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Abstract—We present compilation and refinement techniques
for translating parallel programs with message passing into
asynchronous circuits. Instead of compiling programs directly
into circuits using a fixed protocol and circuit family — as is
traditionally done — we compile programs into a circuit-neutral
model consisting of communication channels with storage, called
Links, and storage-free computation modules, called Joints. We
refine this model into a gate-level circuit by reducing storage and
selecting protocols and circuit families. The final circuits combine
2- and 4-phase protocols and various circuit families. We give
two refinement examples. The first refinement safely removes
data storage from Links to improve circuit area and power. The
second refinement safely splits atomic Joint actions to improve
circuit analysis. Both refinements introduce 4-phase protocols for
which we give a formal Link-Joint model and circuits in Click,
Set-Reset, and GasP. We are implementing this compile then refine
approach as a shallow embedding in an open-source design flow.

Index Terms—asynchronous circuits, communication protocols,
design automation, compilation, formal models, refinement

I. INTRODUCTION

This paper addresses design automation for asynchronous
circuits. Fig. 1 provides an overview of the design flow.
The Links and Joints in the middle provide an abstraction
level between algorithmic programs and electronic circuits.
Proposed in 2015, Links and Joints are silent about protocols
and circuit families, and bind circuit decisions late to increase
design and test flexibility [20]. But until now, Links and
Joints could be used only for small or regular circuits, and
by experts only. The embedding in Fig. 1 makes Links and
Joints accessible for general use in large electronic systems.

As design flow we selected ACT [1], [13], [14], because
it is open-source, in active use, supports programs with both
data- and control-flow, and builds on in-depth knowledge in
asynchronous circuit design and analysis.

The embedding in ACT lets us (1) compile ACT programs
into Link-Joint networks, (2) refine networks by choosing
protocols and circuit families, and (3) pass gate-level circuits
back to ACT for further processing. We currently use a shallow
embedding, leaving ACT in (1) and re-entering in (3).

The focus of this paper is on compilation and refinement.
Sections II–IV provide background on compilation and Links
and Joints. Fig. 2 shows Link-Joint library elements used by
the compiler. Figs. 3–4 give simulated compilation examples.
Sections V–VI and Figs. 5–8 discuss two refinements. This
paper is theoretical and meant to be used as reference paper.

This work is supported in part by private sponsors through the Portland
State University Foundation and in part by the Mayo Clinic under subcontract
SPPDG-052 for “Computing Systems Based on the Link-Joint Paradigm.”

II. COMPILATION

Our compilation strategy is based on a large body of work,
both past [2]–[7], [15], [16] and present [1], [13], [14], with
an impressive variety of asynchronous designs, chips, and
market products. All start with a message-passing parallel
programming language based on Hoare’s CSP [11]. Using
syntax-directed compilation, each CSP program is translated
into a network of handshake circuits connected by channels.
The handshake protocol and circuit family are determined
prior to compilation.

Our compiler is branched off Yale’s asynchronous circuit
toolkit (ACT) [14]. We compile ACT programs with data-
flow parts written in ACT sublanguage dataflow and control-
flow parts in CHP (Communicating Hardware Processes) [13].
But instead of generating networks of handshake circuits, we
generate circuit-neutral Link-Joint networks that work for a
variety of protocols and circuit families. The key challenge in
developing this compiler was to find a representation of hand-
shake circuits in terms of Links and Joints. Where handshake
circuits compute and store state (using their channels merely
to transport state information), in our case, the Joints compute
but the Links store. Once we had a systematic representation,
we could more or less re-use Yale’s compiler.

Fig. 1: ACT electronic design automation framework to design
and implement distributed, domain-specific, event-based systems as
FPGA or integrated circuits [1], [13], [14]. The hourglass, originally
proposed by Kees van Berkel [4], emphasizes the separation between
program and circuit concerns. This paper focuses on the middle part
of the hourglass. We compile ACT programs into Links and Joints, a
circuit-neutral model with integrated test and debug [17]–[20], which
we translate into gate-level circuits through stepwise refinement. Final
circuits may combine different protocols and circuit families.
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III. LINKS AND JOINTS

Links and Joints separate states from actions. Where Links
transport and store state information, the stateless Joints com-
pute and control the flow of information. In essence, each Joint
is a place where Links meet to exchange information.

We use Link-Joint networks to provide an abstraction level
between algorithmic programs and electronic circuits. Each
network alternates Links and Joints, using port connections.
Links have two ports, called A and B. Joints may have several
ports, with formal port names defined only in the scope of the
Joint and used in its formal specification. Initial Link-Joint
specifications are sufficiently detailed to facilitate transparent
translations into circuits and sufficiently abstract to embrace
circuit implementations with different protocols, logic signal-
ing and data representations, circuit families, and fabrication
means. Later refinements tailor the Links and Joints to fit a
particular circuit purpose or preference — see Sections V–VI.

Section III-A provides a formal Link-Joint model. Sec-
tions III-B to III-I specify the Joints in Fig. 2 and explain
their role in the example program compilations in Figs. 3–4.

A. A Circuit-Neutral Model with Integrated Test and Debug

We use a shared variable model [9] and guarded command
specifications [8] to express Links, Joints, their behaviors, and
their port interactions.

Each Link has two ports, A and B, and shares three variables,
turn, dataAtoB, and dataBtoA with the Joint ports connected to
A and B. Link variables dataAtoB and dataBtoA contain zero or
more bits of data going from A to B and B to A, respectively.

Following good conversation practice, the Joint ports take
turns updating the Link variables, including variable turn. Each
Link keeps track of whose turn it is, A’s or B’s, and shares
this information with both Joints via Link variable turn.

We specify each Joint action as a guarded command, using
the following terminology for Joint ports p, p1, p2.

• Boolean myturn(p) is true if and only if p has the turn.
• Data myR(p) and myW(p) are data read and written by p

— going from Link variables to p and vice versa.
• Assignment yourturn(p) changes Link variable turn so

that myturn(p) becomes false and myturn(ppeer) becomes
true, where ppeer is A if p connects to B, otherwise B.

• We use myturn(p1, p2) for myturn(p1)∧myturn(p2), and
yourturn(p1, p2) for yourturn(p1) ; yourturn(p2), etc.

This terminology allows the specifications to be silent as to
whether Joint port p connects to Link port A or Link port B.

Each guarded command is of the form guard→ command,
where guard is a Boolean expression and command a sequence
of assignments. We may use guard1 → guard2 → command
as an alternative notation for guard1 ∧ guard2 → command.
Guarded commands execute atomically, in mutual exclusion,
and only when their guard is valid [8].

For initialization, test, and debug we can control and observe
Link variables externally. To avoid Joint interference, we can
stop any or all Joint action. For this purpose, each Joint has
its own (arbitrated) go signal [20]: go permits and ¬go denies
command execution. Correspondingly, each guarded command
includes a permissive go signal in its guard.

Fig. 2: Joint library elements used by the compiler. We draw each Joint as a big circle containing the Joint name, and attach its ports as
small circles with a formal port name. Basic Joints (c,f) have lowercase names. Composite Joints (a,b,d,e) have uppercase names. We omit
drawing internal ports of composite Joint — but the port connections are still there. By default, all Joint ports are colored grey to indicate
that connecting Links can be initialized freely [9]. When we color a port black or white, we merely indicate a specific initial Link state
for normal operation of the Joint in a given context — e.g., in the context of ACT-CHP program compilation — but we retain freedom of
initialization for other scenarios. For readability, we omit drawing the individual and external go signals for each Joint. We draw a Link as
a rectangle, to indicate that it stores information. The pictures omit the Link port names. The flow of data in both, either, or neither port
direction is indicated by the presence or absence of arrows. We marked the flow control for each Joint with fat line-arrows, colored in red
and blue to separate paths. We will continue these markings to express the higher-level flow control in the compiled designs in Figs. 3–4.
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B. Joint VAR

VAR in Fig. 2(a) represents an n-bit program variable,
n ≥ 0, and is used in Fig. 3(b). VAR has a basic Joint var
and read and write ports r, w for mutual exclusive use. We
store the variable’s value in Link L1 connected to internal
VAR port x. VAR has two guarded commands, one for read,
one for write. Neither relinquish the turn on x, which we can
set externally in L1 for initialization and test purposes.

myturn(r, x) ∧ go → myW(r) :=myR(x) ; yourturn(r)
myturn(w, x) ∧ go → myW(x) :=myR(w) ; yourturn(w)

C. Joint CHAN

Because they are storage-free, we represent CHP channels
as Joints — not as Links. This makes perfect sense, because
channels synchronize parallel processes and Joints excel at
bringing together multiple participants by synchronizing them.
Joint CHAN in Fig. 2(c) represents a channel with two ports,
P and Q, for connecting two communicating processes that
exchange n1 data bits from P to Q, n2 data bits from Q to P,
where n1, n2 ≥ 0.

Each process may probe the channel to sense if its partner is
ready to communicate. Probe signals #P, #Q can be read and
written directly, without a communication protocol. A process
can probe communication readiness, using 1 bit, and the data
sent by its partner — n2 bits for #P, n1 for #Q. Figs. 3(b) and
4(a) show designs with probe-less and readiness-only probes.
Joint CHAN has one guarded command, specified as follows.

myturn(P, Q) ∧ go →
myW(P) :=myR(Q) ; myW(Q) :=myR(P) ; yourturn(P, Q)

D. Joint TRF

TRF in Fig. 2(b) is generated as part of a CHP assignment
or communication. Fig. 3(b) shows a communication example.
TRF has a basic Joint trf, and ports c, in, out. When prompted
by c, TRF first requests n bits of data, n ≥ 0, from variables
or channels connected to port in, which it then “transfers” to
variables or channels connected to port out, before reporting
completion at c. This sequence is controlled by 1-hot 3-bit
string myR(x), generated by a Finite State Machine (FSM) con-
nected to internal TRF port x and discussed in Section III-E.
TRF executes three guarded commands, specified as follows.

myturn(c, in, out, x) ∧ go →
myR(x)[0] → yourturn(in, x)
myR(x)[1] → myW(out) :=myR(in) ; yourturn(out, x)
myR(x)[2] → yourturn(c, x)

E. Finite State Machine (FSM) and Joints fork and rrot

The FSM in Fig. 2(b) maintains a 1-hot bit string. Joint TRF,
specified in Section III-D, uses the 1-hot bit position to decide
which command to execute. With three guarded commands,
TRF requires a 3-bit FSM string. After each TRF execution,
the FSM right-rotates the bits by one position around the
string. To simplify the connection at TRF port x, the FSM
has two basic Joints, fork and rrot, a unidirectional Link L1

from fork port out to TRF port x, and a bidirectional Link L2

between fork port inout and rrot port io. We can initialize the
FSM so that (1) the leftmost bit of the string stored in L2 in
the direction from rrot to fork is 1-hot, and (2) fork has the
turn on both its ports and is ready to execute its command.

(fork)
myturn(inout, out) ∧ go →
myW(inout, out) :=myR(inout) ; yourturn(inout, out)

Joint fork copies the FSM string from L2 to L1 and L2. Its
executions alternate with those of TRF and rrot. Joint rrot
right-rotates the FSM string and returns the result to fork.

(rrot)
myturn(io)∧ go → myW(io) := rrot(myR(io)) ; yourturn(io)

F. Joint SEQ

SEQ in Fig. 2(d) represents sequential composition and is
used in Figs. 3–4. It has basic Joint seq, startup port c, and
ports s1 to sm for the m, m ≥ 1, program statements it
sequences when prompted by c. It uses an m+1-bit internal
FSM port x — see Section III-E — to sequence its commands,
which are specified as follows, using index i, 0 ≤ i < m.

myturn(c, s1..sm , x)∧ go∧myR(x)[i] → yourturn(si+1,x)
myturn(c, s1..sm , x)∧ go∧myR(x)[m] → yourturn(c, x)

G. Joint F — for Refinement in Section VI

Joint F in Fig. 2(e) provides an alternative solution for
evaluating expressions. Rather than sending evaluated results
over a single Link as E, Ewaitcycle in Figs. 3–4, F distributes
them over multiple Links. We use F in Section VI as reference
example for protocol refinement. F has input port in and output
ports out1 to outm, m ≥ 1. When prompted by its output ports,
F first requests data from in to which it applies m functions
fi as output data for outi. F uses a 2-bit internal FSM port x
(see Section III-E) to sequence its two commands, as follows.

myturn(in, out1..outm , x) ∧ go ∧ myR(x)[0] →
yourturn(in, x)

myturn(in, out1..outm , x) ∧ go ∧ myR(x)[1] →
myW(out1):= f1 (myR(in)) ;
...
myW(outm):= fm (myR(in)) ;
yourturn(out1..outm , x)

H. Joint COPY

COPY in Fig. 2(f) copies n bits of data, n ≥ 0, from its
input port, in, to its output port, out, and is used in Fig. 3(a).
Joint COPY executes the following guarded command.
myturn(in,out)∧ go→myW(out) :=myR(in) ; yourturn(in,out)

I. Probed Selection and Joints Ewaitcycle, SELnondet, WAITcycle

CHP program BRTbuffer in Fig. 4 uses nondeterministic
selection based on probe conditions. The two conditions are
evaluated in Ewaitcycle Joint J7, which waits until either or both
are valid before requesting probe snapshots to provide stable
evaluation results for selection by SELnondet Joint J6. SELnondet
never sees the probes, and is therefore less interesting for
discussion here. Its specification can be found in Appendix-E.
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Fig. 3: ACT supports data- and control-flow programs [13]. Panels (a) and (b) give two different ACT programs for a linear first-in-first-out
(FIFO) buffer that can store zero, one, or two data items. The programs have the same channel interface but different Link-Joint translations.
Data enter at channel L and leave at channel R. The fat red or blue line-arrows mark the flow of control through each Link-Joint network.

(a) ACT dataflow program version and compiled Link-Joint network with two COPY Joints and two storage Links, in linear arrangement.
We translate program statement L → M to (1) Link Ld1 to store the data coming in on program channel L, and (2) Joint Jd1 whose
input port, in, connects to Ld1 and who copies Ld1’s data to its output port, out, for program channel M. A similar translation for
M → R generates Link Ld2, to store the data for M, and Joint Jd2 who copies Ld2’s data to its output port out for program channel R.

(b) ACT hierarchical control-flow version and compiled Link-Joint network. Top-level program, FIFO2 controlflow, creates two onebuf
instances, b0 and b1, and serially connects their channels. We compile FIFO2 controlflow into (1) Link-Joint network instances for
b0 and b1, (2) PAR Joint J7 to execute b0 and b1 in parallel, and (3) CHAN Joint J8 to combine b0.R and b1.L into a single channel.
Process onebuf, programmed in ACT sublanguage CHP can buffer zero or one data items. We compile onebuf by following its syntactic
structure. Given that the entire program, *[L?x ; R!x], starts with repetition “ * ”, we generate a repetition Joint: REP Joint J1. The
repeated program fragment, L?x ; R!x, is sequential, as indicated by the sequence operator “ ; ”, and so we generate a sequencing Joint,
SEQ Joint J2, and connect it to REP using Link L2. The first of the two sequenced program statements, L?x, is a communication input
over onebuf channel L, which requires synchronization with a communication output over L by a parallel process. The value sent by
the parallel process is stored in onebuf variable x. We compile L?x to (1) TRF Joint J3, (2) VAR Joint J4 for x, (3) Links L4 and L5

to connect L to x via Joint TRF, and (4) Link L3 to connect this translation to SEQ port s1. The second program statement, R!x, is a
communication output over onebuf channel R, which compiles to (1) TRF Joint J5, (2) E Joint J6 for output expression “x,” (3) Links
L7, L8, L9 to connect variable x to E and b0.R via Joint TRF, and (4) Link L6 to connect this translation to SEQ port s2.

(c) ACT program simulation results for FIFO2 controlflow in (b), timed top to bottom, showing two inputs, one handover, and one output.
(d) Verilog waveforms for the Link-Joint network in (a), timed left to right, showing three inputs and internal handovers, and two outputs.
(e) Verilog waveforms for the Link-Joint network in (b), timed left to right, showing two inputs, one internal handover, and one output.
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In Fig. 4, probes #p, #g come into Joint Ewaitcycle as raw
signals with the formal names p1, p2. Their stable snapshots
come in as protocol signals myR(e1), myR(e2 ) at ports e1, e2 .
Ewaitcycle, with startup port c, uses an internal 2-bit FSM port x
(see Section III-E) to sequence two guarded commands, which
are specified using probe conditions g[1]= p1, g[2]= p2.

// (Ewaitcycle) await valid condition before taking snapshots
myturn(c, e1, e2, x) ∧ go ∧ myR(x)[0] ∧ (g[1]∨ g[2])→
yourturn(e1, e2 , x)

// return stable evaluation results
myturn(c, e1 , e2 , x) ∧ go ∧ myR(x)[1] →
myW(c) := g[1,2] (myR(e1, e2 ) / p1, p2) ; yourturn(c, x)

The conditions can be extended with program variables by
adding one more FSM bit and one more guarded command to
request the variable values prior to awaiting a valid condition.

Stable probe snapshots are provided by Joint WAITcycle.
Fig. 4 shows its instantiation, J8, for probe #p. WAITcycle, with
startup port r, uses an internal arbiter and 2-bit FSM port x to
arbitrate the raw probe input against myturn(x) for a duration
of one FSM cycle. WAITcycle returns a bit value, never a probe.
Its guarded command specification uses mutual exclusive

arbiter results (grantprobe, grantx)= arbiter (probe,myturn(x)).

// (WAITcycle) arbitrate for one FSM cycle
myturn(r , x) ∧ go ∧ myR(x)[0] → yourturn(x)

// return stable probe snapshot
myturn(r , x) ∧ go ∧ myR(x)[1] →
myW(r) := (0 if grantx, 1 if grantprobe) ; yourturn(r , x)

IV. SUMMARY OF SECTIONS II–III

To re-use large parts of the existing compiler strategies we
had to find the right Joints — a non-trivial challenge! The
examples in Fig. 3(a)–(b) show how we compile both data-
flow and control-flow programs in a syntax-directed way. Our
strategy for compiling data-flow programs is to store data
before using data, but the alternative, use before store, works
equally well. Note that Joints fork and rrot in the internal finite
state machine (FSM) in Fig. 2(b) are data-flow Joints — they
control the execution sequence of composite Joints like TRF.

Fig. 3 clearly shows “what you program is what you get.”
Know your application domain: Link-Joint network (b) is large
because we solved a data-flow problem with a control-flow
program. We validate our compilation by comparing program
simulations in ACT to Link-Joint simulations in Verilog (c–e).

Fig. 4: ACT-CHP program fragment BRTbuffer and its corresponding Link-Joint network in (a) are part of a bounded response time buffer
— a first-in-first-out buffer where the cycle time between inputs and outputs is bounded and independent of the buffer capacity. The program
is based on the design by Kessels and Rem [12]. When the buffer is neither empty nor full it may receive both “put” (p) and “get” (g)
communication requests from its environment. BRTbuffer serializes concurrent p and g requests. The program fragment focuses on the first
p communication and the following (repeated) nondeterministic selection that uses probes to sense if the environment requests p, g, or both.

(a) The conditional select statement compiles into a network of Links and Joints including SELnondet for nondeterministic selection, Ewaitcycle
for evaluating the probe conditions, and WAITcycle for taking a stable probe snapshot, #p-snap, of probe #p. The various p communications
in the program are multiplexed at RMUX Joint J3. Note that p communications come in at CHAN J4 port P, and p probes at CHAN wire
connection #p. Because BRTbuffer probes for communication readiness without data, #p has bit width 1. The isolation of CHAN into
a grey box hints at the fact that CHAN is compiled during parallel composition of BRTbuffer, as indicated and explained in Fig. 3(b).

(b) The Verilog simulation waveforms in (b) follow the fat red and blue path in the Link-Joint network from SELnondet to Ewaitcycle, WAITcycle,
and back in reverse direction. Both probes #p and #g have bit value 1 in this simulation fragment. As a result, Ewaitcycle receives bit
value 1 for myR(e1) from WAITcycle Joint J8 and, ditto, bit value 1 for myR(e2) — which it combines into 2-bit string (1,1) for myW(c),
which arrives at SELnondet port g. Joint SELnondet favors #p here, and executes the corresponding s1 statement. The fsm waveforms for
SELnondet and Ewaitcycle indicate the 1-hot bit position in myR(x) for internal FSM port x – see Sections III-E, III-I, and Appendix-E.
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V. REFINEMENT 1: TO STORE OR NOT TO STORE DATA

Parallel operations, especially quasi delay-insensitive ones,
require that data be stored between sender and receiver. This
Section looks at elimination of data storage to save circuit
area and power while maintaining delay-insensitivity of the
data exchange. As an example, we use the bidirectional
communication in Fig. 5(a–b), compiled from the parallel
program fragments chp{...p?x1!y1...} and chp{...p!y2?x2...},
which exchange y1, y2 values and store these locally in x2, x1.

The fat line-arrows in Fig. 5(a) mark the control flow in the
compiled communication statement for the leftmost process.
The elongated loops in the control flow, for instance from

port r at VAR y1 Joint J3P to CHAN and back to Link L3P,
are indicative of telescopic behaviors [19] in which Links
visited earlier hold data used later in the path. All the Links
between data holder and user can simply transfer the data
values without storing them. In the case of Fig. 5(a), VAR y1’s
internal Link (see Fig. 2(a)) holds data for Link L3Q in the
peer process. Both L3P and L3Q store the data they receive
from CHAN. After the data exchange by CHAN, each process
may stop holding data for its peer, and at its own pace copy
the received and now locally stored data into VAR x1 Joint J4P
(leftmost process) or VAR x2 (its peer). In Fig. 5(a) we store
only L3P and L3Q data from CHAN, and internal Link data.

Fig. 5: Panels (a)–(b) show the same Link-Joint compilation but different Link-Joint refinements for two communicating program fragments
in ACT [13], chp{...p?x1!y1...} (left) and chp{...p!y2?x2...} (right), for bidirectional channel p and local program variables x1, x2, y1, y2.
The two refinements differ in Link storage and TRF Joints. We use rectangles with a cross for Links without data storage. Rectangles with
half a cross, for L3P and L3Q in (a), store only data received from CHAN. Panel (a) uses Joint TRF in (c). Panel (b) uses Joint TRF in (d).

(a) In panel (a) we removed all data storage in the Link-Joint network, except for internal Links and data received from CHAN in L3P
and L3Q. The two communicating processes follow similar execution paths. We marked the path for the process on the left with thick
red and blue lines. The path starts at port c of J1P, continues via J2P to port r of J3P to read the value of program variable y1, which
it sends via J2P and J1P to CHAN port P, where it stalls until the communication partner at port Q is ready to exchange its value of
y2 for the value of y1. When ready, the path continues by storing the received y2 value into the L3P storage location for data from J1.
Storing the values of y1 and y2 in Links L3Q and L3P and relinquishing both Link turns altogether take one atomic CHAN action —
and enables both partners to finish their execution paths independently, at their own pace, and without retarding each other.

(b) In panel (b) Links L3P and L3Q are marked as rectangles with a cross — we have now removed all but internal Link data storage.
Execution for the process on the left follows the path in (a) until the now un-stored y2 value is written into J4P (for x1) and execution
returns to port out of J1P. Instead of finishing, the execution revisits port P of J1 where it stalls until the communication partner at
port Q reports that it too wrote the data it received (into J4Q, for x2). When both processes report completion, execution on the left
relinquishes the Link turn on L3P from port P at J1 to hand it over to port io at J1P. Relinquishing both turns for L3P and L3Q is an
atomic CHAN action. Both partners can now continue their executions independently. Execution on the left finishes at port c of J1P.
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In Fig. 5(b) we store only internal Link data. As a result,
VAR y1 must hold its data until the peer process has copied
the values into VAR x2 Joint J4Q. The corresponding path from
data holder to data user is now beyond the control flow in (a).
Fig. 5(b) extends the control flow in (a) by extending Joint TRF
and its communication protocol with CHAN. The elongated
loops in the control flow for the leftmost process now include
the path from port r at VAR y1 to CHAN to port w of VAR x1
and back to CHAN — to tell its peer to stop holding data.

The extension in Fig. 5(b) leads to a 4-phase communication
protocol over Links L3P and L3Q. Because each process holds
the data it sends to CHAN throughout the communication, we
can implement each 4-phase communication as twin 2-phase
communications. The persistence of data, from the moment
data arrive to communication completion at each TRF port c,
is reflected in the TRF specifications for (a) and (b) in Fig. 5(c)
and (d). Note that each TRF is an extension of the earlier Joint
TRF in Fig 2(b), specified in Section III-D.

There is a third solution that, like Fig. 5(a), uses 2-phase
handshakes only and that, like Fig. 5(b), stores only internal
Link data but that, unlike (a) and (b), constrains the network.
The corresponding constraints are delay-sensitive and can
be expressed as relative timing constraints [22] within the
communication network or its surroundings, as follows.

• static constraint: From the moment CHAN exchanges
data, the leftmost process and its peer must write the
data they receive in VAR x1 and x2, respectively, before
completing their communication parts at TRF port c.

• dynamic constraint: In reality, it suffices that the leftmost
process writes x1 before y2 changes reach x1. Though this
dynamic constraint may be harder to analyze, it may point
to alternative static constraints.

As a guideline for selecting one out of the three refinement
solutions: Fig. 5(a) is robust and fast, (b) is robust and small,
and the third solution is both fast and small, but timed.

Each solution may replace Links with data storage by Links
without, and swap in different TRF Joints, but none of these
replacements change the topology of the compiled Link-Joint
network and its syntax-directed relation to the program!

A. Circuit Implementations for Refinement 1

Fig. 6 shows Link circuits for 2-phase communication with
or without data storage. The level-signaling bundled data
circuit implementations are done in three circuit families:
Click [15], Set-Reset [20], and GasP [23]. Fig. 7(g) shows a
compatible Joint circuit taking as example Joint F in Fig. 2(e).
The top part of Fig. 7(g) implements the guards and the
turn operations in the guarded command specification of F
in Section III-G. The bottom part computes the data.

The relation between guarded command specifications
and circuit implementations is as follows. Terms myturn(p),
myR(p), myW(p) become circuit signals myturn(p), myR(p),
and myW(p). Term yourturn(p) has circuit representation
yourturn(p)↑ ; ((myturn(p)↓ ; yourturn(p)↓) , yourturn(ppeer)↑)
— where ppeer is A if p connects to Link port B, otherwise B.

Fig. 6: Links for 2-phase level-signaling bundled-data protocols in Click (a), Set-Reset (b), and GasP (c) with data storage (d) or without (e).
The Links do double-duty for the 2- and 4-phase scenarios without data storage in Fig. 5. Data and turn pass between ports A, B by
raising and lowering interface signals while maintaining the guarded command atomicity specified by the abstract Link-Joint model, e.g.,
{myturn(A)=1 } yourturn(A)↑ ; ((myturn(A)↓ ; yourturn(A)↓) , myturn(B)↑) ; yourturn(B)↑ ; ((myturn(B)↓ ; yourturn(B)↓) , myturn(A)↑) etc.
Each pass, Click inverts the state of one of its flipFF flipflops to change req or ack and both its XOR and XNOR outputs. Set-Reset inverts
the state of its SR latch, as does GasP using a faster SR latch split into Drive-High-Keep-Low (DHKL) and Drive-Low-Keep-High (DLKH).
Panel (d) shows the signal waveforms timed from left to right, with interface signal names in black and internal names in red. The light-red
vertical bars mark the activities from rising to falling yourturn(A) and yourturn(B) signals, which act as local latch and flipflop “clocks.”
The yellow-colored boxes in the data waveforms indicate when data must be valid. The yellow boxes for myW(A) and myW(B) mark “clock”
versus data setup and hold times, relevant when the Link stores the data (d). Note that myR(A) and myR(B) must be valid until the Link
has stored (d) or transferred (e) the corresponding results — myW(A) for myR(A), myW(B) for myR(B). Crucially, and integral to Links and
Joints [20], differences in how each circuit family implements this protocol are in-visible at the interface: same protocol, same interface!
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VI. REFINEMENT 2: FUSE OR SPLIT JOINT ATOMICITY

Communication protocols and Joints can provide atomicity
when and where needed, for as long as needed. Fig. 5 clearly
demonstrates the “for as long as needed” provision: the control
flow marked by the fat line-arrows in (a) and (b) shows each
network operation as if it were a single atomic action —
which makes sense as the network corresponds to a single
communication statement in the program. This Section looks
at the other end of the spectrum: an atomic Joint action, and
how to split it into smaller actions. Our motivation for splitting
an atomic Joint action is to facilitate its circuit implementation.

Given that each atomic action corresponds to one guarded
command in the specification of the Joint, we will focus on
splitting guarded commands. As an example, we use Joint F
in Fig. 2(e), specified in Section III-G. F is a “heavy” Joint,
with many output assignments in a single guarded command.

We can make F “less heavy” by splitting its assignments
into separate guarded commands, while maintaining the over-
all command sequence. To express this requires that we refine
the original Link-Joint model specified in Section III-A. We do
this first, in Section VI-A. Section VI-B revisits F and provides
a “less heavy” guarded command specification. Section VI-C
and Figs. 7–8 present circuits and simulation waveforms.

A. Formalization: a Link-Joint Model for Refinement 2
Our formalization strategy is to split a guarded command

into operations performed over the same Link port. This pro-
duces a set of guarded commands, each with fewer operations
than the original guarded command. To maintain the original
“fused” command sequence, we add a guarded command that
relinquishes the turns on the Link ports, and is executed upon
completion of the guarded commands in the set.

To support this strategy, we extend the original shared
variable model [9] specified in Section III-A. Each Link still
has two ports, A and B, and three variables, turn, dataAtoB,
and dataBtoA that it shares with the Joint ports at A and B.
The two ports still take turns updating the Link variables,
including variable turn. What is new is that Link variable
turn now tracks how far along Link port p is in its command
execution. We extend the terminology used in the guarded
command specifications accordingly, as follows.

• Boolean myturn(p) is true if and only if p has the turn
but has not yet completed its command.

• As before, myR(p) and myW(p) are data read and written
by p — going from Link variables to p and vice versa.

• Boolean midturn(p) is true if and only if p has the turn
and completed its command.

• Assignment halfturn(p) changes Link variable turn so that
myturn(p) becomes false and midturn(p) becomes true.

• Assignment yourturn(p) changes turn so myturn(p) and
midturn(p) become false and myturn(ppeer) becomes true,
where ppeer is A if p connects to B, otherwise B.

This refinement leads to a 4-phase communication on port p:
myturn(p) ; halfturn(p) ; midturn(p) ; yourturn(p), Its peer ppeer
sees only myturn(p) and yourturn(p) and can freely be 2-phase
or 4-phase. Joint splitting is immaterial to neighboring Joints!

We also extend the terminology for go, an external Boolean
for initialization, test, and debug, which is part of the guard
in a guarded command and is arbitrated to permit or deny
command execution. The arbitration, implicit in the original
specifications, becomes visible when we split a guarded com-
mand. Because a guarded command is atomic, its execution,
once started, must complete. To model atomic executions of
“heavy” guarded commands with a set of multiple “less heavy”
guarded commands, we add the following terms.

• Boolean mid(go) is true if and only if the arbiter has made
a decision and decided to permit command execution.

• Assignment half(go) makes mid(go) true.
• Assignment your(go) makes mid(go) false.

The resulting Link-Joint model is backward compatible with
the original model in Section III-A by Esimai-Roncken [9].

B. Joint F Revisited

We can now create and specify a “less heavy” version of
Joint F in Fig. 2(e) than the version specified in Section III-G.
To do this, we split the two atomic guarded commands of F
using the strategy explained in Section VI-A, and i, j to index
the m output Links of F, where i ̸= j ∧ 1 ≤ i, j ≤ m.
1st guarded command — for myR(x)[0]

myturn(out1..outm ) ∧ (go∨mid(go)) ∧ myR(x)[0]
∧ myturn(in) ∧ (myturn(x)∨midturn(x))
→ halfturn(in) ; half(go)

myturn(out1..outm ) ∧ (go∨mid(go)) ∧ myR(x)[0]
∧ myturn(x) ∧ (myturn(in)∨midturn(in))
→ halfturn(x) ; half(go)

midturn(in, x) → yourturn(in, x) ; your(go)
2nd guarded command — for myR(x)[1]

myturn(outi ) ∧ myturn(in) ∧ (go∨mid(go)) ∧ myR(x)[1]
∧ (myturn(x)∨midturn(x))∧j ̸=i

j=1..m (myturn(outj )∨midturn(outj))
→ myW(outi):= fi (myR(in)) ; halfturn(outi ) ; half(go)

myturn(x) ∧ myturn(in) ∧ (go∨mid(go)) ∧ myR(x)[1]∧
j=1..m (myturn(outj )∨midturn(outj))

→ halfturn(x) ; half(go)
midturn(out1..outm , x) → yourturn(out1..outm , x) ; your(go)

Because the go arbiter is released and each Link turn relin-
quished upon completion of all split commands, both the 1st
and 2nd guarded command executions are atomic. When the
environment stops F by making go false, it stops F safely —
before, between, or after the 1st and 2nd guarded commands.

C. Circuit Implementations for Refinement 2

Fig. 7(h) shows a circuit for the “less heavy” (split) version
of Joint F, specified in Section VI-B, Its ports are compatible
with ports A and B of the 4-phase Link circuits in Fig. 7(a,b,c).
As a comparison, Fig. 7(g) shows a circuit implementation for
the “heavy” (fused) version of F with 2-phase ports.

Because the decision to fuse or split a Joint is irrelevant to
neighboring Joints, Links may use 2-phase communication at
one port, 4-phase at the other. Links (d,e,f) can connect Joint
(g) ports to 2-phase port A, Joint (h) ports to 4-phase port B.
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Fig. 7: Links (a,b,c) and Joint (h) use 4-phase protocols. Links (d,e,f) have 2-phase port A, 4-phase port B. Joint (g) uses 2-phase protocols.
Both Joints implement Joint F in Fig. 2(e). The parts above the dashed line in (g,h) implement the guards and turn operations in the guarded
command specifications for F in Sections III-G and VI-B, respectively. The parts below implement the data computations in the commands.

• Link circuits (a,b,c) use a 4-phase level-signaling bundled-data communication protocol at both ports. Link circuits (d,e,f) each use a
2-phase level-signaling bundled-data communication protocol at port A and a 4-phase version at port B. Both sets are implemented
in Click (top), Set-Reset (middle) and GasP (bottom). Note that 4-phase communication in Set-Reset and GasP requires a low pulse
generator (LP) — unnecessary in Click due to the use of flipflops. Replacing the Set-Reset and GasP latches for late data by flipflops
would still require a low pulse generator, but only at the 4-phase port interface to the SR latch or the DHKL-DLKH latch pair.
Differences in how each circuit family implements a given protocol stay inside the Link. If the protocol is the same, so is the interface!

• Joint circuit (g) uses a 2-phase level-signaling bundled-data communication protocol at its external ports in, out1 ... outm, and internal
port x. Joint circuit (h) uses a 4-phase protocol version. Both circuits use a MrGO gate [20] to arbitrate between action denial (¬go)
and permission (ready2go). Permission, if granted, persists until internal signal ready2go goes low. In the 2-phase version (g), it takes
one signal of ¬myturn(in), ¬myturn(x), ¬myturn(outi), 1 ≤ i ≤ m, to lower ready2go. In the 4-phase version (h) it takes all ¬myturn
signals of ports that participate in the action, i.e., either {¬myturn(in), ¬myturn(x)} or {¬myturn(x), ¬myturn(out1) ... ¬myturn(outm)}
— as indicated by the two C element groups. Where each AND output is high when all AND inputs are high, and low when one input
is low, each C output, when low, remains low until all inputs are high, and when high, remains high until all inputs are low [21]. Signal
ready2go may be delayed to match the time for data computation, represented here as a cloud with combinational functions f1 to fm.
As is typical for level-signaling bundled-data, matching half the computation delay suffices because ready2go is used twice per action.
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Like Fig. 6, Fig. 7 uses level-signaling bundled data circuits,
with Link implementations in Click, Set-Reset, and GasP.
Earlier, in Section V-A, we showed the relation between
guarded command specifications and circuit implementations
for 2-phase ports. We do the same here for 4-phase ports,
by relating guarded command terms defined in Section VI-A
to circuit signals in Fig. 7. Terms midturn(p) and halfturn(p)
have 4-phase circuit representations ¬myturn(p)∧ yourturn(p)
and yourturn(p)↑ ; myturn(p)↓. Term yourturn(p) has 4-phase
circuit representation yourturn(p)↓ ; myturn(ppeer)↑ — where
ppeer is A if port p connects to Link port B, and otherwise B. All
other terms have one-to-one translations, e.g., term myturn(p)
becomes circuit signal myturn(p) for 4-phase port p.

Splitting makes a “heavy” Joint “less heavy” in terms of
its guarded command specification and in terms of circuit
timing and analysis. Each 4-phase Link port can manage its
own affairs before changing its turn signals. The C elements
in 4-phase Joint F in Fig. 7(h) wait until all turn inputs have
changed before allowing the Link ports to relinquish their turn.
As a result, timing can be done by Link.1 In contrast, the
AND gates in 2-phase Joint F in Fig. 7(g) require additional
relative timing constraints to align the Links. Fig. 8 illustrates

1There is a catch: input data, e.g., myR(B) in Fig. 8(b), must be valid until
computed results, e.g., myW(B)early, have been captured by each Joint port.
For telescope Joint F this is a non-issue provided input data are stored.

Fig. 8: Signal waveforms for Links in Fig. 7 timed from left to right.
Like Fig. 6, which explains the color scheme, the waveforms start
with the turn at port A and relinquish the turn from A to B then B
to A, as indicated by the two light-red vertical bars. Waveforms in
(a) are for 4-phase Links in Fig. 7(a,b,c). Those in (b) are for Links
in Fig. 7(d,e,f) with 2-phase port A, 4-phase port B. Data myR(A)late
and myR(B)late may become valid after myR(A)early and myR(B)early,
respectively — especially when flipflops store the late data.

this further. When we compare the waveforms of 4-phase port
A in (a) to their 2-phase versions in (b) we see a robust
handover of turn and valid data signals in (a), while in (b) B
gets the turn (myturn(B)↑) before its inputs, myR(B), are valid.
Splitting a “heavy” Joint facilitates its circuit implementation
by modularizing its design and timing. The resulting circuits
have more Link gates and more-complex Joint gates, as is
obvious from Fig. 7, but the extra Link gates merely store
1-bit state information. One would expect that the “heavy”
version is faster, but this may depend on delay variations, delay
matching, placement, and routing.

D. Final Notes: Early and Late Data, and Testing C Elements
The circuits in Fig. 7 split 4-phase communication data into

early and late data. This is a straightforward extension of the
refinement in Section VI-A. Late data can supply stable data
by suppressing changing data. Overlapping early and late bits
may support just-in-time delay matching [10]

Scan access to state-holding C elements in Fig. 7(h) is
unnecessary for the same reasons that we can avoid scan
access to the many state-holding gates in superconducting
Joint circuits [17]. The C elements can change temporarily
during a Joint action but have the same state at each iteration of
that action. This makes them information-free for initialization
and test purposes. We can initialize the C elements and test
their operations by controlling and observing Link states.

VII. CONCLUSION AND FUTURE WORK

We are embedding Links and Joints [17]–[20] in Yale’s ACT
design flow [1], [13], [14] to combine asynchronous design
automation with circuit flexibility. Our compiler translates
hierarchical ACT programs with data-flow and control-flow
into Link-Joint networks. The refinement techniques that we
presented will lead to gate-level circuits with lower area and
power and simpler timing. These circuits go back into ACT,
for technology mapping, timing analysis, etc.

The key technical challenge in compiling ACT programs to
Link-Joint networks was to find the systematic translation from
handshake circuits to Links and Joints in Section III and Fig. 2.
Once found, we could more or less re-use Yale’s compiler. For
the refinements, the key challenges were the formalization of
splitting atomic actions in Section VI-A and the corresponding
design of 4-phase and mixed 2-phase/4-phase circuits in Fig. 7.
We will continue to formalize Link-Joint refinement levels in
preparation of automated stepwise refinement and verification.

The circuit implementations in this paper use 2-phase or
4-phase, level-signaling, bundled-data protocols in Click, Set-
Reset, and GasP. Our compile then refine approach supports
other circuit families beyond these three, and other protocols.
Recent additions are synchronous and asynchronous pulse-
signaling Link and Joint designs for data-flow operations in a
superconducting RSFQ family [17]. These have the same ACT
programs and Link-Joint networks as their CMOS versions.
We are investigating Link-Joint models and CMOS circuits for
2-phase transition-signaling and 4-phase QDI-data protocols.

We plan eventually to implement this compile then refine
approach as a deep embedding in ACT.
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APPENDIX

Remaining specifications for Joints in this paper follow here.
See Section III and Fig. 2 for context and terminology.

A. Joint REP

REP represents infinite repetition. It has startup port c and
port s for the statement it repeats. Figs. 3(b) and 4(a) use REP
as compilation for ACT-CHP command “∗” [13]. REP has one
guarded command that never relinquishes the turn on c.

myturn(c, s) ∧ go → yourturn(s)

B. Joint PAR

PAR represents parallel composition — see Fig. 3(b). It has
a basic Joint par, startup port c, ports s1 to sm for program
statements it executes in parallel, and internal FSM port x to
sequence its operations. PAR has two guarded commands.

myturn(c,s1..sm ,x)∧ go∧myR(x)[0] → yourturn(s1..sm ,x)
myturn(c,s1..sm ,x)∧ go∧myR(x)[1] → yourturn(c, x)

C. Joint RMUX

Multiplexing Joints provide access to a shared resource, e.g.,
a variable or channel, from different locations in the program.
RMUX provides read access and appears in Fig. 4. A multi-
plexing Joint — for read access, write access, or both — has
branch ports b1 to bm, one per access location, a shared access
port trunk, and internal FSM port x to sequence its two guarded
commands as follows, using index i, 1 ≤ i ≤ m.

myturn(bi , trunk, x) ∧ go →
myR(x)[0] → myW(trunk) :=myR(bi) ; yourturn(trunk, x)
myR(x)[1] → myW(bi) :=myR(trunk) ; yourturn(bi , x)

D. Joint E

Joint E is for evaluating expressions in communication
and assignment statements — see Fig. 3(b). It has startup
and output port c, ports e1 to em for connecting expression
variables v1 to vm, and internal FSM port x to sequence two
commands, specified as follows, using g = expression(v1..vm).

myturn(c,e1..em ,x)∧ go∧myR(x)[0] → yourturn(e1..em ,x)
myturn(c,e1..em ,x)∧ go∧myR(x)[1] →

myW(c) := g (myR(e1..em ) / v1..vm) ; yourturn(c,x)

E. Joint SELnondet

SELnondet in Fig. 4 performs nondeterministic selection
based on a Boolean string of one or more true bits arriving
at port g. SELnondet has basic Joint selnondet, startup port c,
ports s1 to sm for the program statements it may select, and
internal FSM port x to sequence its operations. The built-in
nondeterministic selection of guarded commands provides a
simple specification, using index i, 0 ≤ i < m, which also
works for deterministic selection based on a 1-hot string.

myturn(c, g, s1..sm , x) ∧ go →
myR(x)[0] → yourturn(g, x)
myR(x)[1] ∧ myR(g)[i] → yourturn(si+1 ) , x)
myR(x)[2] → yourturn(c, x)
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