Flexible Compilation and Refinement
of Asynchronous Circuits

Ebelechukwu Esimai and Marly Roncken

Asynchronous Research Center and Department of Computer Science
Portland State University, Portland, Oregon, USA

JULY 16-19 ASYNC 2023, BEWING, CHINA

Takeaway

Goal: “Make it easy to insert asynchrony appropriate for each design part”

= Flexibility

o Bind decisions as late as possible — to serve design and test
= This talk shows

a per Link: freedom of circuit family

o per Joint: freedom of 2- or 4-phase protocol
= Current support and w.i.p. includes:

o 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data
o Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 1

Outline

= |ntroduction

» Links and Joints — flexible design and test
» Flexible Compilation — late binding

= Flexible Refinement — choose bindings

» Mixed Protocols and Families — easy mix and match

= Conclusion

JULY 16-19 ASYNC 2023, BENING, CHINA slide 2
Introduction
application = Continuation of Link-Joint research

distributed, domain-specific, event-based

= Embedding into a design flow
ACT program o .
abstraction, composition o Yale ACT (Asynchronous Circuit Toolkit)

behavioral exploration a shallow embedding — initially

] - compilation F))) _
Link-Joint 8 » Link-Joint middle layer in the flow
tocol refi t A . q
ey refinement Compilation:
S

circuit families, etc. o .
o from algorithmic ACT programs

gates + o to circuit-neutral Link-Joint networks

ACT circuit relative timing
timing analysis, logical effort, 7 A .
technology mapping, layout, etc. Reflnement (StepWISe)'
tabr o from Link-Joint networks
apric . .
integrated circuit (CMOS/SFQ), FPGA a to ACT circuits

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 3

Introduction: why ACT?

application = Asynchronous Circuit Toolkit
distributed, domain-specific, event-based
ACT program = Open source
abstraction, composition .
behavioral exploration = |n active use
)) compilation
Link-Joint = Supports data and control flow
protocol refinemgnt refinement
O o = Built with asynchronous expertise
o gates + » |ncorporates proven ideas from
ACT circuit relative timing p P ,
timing analysis, logical effort, a PhI|IpS and Handshake Solutions
technol ing, | t, etc. . .
cenneogy mapping, Taverh &% a University of Manchester, UK
fabric o Caltech
integrated circuit (CMOS/SFQ), FPGA
JULY 16-19 ASYNC 2023, BENING, CHINA slide 4

Introduction: Why a Link-Joint middle layer?

Benefit:

application

- . i = circuit-neutral model
distributed, domain-specific, event-based

= embraces and combines

ACT_ program a multiple protocols, data encodings
aEZ:ZSfZ,?Q. 2;’2?525{:2',2” o multiple circuit families and fabrics
: : compilation Challenge:
p!;tLr:lT:iiSelgjnt refinement = design-by-hand limits use and users
cota strage g Solution:
gates + = increase access by automation

ACT CII’CUIt relative t|m|ng = embed into middle of eXiSting flow
timing analysis, logical effort,

; o re-use Link-Joint unrelated front and back parts
technology mapping, layout, etc.

= maintain flexibility by using

fabric o circuit-neutral compilation

integrated circuit (CMOS/SFQ), FPGA

o targeted refinements

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 5

= Links and Joints

JULY 16-19

Outline

—flexible design and test

ASYNC 2023, BEWING, CHINA slide 6

Links and Joints

= communication

= gtate storage

GO

= state test access l

LINKs

JULY 16-19

JOINT

= computation
= flow control
= go-nogo test control

Link-Joint network:

= alternates Links and Joints
Link:

= shares and stores state

= connects two Joints

Joint:
= 3cts based on Link states
= changes states in (one or more) Links

Built-in initialization and test via:
= external access to Link states
» external go-control of Joint actions

ASYNC 2023, BEIJING, CHINA slide 7

Links and Joints: protocol and model

LINK Protocol:

= follows good conversation practice
> turn | data,g | datag, [o Joints take turns updating the Link state
port A port B o Link tracks whose turn it is

Link:

= has two ports to attach Joints: A, B

* has three state variables
o turn points to A if A has the turn, else to B
o datay, g stores >0 data bits from Ato B
o datag,, stores >0 data bits from B to A

JOINT
ports guarded commands that
= execute atomically
= in mutual exclusion
» when guard is valid Joint:

= Joint port connects to Link port A or B

= port must have turn to change Link state

JULY 16-19 ASYNC 2023, BEWING, CHINA slide 8

Outline

» Flexible Compilation — late binding

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 9

Flexible Compilation

application Strategy: syntax-directed translation

distributed, domain-specific, event-based

Source: ACT programs

ACT program .
abstractiog cogposmon » data-flow parts in ACT sub-language:
behavioral exploration o dataflow
_ _ @ compilation = control-flow parts in ACT sub-language:
Link-Joint o Communicating Hardware Processes

protocol refinement
data storage/coding

circuit families, etc. Target: circuit-neutral Link-Joint networks
ACT circuit Challenge:
timing analysis,llogical effort, = pnot compiler
technology mapping, layout, etc. a like Philips, Manchester, Caltech, Yale
: = but library elements used by the compiler
fabric Link-Joi i f ch Is + modul
integrated circuit (CMOS/SFQ), FPGA a Link-Joint versions of channels + modules
JULY 16-19 ASYNC 2023, BENING, CHINA slide 10
10
Outline

= Flexible Compilation: dataflow

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 11

11

Flexible Compilation: dataflow

ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chanl(int) R) = store state before using state
{
chan(int) M ;
dataflow{L > M; M—> R}
}

compiled Link-Joint network:

JULY 16-19 ASYNC 2023, BENING, CHINA slide 12
12
Flexible Compilation: dataflow
ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chanl(int) R) = store state before using state
{
chan(int) M ;
dataflow {L > M ; M — R}
}

compiled Link-Joint network:
store use

Link
=~
Joint,
JULY 16-19 ASYNC 2023, BEWING, CHINA slide 13

13

Flexible Compilation: dataflow

ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chan!(int) R) = store state before using state
{
chan(int) M ;
dataflow{L —>M; M—> R}
}

compiled Link-Joint network:
store use

Link Link,
()~
Joint, Joint,
JULY 16-19 ASYNC 2023, BENING, CHINA slide 14
14
Flexible Compilation: dataflow

ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chanl(int) R) = store state before using state
{

chan(int) M ;

dataflow {L > M; M— R}
}

compiled Link-Joint network:

Link Link,
e OO
Joint, Joint,
JULY 16-19 ASYNC 2023, BEWING, CHINA slide 15

15

Flexible Compilation: dataflow
ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chanl(int) R) = store state before using state
{ .
chan(int) M ; JOIth C_OPY)
dataflow {L —> M ;M —> R} = circuit-neutral library element:
} o two ports: in, out
o copies data from in to out
compiled Link-Joint network: a external go-control: GO
GO,
L|nk1 Link,
)y
out in out
R
J0|nt1 Joint,
JULY 16-19 ASYNC 2023, BENING, CHINA slide 16
16

Flexible Compilation: dataflow

ACT program: Compilation strategy
defproc FIFO2_dataflow = syntax-directed
(chan?(int) L ; chanl(int) R) = store state before using state
{ .
chan(int) M ; JOIr‘.lt CQPY _
dataflow {L > M; M— R} = circuit-neutral library element:
} o two ports: in, out
o copies data from in to out
compiled Link-Joint network: a external go-control: GO
GO, = guarded command specification:
L|nk1 L|nk2 m_yt)urn(in) A myturn(out) A GO
@ —> myW(out) := myR(in)
out in out yourturn(in)
. rt t
J0|nt1 Joint, yourturn(ou
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 17

17

Outline

= Flexible Compilation: CHP

JULY 16-19 ASYNC 2023, BEWING, CHINA

slide 18

18

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

intx;

chp {*[L?x; RIx]}
}

JULY 16-19 ASYNC 2023, BEIJING, CHINA

slide 19

19

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;

chp {*[L?x; RIx]}
}

JULY 16-19 ASYNC 2023, BEWING, CHINA

slide 20

20

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

intx;

chp {*[L?x; RIx]}
}

JULY 16-19

ASYNC 2023, BEIJING, CHINA

slide 21

21

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;

chp { [L?x; RIx]}
}

JULY 16-19

ASYNC 2023, BEWING, CHINA

slide 22

22

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

intx;

chp {*[L?x; RIx]}
}

JULY 16-19

ASYNC 2023, BEIJING, CHINA

slide 23

23

startup

Flexible onebuf
Compilation:
CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;

chp { [L?x; RIx]}
}

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{

onebuf b0, b1;

b0.L=L; b0.R=b1.L;

b1.R=R
}
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 24
24
startup
Flexible onebuf
. . b0
Compilation:

CHP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

intx;

chp {*[L?x; RIx]}
}

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{
onebuf b0, b1;
b0.L=L; b0.R=b1.L;
b1.R=R
}

slide 25

JULY 16-19 ASYNC 2023, BEIJING, CHINA

25

Outline

= Flexible Compilation: library elements

JULY 16-19 ASYNC 2023, BEWING, CHINA slide 26

26

Flexible Compilation: library elements

icon: . flow: y .
w \w
Link-Joint network: guarded command specification:
= myturn(r) A myturn(x) A GO —
myW(r) := myR(x) ; yourturn(r)
= myturn(w) A myturn(x) n GO —
myW(x) := myR(w) ; yourturn(w)

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 27

27

Flexible Compilation: library elements

icon: out
in
Link-Joint network: guarded command specification:
GO out = myturn(c,in,out,x) A GO A myR(x)[0] —

yourturn(in, x)
= myturn(c,in,out,x) A GO A myR(x)[1] —
myW(out) := myR(in) ; yourturn(out, x)
internal finite state machine * myturn(c,in,outx) A GO A myR(x)[2] —

in yourturn(c, x)
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 28
28
Outline
= Flexible Refinement — choose bindings
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 29

29

application

distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

Link-Joint
protocol reflnemgnt refinement
data storage/coding

circuit families, etc.

ACT circuit

timing analysis, logical effort,
technology mapping, layout, etc.

fabric
integrated circuit (CMOS/SFQ), FPGA

Flexible Refinement

Strategy:
= stepwise decisions for design and test

Source:
= circuit-neutral Link-Joint networks

Target:
= Link-Joint networks
= circuits

Challenge:
= preserve relation to program

JULY 16-19 ASYNC 2023, BEWING, CHINA slide 30

30

Flexible Refinement: to store data — or not

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 31

31

Flexible Refinement: to store data— or not

JULY 16-19 ASYNC 2023, BEWING, CHINA slide 32

32

Path behavior:

= earlier Link stores data for later Link
» typical for CHP compilation

Avoid data storage in the middle:

Flexible Refinement: to store data — or not

o VAR y1 stores data for p

1 P?X4!y; ply,?X,

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 33

33

Path behavior:
= earlier Link stores data for later Link
= typical for CHP compilation

o VAR y1 stores data for p

Avoid data storage in the middle:
= Solution (race-free):
o keep internal data storage (VAR)
o no data storage otherwise:
o use 4-phase p protocol
~ 2x 2-phase protocol

Flexible Refinement: to store data— or not

i P?X4ly; ply>?X,
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 34
34
Outline
= Mixed Protocols and Families — easy mix and match
JULY 16-19 ASYNC 2023, BENING, CHINA slide 35

35

Mixed Protocols and Families

JOINT
COPY

JOINT
COPY

slide 36

JULY 16-19

ASYNC 2023, BEWING, CHINA

36

Mixed Protocols and Families

= >
=5
90
................... "o
S
©
] Sl (o |
O
Y o = S o
Z 3 3]
1 c ©
Q
MH = St ¢—o—P -
[¢}]
| .
N
& <
...................] 3
T
90
............................. —
<

slide 37

JULY 16-19

ASYNC 2023, BEIJING, CHINA

37

Mixed Protocols and Families

LINK
4-2-phase Set-Reset

LINK
2-4-phase Click

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
i [: ‘ = :
1
- @Drepirdy Tl L i
1
H [] flip flip | flip .]
I i I FF FF | FF I I
—>—¢—br e > e .
i |] i i i
€ 1 1 1 1
1 1 1 1 1
1 1 1 1 1
i v] i v i i
! L / \! =/ L L \: :
T Tt T Tn) :
1A B 1A Bi i
JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 38

Outline

= Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 39

Conclusion

= Link-Joint embedding into a Design Flow
o enables more users and larger designs
o combines design automation with Link-Joint flexibility
o re-uses asynchronous ecosystem — Yale ACT

= Compilation and Refinement
o from ACT programs with data- and control-flow
o via circuit-neutral Link-Joint networks
o to circuits

JULY 16-19 ASYNC 2023, BEWING, CHINA

slide 40

40

Conclusion

= Flexibility

Bind decisions as late as possible — to serve design and test
o initialize at run time (for design) or even throughout run time (for test)

a per Link: freedom of circuit family
o per Joint: freedom of 2- or 4-phase protocol
o current support and w.i.p. includes:

= 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

= Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

Goal: “Make it easy to insert asynchrony appropriate for each design part”

JULY 16-19 ASYNC 2023, BEIJING, CHINA

slide 41

41

JULY 16-19

THANK YOU!

ASYNC 2023, BEWING, CHINA

slide 42

42

