
JULY 16-19 ASYNC 2023, BEIJING, CHINA

Flexible Compilation and Refinement
of Asynchronous Circuits

Ebelechukwu Esimai and Marly Roncken

Asynchronous Research Center and Department of Computer Science

Portland State University, Portland, Oregon, USA

“Hello” and “Ni Hao” (pronounce: “knee how”) !

My name is Ebele.
I work with Marly Roncken in the Asynchronous Research Center
at Portland State University.

I am honored to be here in China to present our paper titled
• Flexible Compilation and Refinement of Asynchronous Circuits

0

Takeaway
Goal: “Make it easy to insert asynchrony appropriate for each design part”

 Flexibility
 Bind decisions as late as possible to serve design and test

 This talk shows
 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 Current support and w.i.p. includes:
 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 1

Before I go into the details of the paper, here is what to takeaway from our
approach.
When one is designing asynchronous circuits, there are many decisions to
make,
Such as communication protocol, data encoding and circuit family.
One may base some of these decisions on one’s familiarity and experience.

Rather, with our approach, Instead of making these decisions early, we bind
decisions as late as possible.
This makes our approach flexible.
For example:
• Each Link can choose its circuit family freely,

independent of other Links.
• Each Joint can choose freely to use a 2-phase or a 4-phase

protocol, independent of other Joints.

Here is a list of protocols, logic, data encodings and circuit families
that we support or are working on.

The goal is to Make it easy to insert asynchrony appropriate to each design
part!

1

Outline

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 2

 Introduction

 Links and Joints flexible design and test

 Flexible Compilation late binding

 Flexible Refinement choose bindings

 Mixed Protocols and Families easy mix and match

 Conclusion

Here is the outline of my talk.

I will start with an introduction and a brief summary
• of the way we design asynchronous circuits using Links and Joints - for

flexible design and test

I will then move to the key parts:
• flexible compilation (for late binding)
• and flexible refinement (to explore and choose bindings)

I will end by giving an example that shows that mixing and matching
Different protocols and circuit families is easy with our approach.

2

 Continuation of Link-Joint research

 Embedding into a design flow
 Yale ACT (Asynchronous Circuit Toolkit)

 shallow embedding initially

 Link-Joint middle layer in the flow
Compilation:
 from algorithmic ACT programs

 to circuit-neutral Link-Joint networks

Refinement (stepwise):
 from Link-Joint networks

 to ACT circuits

F
O
C
U
S

Introduction

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 3

This work continues the Link-Joint research done at Portland State University
by embedding Links and Joints into a design flow.

As our design flow, We use Yale’s Asynchronous Circuit toolkit – ACT,
as introduced in the tutorial session today by Rajit Manohar.
We depict this flow with the hourglass on the left.

We compile ACT programs into circuit-neutral Link-Joint networks,
which we then translate into ACT circuits, using stepwise refinement.

The key focus of this talk is on compilation and refinement.

3

Introduction: why ACT?

 Asynchronous Circuit Toolkit

 Open source

 In active use

 Supports data and control flow

 Built with asynchronous expertise

 Incorporates proven ideas from
 Philips and Handshake Solutions

 University of Manchester, UK

 Caltech

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 4

We use ACT as our electronic design automation flow,
because
• it is open-source, in active use
• and supports programs with data- as well as control-flow.

Moreover, ACT is built with in-depth knowledge
• about asynchronous design and analysis
And incorporates proven ideas and solutions from Philips, Manchester and
Caltech.
<Pause 2>

4

Introduction: Why a Link-Joint middle layer?

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

Benefit:
 circuit-neutral model

 embraces and combines

 multiple protocols, data encodings

 multiple circuit families and fabrics

Challenge:
 design-by-hand limits use and users

Solution:
 increase access by automation

 embed into middle of existing flow

 re-use Link-Joint unrelated front and back parts

 maintain flexibility by using

 circuit-neutral compilation

 targeted refinements

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 5

We use Links and Joints because they provide
• a circuit-neutral design and test model
that embraces multiple protocols, data encodings, families and fabrics.

In the past, we had to do Link-Joint designs by hand,
which limits both its use and the number of users.
By embedding Links and Joints into an automated flow,
we can expand its reach - do larger designs and have more users.

We re-use the design flow’s
• application and programming techniques at the top
• and circuit and fabrication techniques at the bottom.
Therefore, we have Links and Joints in the middle of the flow.

5

Outline

 Introduction

 Links and Joints flexible design and test

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 6

Now, I will give a brief summary of Links and Joints for flexible design and test.

6

Links and Joints

Link-Joint network:
 alternates Links and Joints

Link:
 shares and stores state
 connects two Joints

Joint:
 acts based on Link states
 changes states in (one or more) Links

Built-in initialization and test via:
 external access to Link states
 external go-control of Joint actions

 communication
 state storage
 state test access

LINKs

 computation
 flow control
 go-nogo test control

JOINT

GO

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 7

The picture on the left shows a Link-Joint network.
We draw Links as rectangles and Joints as circles. A Link-Joint network
alternates Links and Joints.

A Link is a communication channel that stores state.
While a Joint is a computation module with flow control.
• A Joint acts on Link states and changes these.

Note that Links and Joints have built-in initialization and test through
• external access to Link states, and
• external go-control to enable or disable Joint actions.

7

Links and Joints: protocol and model

Protocol:
 follows good conversation practice

 Joints take turns updating the Link state
 Link tracks whose turn it is

Link:
 has two ports to attach Joints: A, B
 has three state variables

 turn points to A if A has the turn, else to B
 dataAtoB stores 0 data bits from A to B
 dataBtoA stores 0 data bits from B to A

Joint:
 Joint port connects to Link port A or B
 port must have turn to change Link state

port Bport A
turn dataAtoB dataBtoA

LINK

JOINT
guarded commands that
 execute atomically

 in mutual exclusion

 when guard is valid

ports

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 8

The Link-Joint protocol follows good conversation practice where one listen
while the other talks.
After a while, you switch roles and TAKE TURNS between who listens and who
talks.
• In the same way, Joints TAKE TURNS updating the Link state

To model this, a Link has:
• two ports to attach Joints: port A and port B
• two data variables for data going from AtoB and BtoA, and
• a control variable called turn to store who has the current permission to

change Link state: A or B.

Joints also have ports that connects to either Link port A or B
• The Joint port must have the turn to change the Link state.
• We specify Joints using guarded commands.

8

Outline

 Introduction

 Links and Joints

 Flexible Compilation late binding

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 9

Now, Let’s look at compilation where late binding is made possible.

9

Flexible Compilation

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

Strategy: syntax-directed translation

Source: ACT programs
 data-flow parts in ACT sub-language:

 dataflow
 control-flow parts in ACT sub-language:

 Communicating Hardware Processes

Target: circuit-neutral Link-Joint networks

Challenge:
 not compiler

 like Philips, Manchester, Caltech, Yale
 but library elements used by the compiler

 Link-Joint versions of channels + modules

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 10

The compiler uses syntax-directed translation.
It translates ACT programs, into circuit-neutral Link-Joint networks.

For us, the compilation challenge was not the compiler itself
• which is similar to what Philips, Manchester, Caltech, and Yale use.
Rather, The challenge was to develop the Link-Joint library elements
• that the compiler generates
• instead of the traditional handshake channels and modules.

10

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation: dataflow

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 11

I will first show how we compile a dataflow program.

11

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 12

The ACT program on the left specifies a 2-stage FIFO with :
• input channel L
• and output channel R.

The core program uses a dataflow description.

Our compilation strategy for dataflow programs is to
• use syntax-directed translation
• and store state before we use the state.

12

usestore
Link1

Joint1
L M

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

ACT program:

compiled Link-Joint network:

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 13

The first dataflow command
• “L arrow M”
stands for
• “copy data from external channel L to local channel M”

To compile this command:
• we store the data on L, using Link1
• and then we copy the data to M using Joint1.
<PAUSE for 2 seconds>

13

usestore

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
R

ACT program:

compiled Link-Joint network:

M

Link1

Joint1
L

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 14

Likewise for the second command “M arrow R”
• we store the data on M using Link2
• and then we copy the data to R using Joint2.
<PAUSE for 2 seconds>

14

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
RM

Link1

Joint1
L

ACT program:

compiled Link-Joint network:

Link1

Joint1
L

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 15

Here is the resulting Link-Joint network.

Now let’s talk about the library elements for Joint1 and Joint2.

15

Flexible Compilation: dataflow

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→

myW(out) := myR(in)
yourturn(in)
yourturn(out)

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 16

Both Joints copy data from their input Link to their output Link.

So, we use Joint COPY, which is
• a circuit-neutral library element
• with two ports, in and out
• and an external go-control signal for initialization and test.

16

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→

myW(out) := myR(in)
yourturn(in)
yourturn(out)

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L M ; M R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 17

Here is the guarded command specification of Joint COPY.

<POINT-TO guarded command>
• When both ports in and out have the turn
• and the Joint has go-permission
• then
• write out the data you read in
• and give both turns back.
<PAUSE 2 seconds>

17

Outline

 Introduction

 Links and Joints

 Flexible Compilation: CHP

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 18

That was dataflow, now let’s look at control flow.

18

onebufFlexible
Compilation:
CHP
defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 19

The ACT program onebuf on the left specifies a 1-stage FIFO with :
• input channel L
• and output channel R.

The core program uses a CHP control-flow description.

The syntax-directed compilation goes as follows.

19

onebufFlexible
Compilation:
CHP

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 20

We translate
• the “star” in the program – which represents repetition
• to a REPEAT Joint with startup Link c.

20

onebufFlexible
Compilation:
CHP

SEQ

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 21

We translate
• the “semicolon” – which represents sequential composition
• to a SEQUENCE Joint with Links and connect it to the REPEAT Joint.

21

onebufFlexible
Compilation:
CHP

SEQ

c

REP

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 22

For the first branch of the SEQUENCE Joint,
We translate the first sequential statement “L question mark x.”

This is an input communication
for which we create a communication network
• that transfers input data from channel L
• to variable x

22

onebufFlexible
Compilation:
CHP

SEQ

c

REP

TRF

E

R

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 23

Likewise for the second branch of the SEQUENCE Joint,
we use a similar translation for the second sequential statement
“R exclamation mark x.”

This is an output communication
for which we create a communication network
• that transfers data from variable x
• to channel R.

23

onebuf
b0

Flexible
Compilation:
CHP

TRF

VAR

b0.L

TRF

E

b0.R

SEQ

b0.c

REP

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{

onebuf b0, b1;
b0.L=L ; b0.R=b1.L ;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 24

With ACT, we can create a 2-stage control-flow FIFO,
by using two instances of process onebuf , b0 and b1.
This is done in the lower ACT program on the left.

The compiler connects the startup Links of b0 and b1
• with a PARALLEL Joint <POINT-TO par>
• to ensure that the compiled instances are executed in parallel.

24

onebuf
b0

Flexible
Compilation:
CHP

TRF

VAR

L = b0.L

TRF

E

b0.R

SEQ

b0.c

REP

chan

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{

onebuf b0, b1;
b0.L=L ; b0.R=b1.L ;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 25

The compiler follows the aliasing commands in the ACT program.

The compiler also connects parallel Links for the same channel
• with a CHANNEL Joint
• to ensure that the compiled channels
• can be probed and synchronized.

Notice that this slide has no circuits in it.
We have not made any decisions about protocols, data encodings or circuit
families.
We never make decisions before it is time to make them. This is called late
binding.
This is what our approach is about.

25

Outline

 Introduction

 Links and Joints

 Flexible Compilation: library elements

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 26

As I said earlier, the library elements were our compilation challenge.
So, I will give two examples to show how we address this.

26

Flexible Compilation: library elements

 myturn(r) ˄ myturn(x) ˄ GO→
myW(r) := myR(x) ; yourturn(r)

 myturn(w) ˄ myturn(x) ˄ GO→
myW(x) := myR(w) ; yourturn(w)

w

r

VAR

icon:

w

r

var

GO

x
internal memory

Link-Joint network:

w

r

VAR

flow:

guarded command specification:

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 27

<point to icon>
The first example is the Joint for a CHP variable with read and write ports.

In the Link-Joint model, only Links store state.
Therefore, the Link-Joint network for this variable
• has an internal Link with port x to store the value of the variable.

The guarded command specifies that
• read and write are mutual exclusive
• and that we read from and write to Link port x.
<WAIT 2 seconds>

27

Flexible Compilation: library elements

in

out

TRFc

icon:

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[0] →
yourturn(in, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[1] →
myW(out) := myR(in) ; yourturn(out, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[2] →
yourturn(c, x)

in

out

TRFc

flow:

guarded command specification:Link-Joint network:

in

out

trfc

GO

fork rrot
x

internal finite state machine

1,0,0

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 28

The second example is Joint TRANSFER. We use it as a local router of data in
the network.
it has sequential behavior.
• We sequence its operations with a finite state machine
This finite state machine generates a 1-hot code that determines
which of the 3 commands of TRANSFER to execute

The flow diagram on the right shows that the operation of<FOLLOW flow
diagram>
• TRANSFER starts at port c, proceeds to in, then to out, and back to c.

<PAUSE 2 seconds>

Our paper has more library elements, with their flow diagrams and guarded
commands.

28

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement choose bindings

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 29

That was compilation, now let’s look at refinement where we choose bindings.

29

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 30

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

refinement

Strategy:
 stepwise decisions for design and test

Source:
 circuit-neutral Link-Joint networks

Target:
 Link-Joint networks
 circuits

Challenge:
 preserve relation to program

Flexible Refinement

Refinement is a process of stepwise decisions about
• which protocols, data encodings, and circuit families to use
• and when and where to store data
for design and test purposes.

Starting with circuit-neutral Link-Joint networks, the refinement process ends
with circuits.

The challenge here is to preserve the relation to the original ACT program.

30

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 31

Flexible Refinement: to store data or not

One important refinement decision is: do we store data – or not?
This is especially important when there are many data bits, because storage is
expensive in delay, area, and power.

31

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 32

Flexible Refinement: to store data or not

On the right, is an example of a bidirectional CHP communication.
The left side of this communication: <POINT TO p?x1!y1>
• Requests for a value over channel p for x1
• and sends the value of y1 over p – at the same time.
The right side of the communication is symmetric.
We can say that this network exchanges data between both sides.

32

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 33

Flexible Refinement: to store data or not

Path behavior:
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:

CHP translations often leads to a path behavior where an earlier Link stores
data for a later Link in the path.
In this example: <FOLLOW PATH FROM y1 to p>
• the internal Link in variable y1 stores data
• To be sent to the other side of channel p.

Because y1 stores data for p, the Links between them don’t have to.
The paper gives 3 solutions to remove data storage. I’ll show one of these 3.

33

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 34

Flexible Refinement: to store data or not

Path behavior:
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:
 Solution (race-free):

 keep internal data storage (VAR)
 no data storage otherwise:
 use 4-phase p protocol
 2x 2-phase protocol

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

Here is a race-free solution for this example.
• Only the variables store data
• All other Links avoid storing data – the Links without data storage are shown

with a crossed box.
• In addition, channel p uses a 4-phase communication protocol.

During phase 1 and 2 <FOLLOW top-right path> the protocol synchronizes the
exchange of y1 and y2 values
While in phase 3 and 4 <FOLLOW bottom-right path>
the protocol synchronizes the completion of the data storage in x1 and x2 for
both sides of channel p
This means that both sides store the values they receive before they end their
communication.

This 4-phase protocol can be implemented as two 2-phase protocols.
As I mentioned earlier, This is one of 3 data storage elimination solutions
presented in the paper.

You can also read about other refinements in our paper.

34

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families easy mix and match

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 35

The compilation and refinements that I showed you
• maintain key features of Links and Joints.

In particular:
• they allow the use of mixed protocols and circuit families.

35

Mixed Protocols and Families

A B BA

Mr GO

GO1

Mr GO

GO2C

COPY COPY
JOINT JOINT

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 36

Here is an example.
I am showing two different circuit implementations of Joint COPY.

The Joint with an AND gate on the left uses 2 phase protocols
while The Joint with a C element on the right uses 4 phase protocols

36

Mixed Protocols and Families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 37

A B BA

Mr GO Mr GO

Creq a

n n
L

flip
FF

ack

flip
FF

flip
FF

COPY 2-4-phase Click COPY
JOINT LINK JOINT

GO1 GO2

We can connect the two Joints with a Link that uses
• 2-phase communication at its left port – A
• and 4-phase communication at its right port – B.

This is a Link in the Click circuit family.

37

Mixed Protocols and Families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 38

A B BA

n

r sL

L

s rL

n

LP

Mr GO Mr GO

Creq a

n n
L

flip
FF

ack

flip
FF

flip
FF

4-2-phase Set-Reset COPY 2-4-phase Click COPY
LINK JOINT LINK JOINT

GO1 GO2

Also, We can close the loop and create a ring FIFO
with a Link on the left that uses
• 4-phase communication at its port A
• and 2-phase at its port B.

The leftmost Link belongs to the Set-Reset family.
<PAUSE for 2 seconds>

Links and Joints make it easy
• to mix and match different protocols and circuit families
• using the same ACT program and Link-Joint network.

You can read more about mixed protocols in the paper.

38

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 39

To conclude:

39

Conclusion

 Link-Joint embedding into a Design Flow
 enables more users and larger designs

 combines design automation with Link-Joint flexibility

 re-uses asynchronous ecosystem Yale ACT

 Compilation and Refinement
 from ACT programs with data- and control-flow

 via circuit-neutral Link-Joint networks

 to circuits

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 40

I showed you a Link-Joint embedding into a design flow
• that enables more users and larger designs
• and combines design automation with Link-Joint flexibility

Also, I showed you how compilation and refinement translate
• ACT programs with data- and control-flow
• via circuit-neutral Link-Joint networks into circuits.

I did not show you how we model and validate this approach. You can read
that in the paper.

40

Conclusion

 Flexibility
Bind decisions as late as possible to serve design and test

 initialize at run time (for design) or even throughout run time (for test)

 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 current support and w.i.p. includes:

 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

Goal: “Make it easy to insert asynchrony appropriate for each design part”

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 41

As I said in the beginning of my talk,
Our approach is flexible, because it binds decisions as late as possible.
For example:
• Each Link can choose its circuit family freely,

independent of other Links.
• Each Joint can choose freely to use a 2-phase or a 4-phase

protocol, independent of other Joints.
• Here is a list of protocols, logic, data encodings and circuit families

that we support or are working on.

I want to end with the goal of the Link-Joint approach: <EMPHASIZE
SLOWLY>
Make it easy to insert asynchrony appropriate to each design part!

This ends my presentation. I’d be happy to answer questions. Thank you!

41

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 42

THANK YOU!

42

