate,
called MrGO and pronounced “Mister GO” [19].

A. MrGO and Related Stateholders

The purpose of MrGO is to enable or disable Joint action.
In RSFQ, MrGO combines a nondestructive readout (NDRO),

called STATE, with a gate called SYNC that combines a ren-
dezvous and latch (see Figs. 4–5(a)). The RSFQ behavior of
MrGO can be specified with pulse logic—a Boolean logic where
true indicates the presence and false the absence of a pulse.
We specify our gates using guarded commands [5], but a finite
state machine diagram [12] works equally well. The guarded
commands for MrGO combine those for STATE and SYNC
following next (parameters are as in Fig. 4).

STATE (set state, reset_state, read_state, ans_state, s1)
set_state → s1:=true; set_state:=false
reset_state → s1:=false; reset_state:=false
read_state → ans_state:=s1; read_state:=false

SYNC (R, killR, goneR, ansA, ansB, s1)
s2 : bool
R → s2:=true; R:=false
killR → goneR:=s2; s2:=false; killR:=false
s1 ∧ s2 → ansA:=true; ansB:=true; s2:=false

Guarded commands “guard→ command” execute atomically,
in mutual exclusion, and only when their guard is valid [5].

B. Turn-Taking in the Link-Joint Protocol

In good conversations, one listens while the other speaks.
As the conversation progresses, listener and speaker take turns.
Following good conversation practice, the asynchronous Link-
Joint protocol lets Joints take turns updating the one-to-one
Links connecting them. Each Link keeps track of whose turn
it is, and shares this information with both Joints [7].

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

RONCKEN et al.: STATE ACCESS FOR RSFQ TEST AND ANALYSIS 1303907

Fig. 2. Simulated results for the clocked pipelined adder of Fig. 1.
� From 0 to 400 ps, the adder performs x1x2 + y1y2 + c1 twice, using a

10 GHz clock, adding11+11+0 (3+3+0) then10+01+0 (1+2+0)
with sum s1s2c3=011 (6), 110 (3), in binary (decimal) values, least
significant bit left as in Fig. 1.

� Upon the first clock pulse, the first pipeline stage adds the dual-rail encoded
least significant bits of the first pattern, x1[T,F], y1[T,F], c1[T,F], stored
in D2 latches of Links L1_xy, L1_c. The waveforms show the current
through the corresponding quantizing inductor, L2 (see Fig. 1(b)). Before
the second clock pulse, sum and carry results are stored in the D2 latches of
Links L1_s, L2_c as s1[T,F], c2[T,F]. Note that dual-rail (decimal) values
x1[T,F]=[1,0] (1), y1[T,F]=[1,0] (1), c1[T,F]=[0,1] (0) yield expected
sum value s1[T,F]=[0,1] (0). In the first clock period, the second pipeline
stage remains idle, because it receives nodata for dual-rail inputs x2[T,F],
y2[T,F], and c2[T,F].

� Upon the second clock pulse, the most significant bits of the first pat-
tern are available in L2_xy, L2_c, for addition by the second pipeline
stage, which yields s2[T,F]=[1,0] (1), c3[T,F]=[1,0] (1). Meanwhile,
the first stage adds the least significant bits of the second pattern, yielding:
s1[T,F]=[1,0] (1).

� Upon the third clock pulse, the second pipeline stage adds the most
significant bits of the second pattern, yielding: s2[T,F]=[1,0] (1) and
c3[T,F]=[0,1] (0). The first stage, having finished its patterns, receives
nodata and is therefore idle. The fourth clock pulse clears all D2 latches
for the next test.

� From 400 to 800 ps, two scan patterns test two single-bit additions
xi+yi+ci (1+1+0 then 1+0+0) in both pipeline stages (i=1..2), simul-
taneously, using 5 GHz clock and scanshift signals. We use scanshift to
clear D2 latches before scanning in new data, which is crucial for c2[T,F]
that serve as test output for the first pipeline stage and as test input for the
second stage.

Connections occur at ports. Each Link transfers data from its
port A to its port B, while each COPY Joint copies data from its
port in to its port out. Link port A is compatible with COPY port
out, and Link port B with COPY port in.

Fig. 3. Asynchronous ring FIFO with storage capacity of up to four 4-bit data
items. The protocols exchange data for space. The ring FIFO can be idle (1) for
lack of data, when it stores zero data items, or (2) for lack of space, when it
stores four data items, or become idle (3) because we disable some Joint to act.
When not idle, the ring circulates data at full-native speed. Four Links store and
transfer data. Four COPY Joints manipulate data and flow control by copying
incoming to outgoing data. Data flow in the direction of the Link arrows. Scan
test connections allow us to control and observe (1) protocol settings in each
Link, (2) go–nogo settings in each Joint, and (3) data in Link L1.

The RSFQ Link implementation in Fig. 5(b) uses two in-
stances of STATE of Fig. 4(a), TURNA and TURNB, to track
and share turn information. TURNA shares A’s turn via A[s] and
A[me]. TURNB shares B’s turn via B[s] and B[me]. Signals A[s],
A[me], B[s], and B[me] are shared with the corresponding Joint
ports, e.g., A[s] and B[me] of Link L1 in Fig. 3 alias out[s] of
J1 and in[me] of J2, respectively.

The RSFQ Joint implementation in Fig. 5(a) connects state-
holder TURN, a reduced version of SYNC of Fig. 4(b), to MrGO,
discussed in Section IV-A. TURN waits for turns on in and out
before triggering MrGO to relinquish both turns.

Having two STATE gates in the Link makes it possible to
keep related STATE (Link.TURNA or Link.TURNB) and SYNC
(Joint.TURN) gates together in the physical layout.

C. State Access for Throughput Analysis

Our throughput analysis comes from the Weaver, an asyn-
chronous crossbar switch in 40 nm CMOS, with measured ring
FIFO throughput up to 6 Giga data items per second [17]. Fig. 6
outlines the approach and shows simulated throughput up to
10 Giga data items per second for the RSFQ ring FIFO. We
avoid test access to the following stateholders:
� D2 latches in L2, L3, and L4, because their data come

around to Link L1 for test control and observation;
� Joint TURNs, because a TURN state is the same before and

after a COPY operation and can be controlled and observed
via scan access to Link TURNAs and TURNBs;

� Joint MrGO.SYNCs, because our approach to throughput
analysis works with rather than against the protocols.

Crucially, Link TURNA and TURNB are STATE gates with
nondestructive readout. Their states outlive read operations. In
contrast, states vanish to move along with the gate output for

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

1303907 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 5, AUGUST 2023

Fig. 4. For NDRO gate STATE (a) we represent the presence or absence of circulating current through quantizing inductor L1 as state s1 being true or false
(see Section IV-A). As in other NDRO gates, s1 can be set true, reset false, and read out nondestructively from read_state to ans_state. In addition, s1 is shared
externally via signal state — both logically, as Boolean, and electrically, by the presence or absence of a trickle current. Similarly, s2 relates to quantizing inductor
L21 in gate SYNC (b), is set via R, and read out destructively from killR to goneR. Upon (state∧ s2), SYNC generates a pulse on ansA and ansB, and resets
s2. In terms of RSFQ gates, SYNC combines a rendezvous (between R, state, ansA/B) with a latch (between R, killR, goneR). A reduced version of SYNC,
without killR–goneR, uses Lnorm=2.8 for L21. Margin simulations show correct operation when we vary individual current sources CS0, CS10 in STATE within
[−30%,+25%], [−20%,+0%], and CS20–CS24 in SYNC within [−40%,+30%], [−20%,+10%], [−100%,+45%], [−100%,+45%], [−50%,+70%], respectively.

Fig. 5. RSFQ circuit and icon for the COPY Joint (a) and communication Link (b) used in the ring FIFO in Fig. 3.
(a) The Joint acts conditionally, waiting for (1) a pulse on in[me], indicating that the data received over in[bit1,bit2,bit3,bit4] are valid and complete and that

port in has the turn for its connecting Link, (2) a trickle current on out[s], indicating that port out has the turn for its connecting Link, and (3) a trickle current
on MrGO.s, giving the Joint permission to act. The waiting sequence is irrelevant, because the SYNC gates in TURN and MrGO rendezvous their inputs —
see Fig. 4 — and because (in normal operation) the Link-Joint protocol guarantees persistent trickle currents for as long as the Joint waits. When the wait is
over, the Joint acts by generating a pulse on in[you] and out[you], relinquishing both Link turns. By then, the Joint has also copied in[bit1,bit2,bit3,bit4] to
out[bit1,bit2,bit3,bit4].

(b) The Link has two mutually exclusive STATE gates, TURNA and TURNB, that together store whose turn it is to propagate Link data or change the turn.
Before we set one STATE we reset the other. During normal operation, B[you] resets TURNB and gives the turn to Link port A, and thereby to the Joint port
connected to A. For initialization, test, and analysis, we use scan[A] to do the same. Giving the turn to A not only sets TURNA, causing a trickle current on
A[s], but also generates a pulse on A[me]. The Joint uses one or the other to determine if A has the turn. Likewise, A[you] and scan[B] reset TURNA, set
TURNB, and generate a pulse on B[me], but also propagate data stored in D2 latches of DATA_AtoB. The picture omits the forks in prop[1:4] and between
scan[shift] and shift[1:4].

Note that the ring FIFO in Fig. 3 uses only a subset of the scan connections provided by its Links and Joints.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

RONCKEN et al.: STATE ACCESS FOR RSFQ TEST AND ANALYSIS 1303907

Fig. 6. Simulated waveforms showing throughput of the asynchronous ring FIFO in Fig. 3 versus occupancy, the number of data items in the ring. The waveforms
for Li[A] and Li[bitj], i =1..4, j=1..3, show the current through inductors Li.TURNA.L1 and Li.DATA_AtoB.L2[j] — see Figs. 1(b), 4(a), 5(b). The waveform for
L1[scanprop] shows the current through the scan[prop] branch inductor in L1.MERGE_A2 — see Fig. 5(b). The waveform for L1[scanshift] shows the current
through an inductor in the fork tree connecting scan_L1[shift] to L1.shift[1:4] — see Figs. 3, 5(b). The current for J1.MrGO.SYNC.L21 speaks for itself.
� The most important simulation parts are the three 1000 ps run periods, starting around 1800, 4000, and 6300 ps, during which the ring FIFO operates at

full-native speed. These run periods are confined between “blocks” of stable high current levels for J1.MrGO.SYNC.L21 (bottom row) during which COPY
Joint J1 is disabled. For the first run period, 1800–2800 ps, we count 6 pulse intervals for J1.MrGO.SYNC.L21, which indicates that Joint J1 acted six times.
We also count 6 data pulses on Link L2, all from L2[bit1], L2[bit2], and L2[bit3] (fourth row from top). This indicates that L2 transferred data six times,
in lockstep with J1.MrGO.SYNC.L21, and that the ring FIFO contains three data items. For the second run period, around 4000–5000 ps, we count 10 data
pulses on L2, all from L2[bit2] and L2[bit3]. For the third run period, 6300–7300 ps, we count 5 data pulses on L2, all from L2[bit3]. From this information,
we can determine the throughput of the ring FIFO as a function of “the number of data items in the ring” also known as occupancy. The waveforms show
that for occupancies 3, 2, and 1, the ring FIFO runs at 6, 10, and 5 Giga data items per second.

� In future on-chip measurements, the task of counting how often a data item passes a given location in the ring FIFO can be fulfilled by a scan-testable ripple
counter [13], [17], triggered by the currently unused TURN output in one of the COPY Joints — see Fig. 5(a).

� From 0 to 1800 ps, we scan three data items into the ring. The ring FIFO has only partial (L1) scan access to data, which forces us to merge scan and normal
operations to get more than one data item in the ring. After power-up, all Joints are disabled and cannot interfere with scan operations. Around 5 ps, we
generate a pulse on scan_Li[A], i =1..4, giving the turn to each Link port A and thereby to the output port of each Joint. The waveforms for Li[A] now show
a stable high current. Around 105 ps, we generate a pulse on scan_Ji[go], i=2..3, to enable Joints J2 and J3, and prepare a runway for the data to move
through the ring as far as L4. The Joints remain idle, because only their output ports have the turn. We use three scan steps to “walk in” each data item. First,
we scan in a data value by generating the right pulses on scan_L1[bit1,bit2,bit3,bit4]. Second, we propagate this value to Joint J2 by generating a pulse on
scan_L1[prop]. Third, we start J2 and mobilize the runway by generating a pulse on scan_L1[B]. We “walk in” data at 200, 500, and 800 ps, using 1-hot
scan_L1[bit1,bit2,bit3,bit4] values 1000, 0100, and 0010, represented here as Li[bit1], Li[bit2], and Li[bit3], i=1..4. Note that around 1000 ps, the first
value is stored in Link L4, the second in L3, the third in L2. Around 1200 ps, we enable J4, which causes all data to move to the next Link and puts J1 and
L1 in charge of start, stop, and data removal for each 1000 ps run.

� We start and stop each 1000 ps run by generating a pulse on scan_J1[go] and 1000 ps later on scan_J1[nogo]. After the run has petered out, the data are
queued up counterclockwise from L1, and the turn for all Links with data is with B. To remove a data item we generate first a pulse on scan_L1[scanshift],
clearing the data in L1, and then on scan_L4[A], changing the turn in L4 to A to propagate data from L4 to L1 and forward any data in L3 and L2 by one
Link. We remove a data item around 3300–3500 ps and 5500–5700 ps.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

1303907 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 33, NO. 5, AUGUST 2023

Fig. 7. RSFQ circuit and icon for bit-wise adder Joint ADD of Fig. 1(a) and its rendezvous gate RV (b). ADD takes 1-bit inputs in[xT,xF], in[yT,yF], in[cT,cF],
and generates 1-bit sum and carry outputs, out[sT,sF], out[cT,cF]. Inputs and outputs are dual-rail encoded, with bit value 1 represented by a pulse on T and
bit value 0 by a pulse on F. As elsewhere in this paper, we design conservatively and amplify signals as needed using stepup factors of approximately

√
2 per

Josephson junction. For instance, we amplify all ADD inputs using size 1 (125e-6 A) Josephson transmission lines JTL[1:6] before passing them on to 1.414
transmission lines in RV1 and RV2. A single stepup suffices, because ADD inputs come from 0.707 D2 latches. Core rendezvous gate RVc in (b) matches subcircuit
J26-J24-J22-J27 in Fig. 4(b) with output connections at J24, J22 and current source CS21 — except that in RVc, J26, J27, CS21 accommodate size 1 currents.

latch gates like the D2 latch in Fig. 1(b) and for rendezvous
gates like SYNC in Fig. 4(b) and RVc in Fig. 7(b). Where latch
and rendezvous create moving test targets, STATE provides a
fixed location to (1) start, stop, and stall Joint operations, and
(2) examine, initialize and propagate Link information.

V. CONCLUSION

We have shown a test strategy for RSFQ circuits in enough
detail to enable replication and practicality. We gave two exam-
ples, reflective of state-of-the-art superconducting designs [4],
[6], [9], [11]—a clocked pipelined adder for which we tested
functionality, and an asynchronous ring FIFO for which we ana-
lyzed throughput—both designed in Electric [20], and simulated
with equivalent JoSIM [3] and VWSIM [10] results.

As in CMOS [19], our RSFQ examples use Links to store and
transfer information between Joints for computation and flow
control. In our asynchronous example, each Joint has a go-nogo
gate, MrGO, to enable or disable Joint action. Our RSFQ test
strategy combines scan-based test access to Link information
with a clock or with scan-based MrGO control.

The examples show scan access points but avoid tying them
to scan chains, because (1) the chain sequence is irrelevant to
our test strategy and any functional or structural test generation
we might use [23], and (2) shifting information in and out of
scan chains would dominate the simulations and obscure the

results. Future on-chip measurements require scan chains, a
ripple counter, and a scan test interface [13], [15], [17], [21].

APPENDIX

Fig. 7 shows the RSFQ circuit for Joint ADD in Fig. 1. The
circuit is based on the clockless dual-rail bit-wise full adder by
Patra et al. [16, Fig. 13]. In our version, each rendezvous gate
has two outputs, avoiding the explicit forks in the adder version
of Patra et al.

For sound and complete dual-rail inputs, with a pulse on the T
or F bit signal but never both, the circuit will generate sound and
complete dual-rail outputs and leave no pulse behind. Likewise,
nodata dual-rail inputs, with a pulse on neither the T nor the
F bit signal, yield nodata dual-rail outputs and leave no pulse
behind. Our simulation of the clocked pipelined adder, with
results shown in Fig. 2, uses both these ADD properties.

Other input combinations are illegal and may leave pulses
behind that can be removed with an extra reset signal.

ACKNOWLEDGMENT

The authors thank Gary Delp, Bart McCoy, Quinn Morgan,
and Glenn Shirley for feedback and comradery. They thank
Steve Rubin for making the open-source Electric CAD system
conversant with RSFQ.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

RONCKEN et al.: STATE ACCESS FOR RSFQ TEST AND ANALYSIS 1303907

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing
and Testable Design. Hoboken, NJ, USA: Wiley-IEEE Press, 1990.

[2] P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ technology: Physics and
devices,” Int. J. High Speed Electron. Syst., vol. 11, no. 1, pp. 257–305,
2001.

[3] J. A. Delport, K. Jackman, P. le Roux, and C. J. Fourie, “JoSIM –
Superconductor SPICE simulator,” IEEE Trans. Appl. Supercond., vol. 29,
no. 5, pp. 1–5, Aug. 2019.

[4] Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer, “Self-timing
and vector processing in RSFQ digital circuit technology,” IEEE Trans.
Appl. Supercond., vol. 9, no. 1, pp. 7–17, Mar. 1999.

[5] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-
tion of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–457, 1975.

[6] M. Dorojevets, C. L. Ayala, N. Yoshikawa, and A. Fujimaki, “16-Bit wave-
pipelined sparse-tree RSFQ adder,” IEEE Trans. Appl. Supercond., vol. 23,
no. 3, Jun. 2013, Art. no. 1700605.

[7] E. Esimai and M. Roncken, “Flexible active-passive and push-pull proto-
cols,” IEEE Embedded Syst. Lett., vol. 14, no. 3, pp. 139–142, Sep. 2022.

[8] Q. P. Herr and P. Bunyk, “Implementation and application of first-in first-
out buffers,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 563–566,
Jun. 2003.

[9] D. S. Holmes, A. M. Kadin, and M. W. Johnson, “Superconducting
computing in large-scale hybrid systems,” Computer, vol. 48, no. 12,
pp. 34–42, 2015.

[10] W. A. Hunt Jr., V. Ramanathan, and J. Strother Moore, “VWSIM: A circuit
simulator,” in Proc. Int. Workshop ACL2 Theorem Prover Appl., 2022,
pp. 61–75.

[11] S. Kundu, G. Datta, P. A. Beerel, and M. Pedram, “qBSA: Logic design
of a 32-bit block-skewed RSFQ arithmetic logic unit,” in Proc. IEEE Int.
Supercond. Electron. Conf., 2019, pp. 1–3.

[12] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28, Mar. 1991.

[13] O. A. Mukhanov and S. V. Rylov, “Time-to-digital converters based on
RSFQ digital counters,” IEEE Trans. Appl. Supercond., vol. 7, no. 2,
pp. 2669–2672, Jun. 1997.

[14] O. A. Mukhanov, “Superconductive single-flux quantum technology,” in
Proc. IEEE Int. Solid-State Circuits Conf., 1994, pp. 126–127.

[15] O. A. Mukhanov, “Rapid single flux quantum (RSFQ) shift register
family,” IEEE Trans. Appl. Supercond., vol. 3, no. 1, pp. 2578–2581,
Mar. 1993.

[16] P. Patra, S. Polonsky, and D. S. Fussel, “Delay insensitive logic for
RSFQ superconductor technology,” in Proc. IEEE Int. Symp. Adv. Res.
Asynchronous Circuits Syst., 1997, pp. 42–53.

[17] M. Roncken and I. Sutherland, “Design and test of high-speed asyn-
chronous circuits,” in Asynchronous Circuit Appl.. J. Di and S. C. Smith,
Eds. London, U.K.: The Inst. Eng. Technol., ch. 7, 2020, pp. 113–171.

[18] M. Roncken et al., “How to think about self-timed systems,” in Proc.
Asilomar Conf. Signals, Syst., Comput., 2017, pp. 1597–1604.

[19] M. Roncken, S. Mettala Gilla, H. Park, N. Jamadagni, C. Cowan, and I.
Sutherland, “Naturalized communication and testing,” in Proc. IEEE Int.
Symp. Asynchronous Circuits Syst., 2015, pp. 77–84.

[20] S. M. Rubin, Using the Electric VLSI Des. System. Portola Valley, CA,
USA: R. L. Ranch Press, 2016, [Online] https://www.staticfreesoft.com

[21] I. Sutherland, Q. Morgan, W. A. Hunt Jr., V. Ramanathan, and M. Roncken,
“An IEEE-compatible JTAG test-access-port controller for RSFQ logic
and systems,” IEEE Trans. Appl. Supercond., early access, Mar. 6, 2023,
doi: 10.1109/TASC.2023.3251942.

[22] M. Vratislav, E. Baggetta, M. Aurino, S. Bouat, and J.-C. Villegier,
“Superconducting RSFQ logic: Towards 100 GHz digital electronics,” in
Proc. IEEE Int. Conf. Radioelektronika, 2011, pp. 1–8.

[23] F. Wang and S. K. Gupta, “An effective and efficient automatic test
pattern generation (ATPG) paradigm for certifying performance of
RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 30, no. 5, pp. 1–11,
Aug. 2020.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on June 26,2023 at 22:40:17 UTC from IEEE Xplore. Restrictions apply.

https://www.staticfreesoft.com
https://dx.doi.org/10.1109/TASC.2023.3251942

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

