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Takeaway
Goal: “Make it easy to insert asynchrony appropriate for each design part”

 Flexibility
 Bind decisions as late as possible  to serve design and test

 This talk shows
 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 Current support and w.i.p. includes:
 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families
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Outline
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 Introduction

 Links and Joints  flexible design and test

 Flexible Compilation  late binding

 Flexible Refinement  choose bindings

 Mixed Protocols and Families  easy mix and match 

 Conclusion

 Continuation of Link-Joint research

 Embedding into a design flow
 Yale ACT (Asynchronous Circuit Toolkit)

 shallow embedding  initially

 Link-Joint middle layer in the flow
Compilation:  
 from algorithmic ACT programs 

 to circuit-neutral Link-Joint networks 

Refinement (stepwise): 
 from Link-Joint networks 

 to ACT circuits
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Introduction

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort, 

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing
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Introduction: why ACT?

 Asynchronous Circuit Toolkit

 Open source 

 In active use

 Supports data and control flow

 Built with asynchronous expertise

 Incorporates proven ideas from
 Philips and Handshake Solutions

 University of Manchester, UK

 Caltech

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort, 

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing
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Introduction: Why a Link-Joint middle layer?

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort, 

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

refinement

gates +
relative timing

Benefit:
 circuit-neutral model

 embraces and combines 

 multiple protocols, data encodings

 multiple circuit families and fabrics

Challenge:
 design-by-hand limits use and users

Solution:
 increase access by automation

 embed into middle of existing flow

 re-use Link-Joint unrelated front and back parts

 maintain flexibility by using

 circuit-neutral compilation

 targeted refinements
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Outline

 Introduction

 Links and Joints  flexible design and test

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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Links and Joints

Link-Joint network:
 alternates Links and Joints

Link:
 shares and stores state
 connects two Joints

Joint:
 acts based on Link states
 changes states in (one or more) Links

Built-in initialization and test via:
 external access to Link states
 external go-control of Joint actions

 communication
 state storage 
 state test access

LINKs

 computation
 flow control
 go-nogo test control

JOINT

GO
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Links and Joints: protocol and model

Protocol:
 follows good conversation practice

 Joints take turns updating the Link state
 Link tracks whose turn it is

Link:
 has two ports to attach Joints: A, B
 has three state variables

 turn points to A if A has the turn, else to B
 dataAtoB stores 0 data bits from A to B
 dataBtoA stores 0 data bits from B to A

Joint:
 Joint port connects to Link port A or B
 port must have turn to change Link state

port Bport A
turn dataAtoB dataBtoA

LINK

JOINT
guarded commands that 
 execute atomically

 in mutual exclusion

 when guard is valid

ports
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Outline

 Introduction

 Links and Joints

 Flexible Compilation  late binding

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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Flexible Compilation

application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort, 

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

compilation

Strategy: syntax-directed translation

Source: ACT programs
 data-flow parts in ACT sub-language: 

 dataflow
 control-flow parts in ACT sub-language: 

 Communicating Hardware Processes

Target: circuit-neutral Link-Joint networks 

Challenge:
 not compiler

 like Philips, Manchester, Caltech, Yale
 but library elements used by the compiler

 Link-Joint versions of channels + modules
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Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation: dataflow

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}
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usestore
Link1

Joint1
L M

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}

ACT program:

compiled Link-Joint network:

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state
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usestore

Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
R

ACT program:

compiled Link-Joint network:

M

Link1

Joint1
L

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}
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Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Link2

Joint2
RM

Link1

Joint1
L

ACT program:

compiled Link-Joint network:

Link1

Joint1
L

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}
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Flexible Compilation: dataflow

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→ 

myW(out) := myR(in)
yourturn(in)
yourturn(out)
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Flexible Compilation: dataflow

Compilation strategy
 syntax-directed
 store state before using state

Joint COPY
 circuit-neutral library element:

 two ports: in, out
 copies data from in to out
 external go-control: GO

 guarded command specification:
myturn(in) ˄ myturn(out) ˄ GO
→ 

myW(out) := myR(in)
yourturn(in)
yourturn(out)

Link1

Joint1
L

Link2

Joint2
RM

GO1

copy

GO2

copy
in inout out

ACT program:

compiled Link-Joint network:

defproc FIFO2_dataflow 
(chan?(int) L ; chan!(int) R) 
{ 

chan(int) M ;
dataflow { L  M ; M  R }

}

JULY 16-19 ASYNC 2023, BEIJING, CHINA slide  17

16

17



Outline

 Introduction

 Links and Joints

 Flexible Compilation: CHP

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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onebufFlexible 
Compilation: 
CHP
defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebufFlexible 
Compilation: 
CHP

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebufFlexible 
Compilation: 
CHP

SEQ

c

REP

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebufFlexible 
Compilation: 
CHP

SEQ

c

REP

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebufFlexible 
Compilation: 
CHP

SEQ

c

REP

TRF

E

R

TRF

VAR

L

x

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebuf
b0

Flexible 
Compilation: 
CHP

TRF

VAR

b0.L

TRF

E

b0.R

SEQ

b0.c

REP

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow 
(chan?(int) L; chan!(int) R) 
{ 

onebuf b0, b1;
b0.L=L ; b0.R=b1.L;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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onebuf
b0

Flexible 
Compilation: 
CHP

TRF

VAR

L = b0.L

TRF

E

b0.R

SEQ

b0.c

REP

chan

startup

par

b1.L

b1.c

x

defproc FIFO2_controlflow 
(chan?(int) L; chan!(int) R) 
{ 

onebuf b0, b1;
b0.L=L ; b0.R=b1.L;
b1.R=R

}

defproc onebuf
(chan?(int) L; chan!(int) R) 
{ 

int x ;
chp { *[ L?x ; R!x ] }

}
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Outline

 Introduction

 Links and Joints

 Flexible Compilation: library elements

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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Flexible Compilation: library elements

 myturn(r) ˄ myturn(x) ˄ GO→ 
myW(r) := myR(x) ; yourturn(r)

 myturn(w) ˄ myturn(x) ˄ GO→ 
myW(x) := myR(w) ; yourturn(w)

w

r

VAR

icon:

w

r

var

GO

x
internal memory

Link-Joint network:

w

r

VAR

flow:

guarded command specification:
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Flexible Compilation: library elements

in

out

TRFc

icon:

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[0] → 
yourturn(in, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[1] →
myW(out) := myR(in) ; yourturn(out, x)

 myturn(c,in,out,x) ˄ GO ˄ myR(x)[2] →
yourturn(c, x)

in

out

TRFc

flow:

guarded command specification:Link-Joint network:

in

out

trfc

GO

fork rrot
x

internal finite state machine

1,0,0
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Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement  choose bindings

 Mixed Protocols and Families

 Conclusion
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application
distributed, domain-specific, event-based

ACT program
abstraction, composition
behavioral exploration

fabric
integrated circuit (CMOS/SFQ), FPGA

ACT circuit
timing analysis, logical effort, 

technology mapping, layout, etc.

Link-Joint
protocol refinement
data storage/coding
circuit families, etc.

refinement

Strategy: 
 stepwise decisions for design and test

Source:
 circuit-neutral Link-Joint networks

Target:
 Link-Joint networks
 circuits 

Challenge:
 preserve relation to program

Flexible Refinement
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Flexible Refinement: to store data  or not
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VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan
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Flexible Refinement: to store data  or not

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan
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Flexible Refinement: to store data  or not

Path behavior: 
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:
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Flexible Refinement: to store data  or not

Path behavior: 
 earlier Link stores data for later Link
 typical for CHP compilation

 VAR y1 stores data for p

Avoid data storage in the middle:
 Solution (race-free):

 keep internal data storage (VAR) 
 no data storage otherwise:
 use 4-phase p protocol
 2x 2-phase protocol

VAR
x1

TRF

E

VAR
y1 p?x1!y1 p!y2?x2

c
p

chan

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families  easy mix and match

 Conclusion
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Mixed Protocols and Families

A B BA

Mr GO

GO1

Mr GO

GO2C

COPY COPY
JOINT JOINT
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Mixed Protocols and Families
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A B BA

Mr GO Mr GO

Creq a

n n
L

flip
FF

ack

flip
FF

flip
FF

COPY 2-4-phase Click COPY
JOINT LINK JOINT

GO1 GO2

36

37



Mixed Protocols and Families
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r sL
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n

LP

Mr GO Mr GO

Creq a
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L

flip
FF

ack

flip
FF

flip
FF

4-2-phase Set-Reset COPY 2-4-phase Click COPY
LINK JOINT LINK JOINT

GO1 GO2

Outline

 Introduction and Motivation

 Links and Joints

 Flexible Compilation

 Flexible Refinement

 Mixed Protocols and Families

 Conclusion
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Conclusion

 Link-Joint embedding into a Design Flow
 enables more users and larger designs

 combines design automation with Link-Joint flexibility

 re-uses asynchronous ecosystem  Yale ACT 

 Compilation and Refinement
 from ACT programs with data- and control-flow

 via circuit-neutral Link-Joint networks

 to circuits
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Conclusion

 Flexibility
Bind decisions as late as possible  to serve design and test

 initialize at run time (for design) or even throughout run time (for test)

 per Link: freedom of circuit family

 per Joint: freedom of 2- or 4-phase protocol

 current support and w.i.p. includes:

 2- and 4-phase protocol, level- and pulse- and transition-logic, bundled and dual-rail data

 Click, GasP, Set-Reset, Mousetrap, Micropipelines, Superconducting families

Goal: “Make it easy to insert asynchrony appropriate for each design part”
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THANK YOU!
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