
JULY 16-19 ASYNC 2023, BEIJING, CHINA

Flexible Compilation and Refinement
of Asynchronous Circuits

Ebelechukwu Esimai and Marly Roncken

Asynchronous Research Center and Department of Computer Science

Portland State University, Portland, Oregon, USA

Takeaway
Goal: “Make it easy to insert asynchrony appropriate for each design part”

 Flexibility
 Bind decisions as late as possible  to serve design and test

 This talk shows
 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 Current support and w.i.p. includes:
 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 1

0

1

Outline

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 2

 Introduction

 Links and Joints  flexible design and test

 Flexible Compilation  late binding

 Flexible Refinement  choose bindings

 Mixed Protocols and Families  easy mix and match

 Conclusion

 Continuation of Link-Joint research

 Embedding into a design flow
 Yale ACT (Asynchronous Circuit Toolkit)

 shallow embedding  initially

 Link-Joint middle layer in the flow
Compilation:
 from algorithmic ACT programs

 to circuit-neutral Link-Joint networks

Refinement (stepwise):
 from Link-Joint networks

 to ACT circuits

F
O
C
U
S

Introduction

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 3

2

3

Introduction: why ACT?

 Asynchronous Circuit Toolkit

 Open source

 In active use

 Supports data and control flow

 Built with asynchronous expertise

 Incorporates proven ideas from
 Philips and Handshake Solutions

 University of Manchester, UK

 Caltech

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 4

Introduction: Why a Link-Joint middle layer?

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

Benefit:
 circuit-neutral model

 embraces and combines

 multiple protocols, data encodings

 multiple circuit families and fabrics

Challenge:
 design-by-hand limits use and users

Solution:
 increase access by automation

 embed into middle of existing flow

 re-use Link-Joint unrelated front and back parts

 maintain flexibility by using

 circuit-neutral compilation

 targeted refinements

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 5

4

5

Outline

 Introduction

 Links and Joints  flexible design and test

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 6

Links and Joints

Link-Joint network:
 alternates Links and Joints

Link:
 shares and stores state
 connects two Joints

Joint:
 acts based on Link states
 changes states in (one or more) Links

Built-in initialization and test via:
 external access to Link states
 external go-control of Joint actions

 communication
 state storage
 state test access

LINKs

 computation
 flow control
 go-nogo test control

JOINT

GO

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 7

6

7

Links and Joints: protocol and model

Protocol:
 follows good conversation practice

 Joints take turns updating the Link state
 Link tracks whose turn it is

Link:
 has two ports to attach Joints: A, B
 has three state variables

 turn points to A if A has the turn, else to B
 dataAtoB stores 0 data bits from A to B
 dataBtoA stores 0 data bits from B to A

Joint:
 Joint port connects to Link port A or B
 port must have turn to change Link state

port Bport A
turn dataAtoB dataBtoA

LINK

JOINT
guarded commands that
 execute atomically

 in mutual exclusion

 when guard is valid

ports

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 8

Outline

 Introduction

 Links and Joints

 Flexible Compilation  late binding

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 9

8

9

Flexible Compilation

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

Strategy: syntax-directed translation

Source: ACT programs
 data-flow parts in ACT sub-language:

 dataflow
 control-flow parts in ACT sub-language:

 Communicating Hardware Processes

Target: circuit-neutral Link-Joint networks

Challenge:
 not compiler

 like Philips, Manchester, Caltech, Yale
 but library elements used by the compiler

 Link-Joint versions of channels + modules

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 10

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation: dataflow

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 11

10

11

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 12

usestore
Link1

Joint1
L M

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

ACT program:

compiled Link-Joint network:

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 13

12

13

usestore

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
R

ACT program:

compiled Link-Joint network:

M

Link1

Joint1
L

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 14

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
RM

Link1

Joint1
L

ACT program:

compiled Link-Joint network:

Link1

Joint1
L

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 15

14

15

Flexible Compilation: dataflow

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→

myW(out) := myR(in)
yourturn(in)
yourturn(out)

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 16

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→

myW(out) := myR(in)
yourturn(in)
yourturn(out)

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow
(chan?(int) L ; chan!(int) R)
{

chan(int) M ;
dataflow { L  M ; M  R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 17

16

17

Outline

 Introduction

 Links and Joints

 Flexible Compilation: CHP

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 18

onebufFlexible
Compilation:
CHP
defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 19

18

19

onebufFlexible
Compilation:
CHP

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 20

onebufFlexible
Compilation:
CHP

SEQ

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 21

20

21

onebufFlexible
Compilation:
CHP

SEQ

c

REP

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 22

onebufFlexible
Compilation:
CHP

SEQ

c

REP

TRF

E

R

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 23

22

23

onebuf
b0

Flexible
Compilation:
CHP

TRF

VAR

b0.L

TRF

E

b0.R

SEQ

b0.c

REP

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{

onebuf b0, b1;
b0.L=L ; b0.R=b1.L;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 24

onebuf
b0

Flexible
Compilation:
CHP

TRF

VAR

L = b0.L

TRF

E

b0.R

SEQ

b0.c

REP

chan

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow
(chan?(int) L; chan!(int) R)
{

onebuf b0, b1;
b0.L=L ; b0.R=b1.L;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R)
{

int x ;
chp { *[L?x ; R!x] }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 25

24

25

Outline

 Introduction

 Links and Joints

 Flexible Compilation: library elements

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 26

Flexible Compilation: library elements

 myturn(r) ˄ myturn(x) ˄ GO→
myW(r) := myR(x) ; yourturn(r)

 myturn(w) ˄ myturn(x) ˄ GO→
myW(x) := myR(w) ; yourturn(w)

w

r

VAR

icon:

w

r

var

GO

x
internal memory

Link-Joint network:

w

r

VAR

flow:

guarded command specification:

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 27

26

27

Flexible Compilation: library elements

in

out

TRFc

icon:

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[0] →
yourturn(in, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[1] →
myW(out) := myR(in) ; yourturn(out, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[2] →
yourturn(c, x)

in

out

TRFc

flow:

guarded command specification:Link-Joint network:

in

out

trfc

GO

fork rrot
x

internal finite state machine

1,0,0

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 28

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement  choose bindings

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 29

28

29

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 30

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort,

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

refinement

Strategy:
 stepwise decisions for design and test

Source:
 circuit-neutral Link-Joint networks

Target:
 Link-Joint networks
 circuits

Challenge:
 preserve relation to program

Flexible Refinement

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 31

Flexible Refinement: to store data  or not

30

31

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 32

Flexible Refinement: to store data  or not

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 33

Flexible Refinement: to store data  or not

Path behavior:
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:

32

33

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 34

Flexible Refinement: to store data  or not

Path behavior:
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:
 Solution (race-free):

 keep internal data storage (VAR)
 no data storage otherwise:
 use 4-phase p protocol
 2x 2-phase protocol

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families  easy mix and match

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 35

34

35

Mixed Protocols and Families

A B BA

Mr GO

GO1

Mr GO

GO2C

COPY COPY
JOINT JOINT

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 36

Mixed Protocols and Families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 37

A B BA

Mr GO Mr GO

Creq a

n n
L

flip
FF

ack

flip
FF

flip
FF

COPY 2-4-phase Click COPY
JOINT LINK JOINT

GO1 GO2

36

37

Mixed Protocols and Families

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 38

A B BA

n

r sL

L

s rL

n

LP

Mr GO Mr GO

Creq a

n n
L

flip
FF

ack

flip
FF

flip
FF

4-2-phase Set-Reset COPY 2-4-phase Click COPY
LINK JOINT LINK JOINT

GO1 GO2

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 39

38

39

Conclusion

 Link-Joint embedding into a Design Flow
 enables more users and larger designs

 combines design automation with Link-Joint flexibility

 re-uses asynchronous ecosystem  Yale ACT

 Compilation and Refinement
 from ACT programs with data- and control-flow

 via circuit-neutral Link-Joint networks

 to circuits

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 40

Conclusion

 Flexibility
Bind decisions as late as possible  to serve design and test

 initialize at run time (for design) or even throughout run time (for test)

 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 current support and w.i.p. includes:

 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

Goal: “Make it easy to insert asynchrony appropriate for each design part”

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 41

40

41

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide 42

THANK YOU!

42

