In Andrew Brown and Alex Yakovlev (Eds.) We re Going to Need a Bigger Computer: Essays dedicated to Steve Furber,
on the Occasion of his Retirement. At Last. University of Manchester Print Unit, pages 66-81, 12 January 2024.

Micropipelines United

Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai

Asynchronous Research Center, Maseeh College of Engineering and Computer Science,
Portland State University, 1900 SW Fourth Avenue, Suite 105, Portland, OR 97201, USA

Keywords: Micropipeline, transition signaling, jolly good fellow

1. Summary

We dedicate this Festschrift salute to our esteemed retiring friend and Jolly Good Fellow of the Royal Society,
Steve Furber (JGFRS). This salute unites the two most prominent self-timed families for transition signaling,
Micropipeline and Mousetrap. We bring in Click elements to bridge the gap between transition and level
signaling. Using the latest developments in our unifying Link-Joint model we embrace both 2- and 4-phase
level-based protocols, providing an alternative to the 4-phase Micropipeline latch control circuits from
Manchester. Last but not least, we combine test solutions by both the University of Utah and the University of
Manchester and bring these into the Link-Joint at-speed test approach.

2. Micropipelines

Following publication of Micropipelines [18], many people, including Steve's group at the University of
Manchester [5, 6, 10, 11] and including the Tangram team at Philips Research in Eindhoven (Natlab) [2, 3],
devised a plethora of self-timed protocols and circuit families for transition and level signaling, including
Mousetrap [15] and Click [9]. Keeping track of all that diversity is next to impossible, but the Sparse-Furber
books [16, 17] provide a great service in doing just that.

In 2015, we introduced the Link-Joint model [12] to provide a protocol, family, and circuit independent way to
think about self-timed systems. Test methods for self-timed systems drove conception of the Link-Joint model
and proved to be remarkably easy to apply. Because the model separates state, in Links, from action, in Joints,
testing is easy. Only Links hold state and only Joints do actions and so one can test by merely initializing or
scanning Links after forbidding action by enough Joints to stabilize the values stored in Links. The Seitz
arbiter in the 1979 Mead-Conway book can bring a self-timed system to a safe stop [14].

The five graphic-style chapters on the subsequent pages unite early research contributions in Micropipeline
transition signaling by the University of Manchester, UK [6, 10, 11] and by the University of Utah in Salt Lake
City, USA [8] with subsequent research contributions in Mousetrap transition signaling from Columbia
University in New York City, USA, and the University of North Carolina in Chapel Hill, USA [1, 7, 15]. We
mix these together with the final and long-lasting research contribution of Click by Philips Handshake
Solutions in Eindhoven, The Netherlands [9]. We view this mix of asynchronous protocols and self-timed
circuit families through our developing Link-Joint model [1, 4, 13]. Reflections and a change of view are often
productive of new ideas, and so it is that these graphic-style chapters contain something old, something new,
a lot borrowed, and a little blue — more on this after the graphics, in Section 3.

We hope this salute entertains as well as helps its viewers to appreciate the diversity of self-timed systems, the

creativity of the people who devised them, and a few of their subtle relationships. We thank Steve Furber
(JGERS) for years of friendship and any help he may (or may not) anonymously have given us in years past.

*Authors for correspondence (mroncken@pdx.edu, ivans@cecs.pdx.edu, esimai@pdx.edu).

66



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

o CHAPTER 1 )

Where we meet Micropipeline and Mousetrap
and their different ways to implement exactly

G the same transition signaling protocol...

This is how we will model a simple Micropipeline
stage as introduced by lvan Sutherland in his
CACM 1989 Turing Award lecture.

The visible differences with Mousetrap below are
the C element and the capture-pass data latches.

p yourT(B) . ] ) ]
L The transition signaling protocol is under control

of a Muller C element, and captures data myW(A)
myW(A) myR(B)  alternately in the top latch when ¢ goes low and in
L h the bottom latch when ¢ goes high. The protocol
2 passes data as myR(B), reading the top latch
ci when p=0 and the bottom latch when p=1.
myT(A) myT(B)

>

\

A B The stage is EMPTY and transparent for data
when c=p, and FULL and opaque when c=p.

Here is a simple Mousetrap stage by t<—
Montek Singh and Steve Nowick yourT(B)

worked out in detail in TVLSI 2007.

Visibly different from Micropipeline are <

i " yourT(A) tin tout
the XNOR and tin-tout transition latch.

To see a change in yourT(A) or tin, the myW(A)
latch must be transparent, with en=1, L
which means that the stage is EMPTY.

™ myR(B)
L

7 >

The stage becomes FULL and opaque, ~ myT(A) myT(B)
with en=0, when fout or myT(B) changes. ~ A B

[vs)

67




Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

<Despite these differences, Micropipeline and Mousetrap
are remarkably similar.

Both propagate data from A to B.

Both pair new data with a transition:
data myW(A) pair with yourT(A) — myR(B) with myT(B).

Both store the new state
before changing myT(A) or myT(B).
Both change myT(A) and myT(B
to permit a predecessor to change data myW and
to let a successor know that data myR(B) are avallable

Both maintain their state
until yourT(B) changes.

Both are EMPTY when myT(B)=yourT(B)
and FULL when myT(B)=yourT(B). Ahhh, you mean that both
have the same interface!

This fits in the Link-Joint
model that we introduced
in ASYNC 2015, where
Links store and transfer
states between Joints for
compute and flow control.

Joint Link
( yourT(B)

Circuit families such as
Micropipeline or Mousetrap L
may differ but will use the
same Link-Joint interface  myw(a) v myR(B)
for the same protocol. L

n

L
PaN
Here are a Micropipeline =
and Mousetrap Link with ;”VT(A} i
a COPY Joint in between. A B A B

68



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Q

CHAPTER 2

Where we meet MrGO in the COPY Joint and
discover its use for initializing the design
and for at-speed test...

J

Link

myT(B)

Joints control the actions in a Link-Joint
model. The ability to stop a self-timed
action from outside makes it possible to
initialize the circuit for design and test.

MrGO (pronounced “Mister GO”) provides
stop-ability and comes in two versions:

(1) a proper stopper that arbitrates
between stop (—GO) and a transition
propagating from myT(B) to yourT(A), and
(2) a crowbar stopper that merely stops.

Each algorithmic loop must have a Joint

=D
cOx

¢ P myT(B)
T T RESET =

A B with arbitrated MrGO to stop the loop.
0 The crowbar version is a
GO-enabled standard latch.
SET
mTEL s %4 yourT(A)

The arbitrated proper stopper version of MrGO for transitions
uses arbitrated level-sensitive MrGOs from our ASYNC 2015
paper, connected to a DriveHighKeepLow (set) latch for

myT(B)=1 and a DriveLowKeepHigh (reset) latch otherwise.

>
Cd

yourT(A)

|—<(—8




Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Ticmpipe"”; With MrGO, we can create a

racetrack around a ring FIFO.
Links L1 and L2 are FULL with
light and dark grey data, and
Links L3 and L4 are EMPTY.

The STOP signs for COPY
Joints J2 and J4 indicate that
their GO=0. With J2.GO=0, J2
serves as the gatekeeper that
prevents data in the take-off
runway L1-J1-L2 from entering
the landing runway L3-J3-L4.

Mousetrap
] m K R N 4 N RA(N)R B N AR R R A(Y, % 9D O W 0 & & 8 8 (B g .
40 2 L | D
N o
A L) d n
(VA A\ ~ o
. < AT VY D R 1 7Y 4 £1) ARk )
L) 4 °|n= ] X AR RA i K R R 2 v 3 Bt « ¥ g .

" "4 + 3 A
" ..,“ 2 o
[} : ';\ ) “
]

L ‘H » o
0 : : o
- A f :
. A 4 -
. N A -
0 - ‘ “ O
VI }:’ — Y OO R B Y §g & & 3 mn oz 8 & 8(pyE y
iy @ [ Y Z A
= '
i 1 O
AT TTITTET S e A5
Bl 8 & ¥ ¥ & & 8 a ¥ ( ) O 5 A = (W) &
J2 As soon as we make J2.GO=1,

data race at full speed from

the take-off runway L1-J1-L2

through J2 to land in L3-J3-L4.

Because our track is a FIFO,
L3 data remain in sequence.

With J4.GO=0, data cannot
escape the landing runway.

70



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Micropipeline :
J1 L2 J2 0
|
|
|
|
L1 L3 :
Micropipeline Mousetrap 0
A |
|
|
|
J4 L4 J3 :
Mousetrap 0
BEFORE sen
With scan + GO 12.GO — ,7
signals, we can 0
initialize Links. |
Chapter 5 tells | -TYourT(® I : f
how we do this. | 1yourT(B) o I [ —
L1.c-myT(A)-myT(B) [ FULL | EMPTY
The gate-level L1.myR(B) XX [o1 : [10
waveforms show :
that we make L2.yourT(A) F—— |
Links L1 and L2 5 yourm(s) - e
FULL, with initial L2.c-myTA)ymyT®) [ | FULL 3 L_EMPTY
data 01 and 10. L2.myR(B) XX J10 [e1 J10
We make Links my
L3, L4 EMPTY.
o> a0 a» a» > e = - - L3y0urT(A) I 1 : I_l
AFTER L3.yourT(B) I (I
After initialization | L3.tout-myT(A)-myT(B) N EMPTY ! [ ] FULL
we set J2.GO=1 | L3.myR(B) XX [10 . [o1
to start the race |
and wait until it’s § L4.yourT(A) F—— I
over, ending with I | 4 yourT(B) I :
L1, LZEMPTY. 1) 4 tout-myT(a)-myT(e) I EMPTY j [ FuLL
L3, L4 FULL and L4.myR(B) ~ e 1
the initial L1, L2 ' 1
data in L3, L4. time —>» BEFORE | AFTER

71




Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

o CHAPTER 3 )

Where we find an elephant in the room and
get a bee to scare the gentle giant away...

() : %
nstead of doing half-rounds, . . .
let’s race arouncgiJ the track and Without data, nothing zips by, so

count how often data zip by L2 lt'f]t S §tar|t:r|\;|g1 1 data ele”j[ent in
when there are 0, 1,2, 3,0r4 _ 1o MNg — same setup as

: : before, but only Link L2 is FULL.
\ data elements in the ring. }

Oops, | can’t do that!

Let me try...

[ L1 is EMPTY, so L1.myT(B)=L1.yourT(B).
Joint J1 connects L1.yourT(B) to L2.myT(A).
And with myT(A)=myT(B) for each state,

we should see L1.myT(B)=L2.myT(B).

L3 and L4 are as EMPTY as L1

L2 is FULL, so L2.myT(B)=L2.yourT(B).
so L3.myT(B)=L4.myT(B) and

Joint J2 connects L2.yourT(B) to L3.myT(A).

And with myT(A)=myT(B) for each state, L4.myT(B)=L1.myT(B).
L e should see L2.myT(B)=L3.myT(B).
But that would mean
Micropipeline L2.myT(B)#L3.myT(B) and
J1 A L2 J2 L3.myT(B)=L2.myT(B)
and that’s

myT(B)
g e

Impossible!

L1 L3
Micropipeline myT(B) myT(B) Mousetrap
A > v And the fault is NOT in
myT(B) mixing Micropipeline and
Mousetrap families, but
J4 L4 J3 in transition signaling itself.
Mousetrap |

72



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Here is the elephant in the room.

It likes rings with even numbers
of data elements

You CAN change its mind
and make it NOT squash rings with
odd numbers of data elements —

but only if you give it a different ring.

Swapping rings
each time you want one more
or one fewer data element is

annoying.

Let's make an adaptable ring
and oust the gentle giant.

My
P <
myT(B) myT(B)
d

f

>

myT(B) with bees

We add an external scan signal
to program the ring for odd or
even numbers of data elements.

Two multiplexers either invert
both transition signals myT(A)
and yourT(A) at Link interface A
if the ring has an odd number of
data elements — otherwise they
pass each transition as is.

~
.l

yourT(A) Link.yourT(A)

Link
We call this circuit a “bee” —
bees keep elephants away,

because elephants fear bees. Link.myT(A)

A B

73



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Throughput
number of elements zipping by L2

L1

Micropipeline
A L2 B J2

L3

Mousetrap

Time to race around the track
and count how often data zip by
L2 when there are 0, 1, 2, 3, or 4

data elements in the ring FIFO.
Here is a ring FIFO with 1 element.

Our bee is at work at the interface
between Joint J3 and Link L4.

We set bee.ODD=1 before we put
1 or 3 elements in the ring FIFO,
and bee.ODD=0 before we put

0, 2, or 4 elements in the ring.

The race starts as soon as we
make J2.GO=1. Then data in L2
take off and circulate at full speed
until we reset J2.GO=0, using the
arbitrated version of MrGO.

— Z

CANOPY graph

Jennette Gill and Montek Singh named Canopy graphs
and explored them in detail (ICCAD 2008). But the idea
of the graphs is from Ted Williams and Mark Horowitz
who characterized performance of a self-timed design
by graphing it against occupancy (ARVLSI 1987).

72
55

34

1 2 3

Occupancy
number of data elements in the ring

Data need space to move into.
Without data (0 data elements) or
space (4 data elements) nothing
moves and nothing zips by L2.

Gate-level simulations show data
Zipping by L2 for 34 times when
we circulate one data element for
a given run time. This becomes
72 times with two data elements
and 55 times with three.

This CANOPY graph reports the
simulation results. The take-away
is that our bee does great work.
Our simulation uses abstract gate
and delay models, so take the
counts with a grain of salt.

74



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

o CHAPTER 4

Where Click takes us from transition to
level signaling, and back...

G r ,

Computations like (ring) FIFOs
z go well with transition signaling. S

!

Tn®
A L2 BI  J2

Conditional or arbitrated computations tend to fit better with
level signaling — be it 2-phase (top) or 4-phase (bottom).

—
e

J1

i What goes in between? F

A L1 B

75



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

YV
L

"

A

L2 B J2

Click’s flipping flipflop, flipFF, introduced
by Ad Peeters et al. in ASYNC 2010 is
ideal for connecting transition and level
signaling. The Click version that we use
comes from our ASYNC 2015 paper and
is explored in detail in ASYNC 2019 by
Adrian Mardari, Zuzana JelCicova, and
Jens Sparsg as phase-decoupled.

We use the flipFF outputs here as both a
transition signal and a level signal. For
the transition-based part of the design
the flipFF output is a transition, but the
level-based part sees it as a level signal.

The flipFF does double-duty as “bee”
and produces the desired transitions
provided we initialize its state properly.

The top and bottom pictures use a grey
background for transition-based parts,
and white for level-based parts.

Link L1 combines Mousetrap with Click
to forward data from a design part that
uses a transition signaling protocol to
Joint J1 which uses a 2-phase (top) or
4-phase (bottom) level signaling protocol.
The data are stored by the Mousetrap
— replaceable with Micropipeline.

L2 uses Click to store and forward data
elements from level-based Joint J1 to
transition-based Joint J2.

The 4-phase Click circuits (bottom) are
based on our ASYNC 2023 paper.

flip flip flip
FF FF FF
paN PaN PaN
e Y q

More bees !!!
Implicit and simpler than

\

before in Chapter 3.

76




Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Q

CHAPTER 5

write

>0

from-scan

Our scan solution combines ASYNC 1994
by Ajay Khoche and Erik Brunvand with
VTEST 1995 by the Manchester team of
Oleg Petlin and Steve Furber and brings
these into our ASYNC 2015 test approach.

Like Khoche-Brunvand, we scan the C
element that controls Micropipeline.

But we borrow the dominant scan mode
from Petlin-Furber — as scan enable, sen.

And we use parallel scan chains to read
and write Link control states and Joint GO
signals as we explain in Chapter 7 of the
2020 IET book by Jia Di and Scott Smith.

Where we learn to scan Link states
for initialization and at-speed test...

Micropipeline

C element

Y P
1

]

o——

Y

c / to-scan

A

sen

Mousetrap
transition latch

en sen

v

tout / to-scan
—>

tin A4
—>
5 sL
from-scan {r\
write

77




Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

Click parallel scan chain
(flipping) flipflops read

from-design J' to-design

write | ~
from-scan to-scan
| {l', —{ L >| sk —I—)

sin Lo 2\ sout
— L 5| s scot sc1f

in VAN FaN out
en i A Click flipping flipflop, flipFF, stores control
state. We read and write a flipFF using a
write parallel scan chain to keep its state stable
from-scan |, to-scan I dquring scan shifts. Because the flipFF

L a level signaling protocol, setting GO=0
i A yas out I' makes en=0 and tells us which latch of the
en l ? flipflop to write into. Therefore, Click has no
need for a dominant scan enable signal.

|_) v ‘ enable signal, en, is driven by a Joint with
—>
n

. . u Like Khoche-Brunvand and Petlin-Furber
Mlcroplpellne we shift serially through the data latches.
data latch
Mousetrap Click
%sen data latch data latch
- i muxin0
4 —> L
—> sin |
T —) L
sc0 sin | o
SC"\I, SCOT
v 1
E sL —> . : sL b—> ¢ ’I'
i A muxin1 / sout din A dout / sout 3 v
. sL p—>
9 @ din > | dout/sout
T
C sen en sen en

78



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

So, how did we use scan
and GO signals to initialize
the racetrack in Chapter 2?

We scan Link states and
Joint GO signals only, so
NOT the arbiters NOR the
latches in a Joint MrGO for
transition signaling.

We know each Link’s initial
state: FULL for L1-L2, and
EMPTY for L3-L4. In level-
signaling, we can set these
states once GO=0 for each
Joint, but transition signaling
requires more preparation
because MrGO must stop a
specific transition.

So before scanning in the
initial Link states, we first
scan in the initial state of
each MrGO, i.e., the initial
state of C element input a or
transition latch input tin.
These are set by output ¢ or
fout of the predecessor Link,
which we scan while GO=1.
This is the point where scan

sen does double duty as a
stop signal when GO can’t
play that role!

Once each MrGO output is
set, we freeze it with GO=0.
Then, we scan in the initial
Link states and data, make
runways, and start the race
by setting J2.GO=1.

enable signal, sen, comes in:

Micropipeline :
J1 L2 J2 "
|
|
|
A [
|
L1 L3 "
Micropipeline Mousetrap 0
|
|
|
|
J4 L4 J3 :
Mousetrap 0

sen |
J2.GO | [ ]
[
L1.yourT(A) |—| :
L1.yourT(B) Il 4 ]
L1.c-myT(A)-myT(8) FULL |
[ ]
L1.myR(B) XX o1 :
|
L2.yourT(A) F—— |
L2.yourT(B) [ '
|
L2emyT(A)rmyTE) [ | FULL |
L2.myR(B) XX J16 ]
|
L3.yourT(A) |—| :
L3.yourT(B) ] !
L3.tout-myT(A)-myT(3) | N EMPTY |
| |
L3.myR(B) XX e,
[
L4.yourT(A) F——m |
L4.yourT(B) [ .
| J
L4.tout-myT(A)-myT(B) | G EMPTY ,
L4.myR(B) xx [16 :
time —>» BEFORE |

79



Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai: Micropipelines United

3. Something Old, Something New, Lots Borrowed, a Little Blue

The graphic-style chapters on the previous pages show something old that was already known, something
new that we added, and a lot that we borrowed and copied un-exactly from the old into the new.

Although the partitioning of Micropipeline and Mousetrap stages into Links and Joints in Chapter 1 is new,
the effect on simple circuits like (ring) FIFOs is unsurprising. We omitted partitioning arbitrated or conditional
Micropipeline and Mousetrap computations into Links and Joints, for two reasons. One, explaining more
complex computations distracts from what we want to say. Second, most designers know how to implement
arbitrated and conditional computations using level signaling. Therefore, as a new intermediary (or final)
solution, Chapter 4 shows how to use Click or Click-enhanced Links to connect transition-based Joints to
level-based Joints. Thus, we can still mix and match (ring) FIFOs and arithmetic data computations for which
signaling protocols work well with computations that involve flow control.

The elephant in the room in Chapter 3 is an old friend, too often ignored. The Sparse-Furber books alert
designers of transition-signaling systems of a potential problem with odd-even numbers of elements in a ring
(Figure 9.8)[17]. The scan-programmable solution in Chapter 3, called bee, though simple, may be new. That
the Click flipFF in Chapter 4 does double-duty as bee is a new revelation, favorable to scaling. We expect
similar “double-duty” bees in the complex Mousetrap stages that Montek Singh presented at the ASYNC 2022
Summer School [1]. This bodes well for transition systems at large.

Also new is the MrGO circuit in Chapter 2, which makes a self-timed transition stop-able. The racetrack
simulation waveforms and canopy graph in Chapters 2, 3 and 5 show its use for initialization and test. The
scan solutions in Chapter 5 borrow key elements from early test work by both the University of Utah [8] and
the University of Manchester [10, 11], and combine these with the new MrGO into an at-speed test approach.
New here is the interplay between the GO signals and the scan enable signal, sen — sen does double-duty as a

stop signal when GOs can’t play that role because they must allow transitions, as we explain in Chapter 5.

Ethical Statement

No Micropipeline, Mousetrap or Click circuits, nor any transition or level signals, and certainly no elephants and no bees
were harmed in the making of this Festschrift salute.

References

1. ASYNC Summer School. 2022.
https://asyncsymposium.org/async2022/

2. K. van Berkel, R. Burgess, J. Kessels,

M. Roncken, F. Schalij, and A. Peeters. 1994.
Asynchronous Circuits for Low Power: A DCC
Error Corrector. IEEE Des. Test, 11, 22-32.
(doi:10.1109/54.282442)

3. K. van Berkel, R. Burgess, J. Kessels, A.
Peeters, M. Roncken, F. Schalij, and R. van de
Wiel. 1995. A Single-Rail Re-Implementation of
a DCC Error Detector Using a Generic Standard-
Cell Library. Proc. WCADM, 72-79.
(doi:10.1109/WCADM.1995.514644)

4. E. Esimai and M. Roncken. 2023. Flexible
Compilation and Refinement of Asynchronous
Circuits. Proc. ASYNC, 109-119.
(doi:10.1109/ASYNC58294.2023.10239623)

5. S.B. Furber, P. Day, J.D. Garside, N.C. Paver,
and J.V. Woods. 1994. AMULET1: A
Micropipelined ARM. Proc. COMPCON, 476-
485. (doi:10.1109/CMPCON.1994.282880)

6. S.B. Furber and P. Day. 1996. Four-Phase
Micropipeline Latch Control Circuits. TVLS/ 4,
247-253. (doi:10.1109/92.502196)

7. G. Gill, V. Gupta, and M. Singh. 2008.
Performance Estimation and Slack Matching
for Pipelined Asynchronous Architectures with
Choice, Proc. ICCAD, 449-456.
(doi:10.1109/ICCAD.2008.4681614)

8. A. Khoche and E. Brunvand. 1994. Testing
Micropipelines. Proc. ASYNC, 239-246.
(doi:10.1109/ASYNC.1994.656316)

9. A. Peeters, F. te Beest, M. de Wit, and W.
Mallon. 2010. Click Elements: An
Implementation Style for Data-Driven
Compilation. Proc. ASYNC, 3-14.
(doi:10.1109/ASYNC.2010.11)

10. O.A. Petlin and S.B. Furber. 1995. Scan
Testing of Micropipelines. Proc. VTEST,
296-301. (doi:10.1109/VTEST.1995.512652)

11. O.A. Petlin and S.B. Furber. 1995. Scan
Testing of Asynchronous Sequential Circuits.
Proc. GLSVLSI, 224-229.
(doi:10.1109/GLSV.1995.516057)

12. M. Roncken, S. Mettala Gilla, H. Park, N.
Jamadagni, C. Cowan, and I. Sutherland. 2015.
Naturalized Communication and Testing. Proc.
ASYNC, 77-84. (doi:10.1109/ASYNC.2015.20).

80

13. M. Roncken and I. Sutherland. 2020.
Chapter 7: Design and Test of High-Speed
Asynchronous Circuits. In J. Di and S.C. Smith
(eds.) Asynchronous Circuit Applications, IET,
London, UK, 113-171. (doi:10.1049/PBCSO61E)

14. C. Seitz. Chapter 7: System Timing. 1979. In
C. Mead and L. Conway (eds) Introduction to
VLS| Systems, pages 218-262. Addison-Wesley.
(ISBN:978-0-201-04358-7)

15. M. Singh and S.M. Nowick. 2007.
MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines. TVLSI 15, 684-698.
(d0i:10.1109/TVLSI.2007.898732)

16. J. Sparsg and S. Furber (eds). 2001.
Principles of Asynchronous Circuit Design— A
Systems Perspective. Kluwer Academic
Publishers. (ISBN:0-7923-7613-7)

17.J. Sparsg. 2020. Introduction to
Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark.
(ISBN:978-87-643-2001-5)

18. I.E. Sutherland. 1989. Micropipelines.
CACM 32, 720-738. (10.1145/63526.63532)

19. T.E. Williams, M. Horowitz, R.L. Alverson,
and T.S. Yang. 1987. A Self-Timed Chip for
Division. Proc. ARVLSI, 75-95.



