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Abstract

Asynchronous circuits offer numerous advantages, including low energy consumption

and good composability and scalability. However, they remain meagerly adopted in

the mainstream semiconductor industry. One reason is the limited number of design

tools available to help designers navigate design complexity, particularly the myriad

of asynchronous implementation styles.

This dissertation focuses on managing the myriad of asynchronous implementation

styles by utilizing a circuit-neutral model, called Links and Joints, and embedding

this Link-Joint approach into a design flow. Although years of past work have already

laid the groundwork, the work in this dissertation identifies and addresses key missing

pieces.

First, the dissertation presents a design and test methodology centered around

Links and Joints that exploits the similarities between multiple circuit implementa-

tion styles. This methodology offers interface uniformity and generality for various

asynchronous circuit families and protocols, as well as flexibility in implementation

choices and circuit initialization.

Second, this dissertation shows the Link-Joint methodology embedded in a de-

sign flow. The resulting flow, called O. nà (/or-NUHR/, Yoruba for “way”), includes

compilation and refinement steps for transforming high-level parallel programs with

message passing via circuit-neutral Link-Joint networks into asynchronous circuits,

postponing choices in protocol and circuit family as late as possible. O. nà also carries
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along test and debug, using a uniform test approach that fosters test reuse from one

abstraction level to another.

O. nà makes it easy to insert asynchrony appropriate for each design part. The

dissertation demonstrates this ease by providing methodology and design flow support

for various protocols such as 2- and 4-phase protocols, level- and pulse- and transition-

signaling logic, bundled data, and circuit families such as Click, GasP, Set-Reset,

Mousetrap, Micropipelines, and the Single Flux Quantum (*SFQ) superconductor

family. The dissertation also demonstrates that mixing and matching different circuit

implementation styles in O. nà is flexible and straightforward.
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Chapter 1: Introduction

Asynchronous design has remained a niche in the semiconductor industry for several

decades despite advantages such as efficient energy consumption, improved through-

put, enhanced robustness, reliability, and increased scalability. However, with more

recent technological advances and a wider range of applications such as wearable

devices, biomedical implants, and autonomous systems, there is renewed interest in

using asynchronous circuits. To support both experienced and new designers in the

asynchronous design space, we are revisiting its design and test methodology.

An asynchronous (or self-timed) circuit has no global clock. Instead, it uses local

protocols between its components to govern communication, synchronization, and

sequencing operations [66]. There are many ways to implement the local commu-

nication, protocols, and data operations needed in the circuit. When grouped and

optimized for a specific goal, different circuit implementation styles form diverse asyn-

chronous circuit families. These families are alike in every intent but different in

detail. The differences in initialization, handshake signaling, and static timing make

it challenging to work with or combine multiple families at once. Differences among

asynchronous circuit families also make it complex to design and test both general

and mixed implementations of asynchronous families with the support of electronic

design automation (EDA) tools — tools that the synchronous world has the privilege

of in abundance but are sparse in the asynchronous world.

In this dissertation, we aim to (1) showcase a design and test methodology that

exploits the similarities in multiple asynchronous implementation styles through a

general and unified abstraction, Links and Joints, and (2) demonstrate the embedding
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of this methodology in a design flow — the systematic series of steps and activities

involved in generating the circuit. This Link-Joint design and test methodology pro-

vides generality and uniformity of design and test interfaces. At the same time,

designers enjoy flexibility with implementation decisions, design reuse, and more col-

laboration with other designers. The embedding in a design flow offers a structured

route to scalable, accessible, and easy use of Links and Joints for designing small and

large systems, from algorithmic programs to chips.

This dissertation gives key insights to circuit designers and distributed system

designers about designing asynchronous circuits and systems with clear and well-

defined interfaces that support design reuse and integrated testing. The embedding

into a design flow showcases to EDA developers how to incorporate our methodology

into their tools for more flexibility and generality in circuit representation.

1.1 Research Summary

The primary objective of this research is to make it easy to insert asynchrony appro-

priate to each design part by providing a framework for the design and test of asyn-

chronous circuits, focused on using Links and Joints, a circuit-neutral model with

built-in test and debug features. With Links and Joints providing clear boundaries

and well-defined interfaces, we build a generic design and test flow to embrace multiple

protocols and different asynchronous families.

Let’s step back and consider what happens when designing asynchronous circuits.

A key observation is that there are many decisions to make, such as handshaking pro-

tocol, signaling logic, data encoding, and circuit family. Many designers base some of

these decisions on their familiarity and experience with certain options. In this disser-

tation, like many others in the past [2,4,5,49,72], our approach uses a language-based
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transformation design flow — going from a high-level design description to custom

circuits through a series of steps. Our approach features one key difference: the

binding of implementation decisions is deferred as late as possible instead of making

these decisions early. This difference is made possible by having Links and Joints as a

mid-level abstraction in the design flow. The dissertation demonstrates our approach

with design exploration and test emulation. It shows the generality and flexibility

advantage of using our approach through the variety of protocols and asynchronous

circuit families it supports and the ease of mixing circuit implementations.

1.1.1 Proposed Design Flow: O. nà

Figure 1.1: Our design flow, called O. nà (/or-NUHR/, Yoruba for “way”).

Our design flow, O. nà (Figure 1.1), centers around the use of Links and Joints as

a methodology for the design and test of asynchronous systems. Links and Joints —

introduced in detail in Chapter 3 — provide a way of thinking about asynchronous
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systems in partitions of state (data storage) and action (computation and control).

The state-action Link-Joint paradigm offers clear boundaries and well-defined inter-

faces for better embracing different asynchronous families by minimizing their differ-

ences and maximizing the similarities with an abstraction.

To facilitate the use of this methodology, we embed Links and Joints in an ex-

isting design flow instead of building a new one from scratch. We selected Yale’s

Asynchronous Circuit toolkit (ACT), which is open source, in active use, and sup-

ports programs with data and control flow. We compile ACT programs into circuit-

neutral Link-Joint networks, which we then translate into ACT circuits using stepwise

refinement. We reuse ACT’s application and programming techniques at the top and

ACT’s circuit and fabrication techniques at the bottom.

We consider testing an activity to be carried along in the design process. We

approach testing with the same state-action separation for all levels of abstraction by

defining observation structures and breakpoints. At the program level, we initialize

and observe variables and set breakpoints in the program. At the Link-Joint level, we

initialize and observe Link states and use a go-control (an external signal) to start and

stop Joint actions. At the circuit level, we use scan access to initialize and observe

Link states and use arbitrated go-controlled “MrGO” circuits to control actions in

the circuits.

The uniformity in this test and debug approach gives us a basis to manage test

complexity at the hardware. By planning our tests at a high level, we can reuse

them — handing them down from one abstraction level to another by translating

the observation and control structures to corresponding structures at the desired

abstraction level. We apply this approach to structural and throughput tests.
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1.1.2 Contributions

This research is a continuation of the Link and Joint research [60] started at the

Asynchronous Research Center of Portland State University in 2015, particularly in

making Links and Joints accessible to more people. While most of this dissertation is

joint work with my supervisor and collaborators, the following key contributions are

primarily mine.

• A semantics for Link-Joint networks using the shared variable model (presented

in Chapter 3), the notion of ports as protocol-based interfaces between Links

and Joints, and the abstract behavior implementation and validation of Link-

Joint networks.

• The recognition that initialization determines structural protocol settings such

as active versus passive and push versus pull, which rebuts the convention of

dedicated communication ports per use case (Section 3.3).

• The adaption of the ACT compilation strategy for control and data flow pro-

grams to generate Link-Joint networks (presented in Chapter 4), including the

development of target Link-Joint library elements.

• A set of refinement steps to illustrate the flexibility of stepwise application of

circuit implementation decisions in the Link-Joint model, including the imple-

mentation and Verilog-based validation of Link-Joint network refinements for

various choices in protocols, data encodings, storage requirements, and asyn-

chronous circuit families (presented in Chapter 5).

• A unified test and debug strategy that can be translated from one abstraction

level to another (presented in Chapter 6).



6

• A demonstration of Link-Joint networks as ACT formatted circuits with tim-

ing constraints (presented in Chapter 7) and mixed circuit implementations

(presented in Chapter 8).

1.1.3 Publications Based on this Work

1. E. Esimai and M. Roncken, “Flexible Compilation and Refinement of Asyn-

chronous Circuits,” 2023 28th IEEE International Symposium on Asynchronous

Circuits and Systems (ASYNC), Beijing, China, 2023, pp. 109-119,

doi: 10.1109/ASYNC58294.2023.10239623.

2. M. Roncken, E. Esimai, V. Ramanathan, W. A. Hunt and I. Sutherland, “State

Access for RSFQ Test and Analysis,” in IEEE Transactions on Applied Super-

conductivity, vol. 33, no. 5, pp. 1-7, Aug. 2023, Art no. 1303907, doi:

10.1109/TASC.2023.3251949.

3. E. Esimai and M. Roncken, “Flexible Active–Passive and Push–Pull Proto-

cols,” in IEEE Embedded Systems Letters, vol. 14, no. 3, pp. 139-142, Sept.

2022, doi: 10.1109/LES.2022.3159492.

4. M. Roncken, I. Sutherland, and E. Esimai, “Micropipelines United,” in A.

Brown and A. Yakovlev (eds) “We’re going to Need a Bigger Computer - Essays

dedicated to Steve Furber on the occasion of his retirement. At Last,” University

of Manchester Press Unit, 12 January 2024.

5. ASYNC 2022 Summer School: 3-day online seminar given by Rajit Manohar

(Yale University), Benjamin Hill (Intel), Montek Singh (University of North

Carolina at Chapel Hill), and Marly Roncken, Ebele Esimai, and Ivan Suther-

land (Portland State University). Audio presentations and slides are available
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at https://asyncsymposium.org/async2022. The Portland State presentations

cover (1) Links and Joints: behavioral design and (2) Links and Joints: gate-

level design

1.2 Dissertation Organization

Chapter 2 introduces fundamental concepts of asynchronous circuit design, such as

handshaking, signaling, data encoding, and asynchronous circuit families. It surveys

some examples of design flows and covers testing techniques. This chapter builds the

foundation for understanding asynchronous circuit design and testing.

Chapter 3 discusses the circuit-neutral Link-Joint model in detail as an abstraction

of asynchronous (self-timed) systems. This discussion includes the Link-Joint struc-

ture, its semantics, and the Link-Joint simulation model in Verilog. This chapter

serves as an introduction for readers unfamiliar with Links and Joints.

Chapter 4 introduces Compilation as a crucial component of our design flow, O. nà.

It presents a front-end solution for Links and Joints where late binding of imple-

mentation decisions is made possible using syntax-directed translation by compiling

high-level programming language designs into a network of Links and Joints. The

chapter introduces the languages in the source programs and the target Link-Joint

library elements. The chapter also demonstrates the compilation scheme.

Chapter 5 introduces another crucial component in our design flow: Refinement.

The chapter discusses the stepwise decisions for choosing implementation bindings.

The chapter showcases Link-Joint network refinement examples and some abstract

gate-level implementations.

Chapter 6 focuses on test, debug, initialization, and simulation. It highlights

the significance of testing and debugging in the design process, concentrating on
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translating test sequences and connecting test and debug at all abstraction levels

in the design flow. The chapter showcases both functional and structural tests and

covers test simulation tools like Verilog and ACTSIM.

Chapter 7 discusses getting back into the ACT ecosystem to complete the shallow

embedding of Links and Joints into ACT. The chapter demonstrates how we specify

an abstract Link-Joint gate-level implementation in the ACT format, with Product

Rule Set and timing constraints.

Chapter 8 discusses the ease of mixing and matching circuit implementations using

the Link-Joint model.

Chapter 9 concludes the work by summarizing the achievements and limitations.

It also provides an outlook on future enhancements and activities.
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Chapter 2: Background

Digital circuit design comes in two significant categories — synchronous and asyn-

chronous. A circuit is synchronous when all its components share a common and

discrete notion of time, as defined by a “clock” signal distributed throughout the

circuit [66]. Otherwise, a circuit is asynchronous (or self-timed) when it has no global

clock. An asynchronous circuit uses local protocols between its components to govern

communication, synchronization, and sequencing operations [66]. Asynchrony offers

benefits over synchrony in key metrics such as modularity and composability, high

performance, low peak power, low energy dissipation, low electro-magnetic emission

noise, and lack of global timing and global clock skew and distribution problems,

especially for variable and data-dependent computations [71].

This chapter provides some background on the key components of asynchronous

design and testing. The chapter covers widely used communication protocols, signal-

ing logics, data encodings, and asynchronous circuit families. However, we do not

prescribe which of them to use, nor do we indicate a preference for one over the other

in this dissertation. Rather, we show that our design flow supports implementations

that use, mix, and match the protocols, signaling logics, data encodings, and asyn-

chronous families discussed in this chapter. We showcase these implementations in

Chapters 5, 6, and 8. Also, the chapter introduces some existing approaches and de-

sign flows for asynchronous design related to the work done in this dissertation. After

that, we briefly outline the test and debug basics and techniques for asynchronous

circuits in preparation for Chapter 6.
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2.1 Communication Protocols

Asynchronous circuits operate via local communication between their components.

Because they have no global clock to sequence their operations periodically, asyn-

chronous circuits require a protocol, typically referred to as handshake protocol or

simply handshake, to indicate readiness to communicate and send or receive data and

the validity of data [66].

2.1.1 Handshakes

Local communication in asynchronous circuits uses handshakes to govern the opera-

tions of communicating neighbors. Typically, one neighbor or communication side is

dedicated as an initiator and starts the communication and data transmission with

a request event. The other side is dedicated as a responder and signals the receipt of

communication and data transmission with an acknowledgment event. Toggling be-

tween initiator and responder events forms a handshake protocol between neighboring

components [14].

Traditionally, the neighbors playing the roles of initiator and responder are fixed.

However, in Section 3.3, we will show that the roles do not have to be fixed but are

dependent on how the circuit is initialized and that roles can be initialized in multiple

ways depending on the execution purpose — for normal execution or test and debug.

The handshake protocol can be implemented in several forms. The most typical

implementation uses two signals, request and acknowledge, with an explicit initiator

and responder. Request indicates the start of an action, while acknowledge indicates

the completion of an action. We use this implementation to describe two commonly

used handshake protocols: a 2-phase handshake and a 4-phase handshake.
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2.1.1.1 2-phase Handshake

The 2-phase handshake has two consecutive execution phases. In the first phase,

the initiator starts the handshake protocol by changing the level of the request signal.

In the second phase, the responder completes the protocol with a corresponding level

change on the acknowledge signal.

For example, in Figure 2.1, the sender starts the first phase and initiates the

protocol by sending valid data to the receiver and by notifying the receiver that the

data are valid via raising the request signal. This allows the receiver to compute

on the valid data. When done computing, the receiver starts the second phase and

completes the protocol by raising the acknowledge signal, which tells the sender that

it may change the data and start the next communication when it has valid data for

the receiver again. Note that the next (second) communication in Figure 2.1 lowers

the request signal in its first phase and then lowers the acknowledge signal in its

second phase.

A 2-phase handshake with separate request and acknowledge signals takes two

handshakes to get back to the same request-acknowledge state values that it started

with. Because many designers start the protocol with request and acknowledge both

low, a 2-phase handshake is often referred to as a non-return-to-zero (Non-RTZ)

Figure 2.1: A typical 2-phase handshake protocol with request and acknowledge sig-
nals. The waveforms show four successive 2-phase handshakes: a → f , b → g, c → h,
and d → i. Note that each handshake has its own valid data. The data are valid
from when the handshake starts to when it finishes but can be changed from when it
finishes to when the next handshake starts.
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protocol. We will adopt this term even though our design approach allows a 2-phase

protocol to start in any of four possible states, i.e., with request-acknowledge both

low, both high, low-high, or high-low.

2.1.1.2 4-phase Handshake

The 4-phase protocol has four execution phases, executing two successive 2-phase

handshakes — the first to set the request and acknowledge signal and the second to

reset the signals to their initial values. Because designers typically start each 4-phase

handshake with low request and acknowledge signals, a 4-phase handshake is often

referred to as a return-to-zero (RTZ) protocol. We will adopt this term. Figure 2.2

(top) shows two consecutive 4-phase handshake protocols, a → f → b → g, and

c → h → d → i.

A 4-phase handshake allows more than one data validity scheme. In Figure 2.2,

the top data waveform shows when data remain valid using bundled data encoding,

discussed in Section 2.1.3. The bottom data waveform shows data that remain valid

in the first and second phases and are reset to NULL in the third phase. The data

become valid again sometime in the fourth phase, at the latest (as shown here) at the

Figure 2.2: A typical 4-phase handshake protocol with request and acknowledge sig-
nals with bundled data (top) and a typical 4-phase handshake protocol with dual-rail
data and acknowledge signal (bottom). Section 2.1.3 discusses the different data en-
codings. Note that each handshake has its own valid data.
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start of the next first phase. The bottom data scheme is typical for 4-phase dual-rail

encoded data, discussed in Section 2.1.3.

2.1.2 Signaling Logic

Signaling logic refers to how the local communication control signals are interpreted.

Options include level logic, transition logic, and pulse logic, which we differen-

tiate as follows.

• Level logic [66] interprets signals as Boolean levels — 0 or low, and 1 or high.

Level signaling is the most commonly used signaling logic in both synchronous

and asynchronous circuits and systems. Figures 2.1 and 2.2 show 2- and 4-phase

handshake protocols for level signals request and acknowledge.

• Transition logic [65,69] interprets signal changes (transitions). With Boolean

logic, we can view transition logic as generating a rising signal transition from

0 (low) to 1 (high) or a falling signal transition from 1 to 0. Note that a

2-phase signal transitioning protocol looks very much like the 2-phase protocol in

Figure 2.1 at the interface between the initiator-sender and responder-receiver.

However, there is much more to the logic that generates the behavior at the

interface. The logic based on level changes (transitions) is very different than

logic based on levels, as we will show in Chapter 5.

• Pulse logic [27, 44, 51, 57] interprets signal pulses. With Boolean logic, we

can view pulse logic as generating 0(low)-to-1(high)-to-0(low) or 1(high)-to-

0(low)-to-1(high) pulses. We use pulse logic to describe superconducting rapid

single flux quantum (RSFQ) [28] computations by encoding and interpreting

the presence of a pulse on a signal as 1 or TRUE or high and the absence of a
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pulse on a signal as 0 or FALSE or low [27,57]. We cover more details on pulse

logic in Chapter 6. Figure 2.3 shows a 2-phase handshake protocol for pulse

signals request and acknowledge.

Figure 2.3: 2-phase handshake protocol with two separate level signals, request and
acknowledge signals, as in Figure 2.1 (top) set off against a single statewire signal
for single-track circuit families such as GasP (middle) and against two separate pulse
logic request and acknowledge signals for superconducting circuit families such as
RSFQ (bottom).

2.1.3 Data Encodings

Data encoding refers to the representation of data signals. Common choices are

single-rail (bundled data) and dual-rail data encodings [66].

Bundled data encoding uses one wire for each bit of information. The sender

transfers an n-bit data value to the receiver on n wires. The logical level of the data

signal represents either a logic 1 or a logic 0. Bundled data is popular due to the

ability to separate control from datapath [2]. The bundled data protocol is simple

and practical, providing lower power and energy dissipation compared to dual-rail

data encoding.

Dual-rail data encoding uses two wires per data bit of information. An n-bit

data value is transferred on 2n wires plus the signaling wires for the protocol control
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logic. The data bits can be used to generate the request signal or generate the first

handshake phase in the case of single-track. In other words, part of the handshake

comes from the data encoding. This protocol is delay-insensitive. A typical dual-rail

encoding has four states: (00) Idle (data are not valid); (10) Valid 0-bit; (01) Valid

1-bit; and (11) Illegal. Dual-rail encoding is insensitive to delays on any wire but has

increased complexity in both wiring and logic [14]. Dual-rail encoding is an example

of an N-of-M encoding scheme where N=1 and M=2. N-of-M encodings use groups

of M wires to encode data values by considering data valid as soon as N wires are

activated [66].

2.2 Asynchronous Circuit Families

There are many circuit implementation styles. A circuit family is a collection of

circuit implementations optimized for a particular goal.

Click [50] developed at Philips in Eindhoven, the Netherlands, is among the most

popular asynchronous circuit families used today. The family uses edge-triggered

D flip-flops and avoids using other state-holding circuit elements for maximum com-

patibility with traditional synchronous EDA tools, particularly those for test and

timing analysis [66]. The original version uses 2-phase level-signaling bundled-data

protocols, but we implement a 4-phase version as well in Chapter 5.

GasP by Sun Microsystems Laboratories [68] is another level-signaling asyn-

chronous circuit family. GasP uses single-track signaling logic (a statewire). It was

originally designed for 2-phase handshakes, but we also implement a 4-phase version

in Chapter 5.

The Set-Reset (SR) family is a simplified version of GasP that uses a shared

statewire but drives it with set-reset latches instead of with drive-high-keep-low and
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drive-low-keep-high GasP latches [60].

Ivan Sutherland developed Micropipelines [69], an efficient 2-phase bundled data

asynchronous pipeline style. This bundled-data asynchronous pipeline style uses tran-

sition signaling in its control and uses double so-called capture-pass latches in its

datapath [66,69].

Mousetrap by Singh and Nowick [65] is an alternative transition signaling imple-

mentation for Micropipelines that use single latches [63]. It is an elegant implemen-

tation optimized for high speed in that the latches are normally transparent; i.e., the

data latches begin transparent and become opaque just after new data arrive [20].

Level and transition signaling families such as Click, GasP, Set-Reset, Mouse-

trap, and Micropipelines have known implementations in complementary metal oxide

semiconductor or CMOS manufacturing technologies. Alternative superconducting

manufacturing technologies, such as Rapid Single Flux Quantum (RSFQ) [27], can be

used for either synchronous or asynchronous circuits. Asynchronous implementations

require a pulse-logic and either bundled or dual-rail pulse-logic data encodings [31,57].

Superconducting circuit families provide benefits for very fast operating speeds and

low energy consumption.

This dissertation continues the unified abstraction research for the various asyn-

chronous circuit families [60] presented in 2015. In Chapter 3, we develop a model for

the abstraction, and in Chapters 5, 6, and 8, we extend the implementation to other

families. Our abstract Link-Joint interface gives a “start-finish” view of the various

protocols shown in Figures 2.1, 2.2 and 2.3, which results in the same abstract view

for 2-phase and 4-phase protocols. We use step-wise refinements to create different

implementations, such as 2-phase versus 4-phase protocols. These refinements are

discussed in Chapter 5.
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2.3 Design Approaches

There are a couple of design approaches for large and scalable asynchronous circuits.

These approaches include classical or burst-mode asynchronous state machines [14,

66], Graph-based specification, such as Signal Transition Graphs (STG) [9], Desyn-

chronization and Compilation. Desynchronization is a methodology of “deriving

asynchronous circuits from optimized synchronous circuits by replacing the clock

distribution tree by a handshaking network” [11, 12]. This methodology aids the

adoption of asynchronous circuits from the familiar base of synchronous circuits and

commercial EDA tools. There are many applications and design flows using this

methodology [30,45,75,78,81].

The Compilation approach involves some form of transformation of a high-level

specification, usually a program [72]. The high-level specification could be language-

based, such as using Communicating Sequential Processes (CSP) [23], OCCAM [29],

or Communicating Hardware Processes (CHP) [42]. For distributed and parallel sys-

tems, a designer would program both the functional and communication behavior

of the system and then, through automated and possibly interactively guided steps,

generate a circuit that satisfies this program. Typically, the generated circuit uses

a gate-level cell library and gate-level modules. The modules can be generated in

advance and can be optimized in situ, using peephole optimization or dedicated syn-

thesis approaches [2, 4, 13,49,52,74].

This dissertation focuses on using a compilation-based design flow but leaves open

the opportunity for local low-level synthesis.
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2.3.1 Compilation-Based Design Flows

Compilation-based syntax-directed design flows typically capture high-level speci-

fications in an algorithmic programming language like Communicating Sequential

Processes (CSP) [23], with primitives for sequential and parallel processing of com-

putation, non-deterministic and deterministic selection, and communication for syn-

chronization and message passing. Syntax-directed compilation [6] gives the designer

complete control over the implementation: you get what you program, not just be-

haviorally but also structurally and topographically. The structures in the programs

map one-to-one to the structures in the implementation.

Tangram by Philips [74] (which evolved into Haste by Handshake Solutions) is

one of the early syntax-directed asynchronous compilation languages. To empha-

size the tight connection between Tangram programs and asynchronous circuits, the

team dubbed their approach VLSI programming. Tangram programs are compiled

into intermediary representations, called Handshake Circuits, which, depending on

the compiler settings, are mapped to specific circuit modules; that is, circuit imple-

mentation decisions are per design. Despite their success, Philips and Handshake

Solutions discontinued and shelved Tangram and Haste and their related compilers

and libraries between 2010 and 2012.

Another syntax-directed design flow is Balsa [2]. Balsa was developed at the

University of Manchester and is similar to Tangram. It was created to provide an

open-source alternative to Tangram. It offered a slightly different approach to hand-

shake circuits by promoting the use of components parameterized by their behavior,

terminal number, and size [3]. Balsa’s development and management stopped in 2010.

Around the same time Philips started Tangram, Caltech developed an asyn-

chronous syntax-directed design flow from a programming language called Communi-
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cating Hardware Processes (CHP) [39,40,42], similar to, but not the same as Tangram.

The key difference is that CHP programs can probe communications. For example, a

communication partner can check if the other side is ready to communicate and make

decisions based on that information. In contrast, CSP and Tangram can make com-

munication decisions only when both communication partners are ready. CHP uses

probes in guards of selection statements [34]. Manohar and Ataei [1] continued the use

of CHP by developing an open-source EDA flow for asynchronous logic named Asyn-

chronous Circuit Toolkit (ACT). ACT is the only surviving general-purpose syntax-

directed design approach for asynchronous circuits available today.

Erik Brunvand [4] also had a design flow focused on dataflow applications. The

source language for this flow was OCCAM, written in LISP style. The design flow also

used syntax-directed translation and implemented 2-phase bundled-data transition

signaling circuits.

Handshake circuits are an intermediate representation — a network of handshake

channels and components [74]. At the handshake circuit level, a designer picks com-

munication protocol, data encoding, and circuit family to be implemented for the

entire design. This representation is then used to derive the final circuit netlist,

which goes into a CAD framework for placement, routing, simulation, and verifica-

tion. Figure 2.4 shows the place of handshake circuits in the Tangram design flow.

Tangram, CHP Caltech, and ACT all started with asynchronous circuits that use

4-phase protocols for level signaling and quasi-delay-insensitive (QDI) data encodings

like dual-rail data circuits [39, 41, 72, 73]. QDI circuits operate correctly regardless

of the delays on their gates and wires but require “isochronic forks” — forked wires

where all branches have exactly the same delay [14]. Because data results indicate

the completion of a data computation, QDI circuits can easily exploit average delay

advantages and thus produce circuits with higher throughput and lower latency. Balsa
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Figure 2.4: Handshake circuits: Intermediary in the Tangram design flow. (Taken
from Handshake circuits: an intermediary between communicating processes and
VLSI, Figure 0.5, page 13 [72].)

also implemented 4-phase bundled data protocol circuits [2]. When power became an

issue in circuit design rather than mere speed, the asynchronous community started

looking at 2-phase protocols with single-rail or bundled data. Tangram was one of

the earlier adopters [49].

A vital observation of these design flows is that circuit implementation decisions

(which handshake protocol, signaling, encoding, and family to use) are made and fixed

for each design prior to compilation. Also, handshake circuits have a fixed notion of

port protocols – active, passive, push, and pull. In other words, the implementa-

tion library has distinct implementations for each protocol choice, hence tying the

implementation closely to the representation.

Following the example of the design flows in this section, this dissertation uses a

compiler-based, syntax-directed design flow. However, we focus on flexibility avail-

able through the Link-Joint model with clear boundaries and well-defined interfaces

for finer granularity of circuit implementation decisions as opposed to global imple-
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mentation decisions applied to the entire design. We delay implementation decisions

as late as possible to support mixed implementation of multiple protocols, signalings,

data encodings, and families. We provide more details in Chapters 3, 4, 5, 6, and 8.

2.4 Test and Debug

Many testing techniques of asynchronous circuits focus on validating if the fabricated

circuit has any physical faults [25,53–56,79,80] because formal verification techniques

go only as far as the circuit layout masks submitted for manufacturing. Manufacturing

defects can be discovered only by testing the fabricated circuits. Because functional

tests may not, and generally will not, provide enough coverage of manufacturing

defects within a reasonable test time, manufacturing tests are typically based on

so-called structural fault models for manufacturing defects.

Fault models simplify test generation by abstracting from actual physical defects

or environmental influences that result in malfunctions of a circuit [79]. The term

structural testing refers to testing based on structural fault models. A well-known

structural fault model is the stuck-at fault model that assumes that a signal, gate

input, or gate output remains (is stuck at) 0 or remains (is stuck at) 1. Other

standard fault models for asynchronous circuits include functional and delay fault

models.

Asynchronous circuits are mainly autonomous and provide minimal opportuni-

ties to pause system operations, whether for observing the current state contents or

altering the state contents [53, 56]. Design-for-testability (DfT) techniques increase

circuits’ testability by adding test circuitry during design. These techniques improve

opportunities for controllability and observability. Scan test, a powerful DfT tech-

nique, addresses different fault models by shifting in and out test patterns generated
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for a specific fault model.

Roncken et al. built initialization, test, and debug into the Link-Joint model

[43, 60]. This feature makes the Link-Joint model both a design and test model.

With an emphasis on the separation of state and action, they brought the necessary

requirement for testing asynchronous circuits into modeling, thereby addressing the

needs of controllability, observability, and non-determinism. They introduced a new

circuit element, “MrGO”, to safely pause or start individual actions and used scan

access to observe or alter state.

In this dissertation, we harmonize test and debug throughout the design flow by

connecting DfT, test, and debug mechanisms at all levels of abstraction in our design

flow to have a unified test approach. Chapter 6 exhibits our implementation of a test

approach that starts at a high level and flows down with compilation and refinement

to lower design levels.
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Chapter 3: Links and Joints

First presented at the IEEE International Symposium on Asynchronous Circuits and

Systems in 2015 by the PSU Asynchronous Research Center, the Link-Joint model [60]

provides a circuit-neutral model with integrated test and debug . Links and

Joints were created as an abstraction of self-timed systems. Regardless of the many

possible circuit family implementations a design may use, the Link-Joint model keeps

their implementation differences “under the hood” [60–62]. The paradigm facilitates

a way of thinking about self-timed circuits [62] by partitioning systems into:

• transport and storage of data and other state information (Links), and

• computation and flow control actions (Joints)

This chapter is intended as an introduction for readers unfamiliar with Links and

Joints. The chapter covers the Link-Joint structure, its inherent features for test and

debug, its semantics, and its simulation model.

3.1 The Link-Joint Model

The idea of Links and Joints started when its creators began working with two dif-

ferent circuit families [61]. They found enough similarities in various parts of the

implementation that resulted in duplicated effort for each implementation. Typically,

most abstractions for circuits have all the functionality grouped together and have

connections for handshake communication between the functional units [66]. Links

and Joints shift the view of circuit abstraction by moving the interface boundary such

that handshake communication and state, as well as the different ways they can be
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implemented, become internal to Links, while computation and flow control become

internal to Joints [60–62]. This circuit abstraction view results in a network with

Joints as nodes and Links as edges connecting the nodes.

Consequently, even without considering the circuit implementation, we can view

an abstraction for adding two values as a Link-Joint network shown in Figure 3.1. We

express this computation in a data-driven way, where the arrival of data values initi-

ates the computation action. By separating the state from computation, the values

to be added and the computation result are stored in Links, marked as rectangles,

connected to the addition computation unit, Joint, marked as a big circle.

Figure 3.1: A simple Link-Joint network that adds two numbers as a data-flow com-
putation with channels, A + B→X .

We can also express the addition computation in Figure 3.1 in a control-driven way,

where the functional units control the pace of actions in the circuit. The same state-

action separation also works with this expression, shown in Figure 3.2. Chapter 4

further discusses different ways of specifying asynchronous circuits. Note that Joints

have different types based on their purpose. For example, Figure 3.2 shows three
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Figure 3.2: A simple Link-Joint network that adds two numbers as a control-flow
computation with variables, x := a+ b.

different types of Joints: E for expression evaluation, TRF for data transfer, and

VAR for read or write access to the stored value for a variable. More Joint types are

introduced and discussed in Section 4.2.

Therefore, Links transport and store state information. Joints are stateless. They

compute and control the flow of information between the Links to which they connect.

Joints may connect to multiple Links. Each Joint acts based on the state of its

connected Links. In essence, each Joint is a place where Links meet to exchange

information. A Link-Joint network alternates Links and Joints by interfacing them

using port connections. The interfacing ports are marked as small circles colored

either white or black in Figures 3.1 and 3.2.

The Links form a distributed state space because there is a clear separation be-

tween state storage and action control. In the absence of a global clock to synchronize

actions, local state changes serve as actionable events and trigger the flow of control
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locally. Actions are atomic, local, and spread over Joints. State-action separation

also offers an inherently intuitive approach to test and debug. Each Joint has its own

(arbitrated) go signal [60] – an external signal to start or stop any or all Joint actions.

Go signals make it possible to control and observe any or all Link states externally

without any Joint action interference. The presence of go signals simplifies and im-

proves initialization, test and debug. Chapter 6 connects these state-action control

and observation features in Links and Joints to observation and control structures for

design initialization, test, and debug in both programs and circuits.

The Link-Joint model is circuit-neutral ; it is silent about the implementation style

(protocols and circuit families) used in the final circuit. The Link-Joint model is flex-

ible because it decouples itself from the final circuit implementation. Implementation

is entirely dependent on design choices [16]. The Link-Joint model provides an ab-

straction level between algorithmic programs and electronic circuits when embedded

in a design flow [16, 17, 58, 59]. The Link-Joint model allows for experimenting with

different implementation options and binding design choices as late as possible. In

addition, this flexible design approach facilitates the easy mixing of protocols and

families and promotes design reuse.

3.2 Shared Variable Semantics

In early Link-Joint publications, the model for the Link has always been implicit [60–

62]. In 2022, we introduced a shared variable semantics that, for the first time, models

a Link explicitly [16]. Note that the shared variable semantics is not completely

formalized; the semantics provide intuitive definitions for Links, Joints, and well-

formed Link-Joint networks.

A Link is a structure with two distinct ports with formal names A and B. A Link
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Figure 3.3: Protocol and model of a Link (a) and a Joint (b).

has three state variables, turn, dataAtoB, and dataBtoA (Figure 3.3(a)), which is shared

typically by exactly two Joints connected at Link port A and Link port B respectively.

The atypical case is when an environment is at one of the Link ports instead of a

Joint. A Joint solely acts on the states of its connected Links. It has ports, each of

which connects to either a Link port A or B (Figure 3.3(b)).

Following good conversation practice, the two Joint ports connected to opposite

ends of the same Link take turns updating the Link variables, including variable

turn. For each Link, its variable turn designates which of the two ports, A or B, may

update the Link variables. When turn designates A, denoted as “turn ≡ A”, port

A — ultimately representing a Joint or environment connected to A — may update

turn and dataAtoB. Specifically, port A may update dataAtoB with new data going

from A to B and may change turn to designate B. Likewise, when “turn ≡ B”, port

B may update turn and dataBtoA. Link variables dataAtoB and dataBtoA contain zero

or more bits of data going from A to B and B to A, respectively. Therefore, a Link

can be bidirectional, unidirectional, or dataless depending on the number of bits in

dataAtoB and dataBtoA.
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Conforming with the earlier Link-Joint publications [60–62], the shared variable

semantics specifies Joint behaviors as guarded commands [15]. Each guarded com-

mand of a Joint is of the form guard→ command , where guard is a Boolean expression

based on the variables of its connected Links and command a sequence of assignments

changing the variables of its connected Links. For integrated test and debug, a Joint’s

go signal is included in its guarded command, such that go permits and ¬go prohibits

command execution.

Joint specifications use the following terms to access a connected Link l’s variables

from a Joint port p, where p connects to either Link port l.A or Link port l.B.

• myturn(p): A Boolean that indicates if it is p’s turn to update the shared

variables in Link l. For example, if Link port l.B connects to the Joint at port

p and “l.turn ≡ B”, then myturn(p) is TRUE.

• yourturn(p): An assignment that relinquishes p’s turn on connected Link l to

the port at the other end of Link l, ppeer. This assignment makes myturn(p)

become FALSE and myturn(ppeer) become TRUE. For example, if Link port

l.B connects to the Joint at port p, and Link port l.A connects to the Joint

at the other end of the Link at port ppeer, then yourturn(p) sets “l.turn ≡ A”,

making myturn(p) FALSE and myturn(ppeer) TRUE.

• myR(p): Data read by port p (data going out of Link l’s data variable through

Joint port p). For example, if Link port l.B connects to Joint port p, then

myR(p) refers to data stored in Link variable l.dataAtoB or if Link port l.A

connects to Joint port p, then myR(p) refers to data stored in Link variable

l.dataBtoA.

• myW(p): Data written by port p (data going into Link l’s data variable through
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Joint port p). For example, if Link port l.B connects to Joint port p, then

myW(p) refers to data written into Link variable l.dataBtoA or if Link port l.A

connects to Joint port p, then myW(p) refers to data written into Link variable

l.dataAtoB.

• go: Boolean signal set externally by the environment. When TRUE, the Joint

has permission to act. When FALSE, Joint action is prohibited.

• For multiple Joint ports p1 and p2, we use abbreviations myturn(p1, p2) for

myturn(p1)∧myturn(p2), and yourturn(p1, p2) for yourturn(p1) ; yourturn(p2)

— where “; ” indicates that the assignments are in sequence.

This terminology allows the specifications to be silent as to whether Joint port p

connects to Link port A or Link port B. Joints can have multiple guarded com-

mands. We may use guard1→ guard2→ command as an alternative notation for

guard1 ∧ guard2→ command. Guarded commands execute atomically, in mutual ex-

clusion, and only when their guard is valid [15].

A Link-Joint network is a collection of connected and alternating Link and Joint

instances. If a Link port is not connected to a Joint or a Joint port is not connected

to a Link, it is connected to the environment.

For example, Figure 3.4(a) shows a tiny Link-Joint network with two Links, L1

and L2, and Joint COPY, J1. The (single) guarded command of Joint COPY in

Figure 3.4(b) specifies that when port in has the turn on Link L1 and port out has

the turn on Link L2, and the Joint has go permission, then the data read from Link

L1, myR(in), can be written to Link L2, myW (out). After such a write operation,

port in relinquishes its turn on Link L1, and port out relinquishes its turn on Link

L2.
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Figure 3.4: Example Link-Joint network with two Links, L1 and L2, and one Joint
COPY (a), with a guarded command specification for the Joint (b), and an example
interpretation of the Joint’s terms in relation to its connected Links (c). Note that
each Link port is marked with a small circle, colored grey, to indicate that who
initially has the turn on either Link L1 or L2 is not yet set.

3.2.1 Semantics in Action

To illustrate the protocol of Links and Joints, we use a simple Link-Joint network

with a data-less Link and two SKIP Joints; we call it Ping-Pong (Figure 3.5). The

guarded command specification of SKIP is included. SKIP has one port p, does not

do any data operations, and when it has both the turn on the Link connected at port

p and go-permission, it acts by giving the turn to whoever is on the other end of the

Figure 3.5: Ping-Pong Link-Joint network with a Link and two SKIP Joints with the
guarded command specification of Joint SKIP.
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connected Link (a no-op operation). We show the use of the Link states and the go

signals in Joints to initialize the design, run it for a while, and then stop it.

In Figure 3.6, we initialize the network. First, we disable each Joint. Each Joint

has an external signal, go, to permit or prohibit Joint actions. To prohibit Joint

actions, we make each go signal FALSE as shown in Figure 3.6. Then, we initialize

the turn variable of the Link, which is possible because the Link-Joint model assumes

that we have external access to the Link variables.

Figure 3.6: Initializing the Ping-Pong Link-Joint network.

We set the turn to port A, making the Joint at port A act first when given go-

permission. We mark this selection by coloring port A black, indicating that port A

has the initial turn, and by coloring port B white, indicating that port B does not

have the initial turn. In addition, we added a red-colored pin to mark where the turn

is during the execution of PingPong. The turn is where the pin is. The two data

variables in the Link have zero bits. Therefore, Link L1 is a data-less Link.

After initialization, we need to enable the Joints to make the network run. Sup-

pose we give Joint J2 go-permission (J2.go := TRUE) but not Joint J1 (J1.go :=

FALSE), Joint J2 would not be able to act because it does not have the turn on

the Link. Keeping the go-permission on Joint J2, we give Joint J1 go-permission

(J1.go := TRUE) also, making the network run.
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Figure 3.7: The two states that the Ping-Pong goes back and forth on. Note that the
turn, marked by the red-colored pin, “goes back and forth” between ports A (top)
and B (bottom).

The image at the top of Figure 3.7 shows the network at the start of its run. Be-

cause Joint J1 has both the turn and go-permission, it can take action, which it

does by giving the turn to Joint J2 as specified in the guarded command of Joint

SKIP. When Joint J2 gets the turn and has go-permission, it gives the turn back to

Joint J1. So, the red pin moves back and forth between the Joints, thereby having a

ping-pong motion. See Figure 3.7.

The back-and-forth passing of turn continues until at least one go-permission is

removed; see Figure 3.8.



33

Figure 3.8: Final state of the Ping-Pong run, after we make the go signal in Joint J1
FALSE.

3.3 Flexible Initialization

As discussed in Section 2.1, components in an asynchronous circuit use local commu-

nication to signal readiness to communicate, output data validity, and receipt of in-

put data. These local communications (also known as handshake signaling or simply

protocols) replace the global clock that sequences (global state update) operations

periodically in synchronous circuits [66]. Asynchronous protocols go beyond what

clocked updates can do by supporting non-periodic local state updates distributed

over the system on a when- and where-needed basis.

In a handshake, one unit is active (that is, it initiates the handshake by issuing

a request to the other unit), and the other is passive (it receives the request and

replies – when it is ready – with an acknowledgment). These active and passive

communication protocols also apply to Link ports. Specifically:

1. active Link port :- starts the communication.

2. passive Link port :- responds to the communication.

3. push Link :- moves data from its active port to its passive port.

4. pull Link :- moves data from its passive port to its active port.



34

Active-passive and push-pull protocol settings determine whether the system is

functional and how well it performs. As in prior research at Caltech [6], Philips

Research [72] and the University of Manchester [2], we denote the active port with

a “bullet” (•) and the passive port with a “circle” (◦). In contrast to these works,

we discovered that protocol settings do not need to be fixed [16]. With the

Link-Joint model, we can implement any given active-passive and push-pull protocol

setting that a designer or compiler may assign to a system of Links and Joints merely

by initializing Link storage!

To illustrate the flexibility in protocol settings that the Link-Joint model brings

about, we use the example of a first-in-first-out buffer (FIFO). We create a FIFO

in Figure 3.9 with two Links, L1 and L2, and three Joints: SRC, COPY and SNK .

Joint SRC generates a value and writes it into Link L1. Joint COPY reads the value

in Link L1 and writes it into Link L2. Joint SNK consumes a value that it reads

from Link L2.

Figure 3.9: A simple FIFO with unspecified active-passive protocol.

The active-passive protocol setting does not need to be static for the FIFO to

function. Each Joint does not need to have a fixed protocol setting for its ports. In

Figure 3.9, we color each port grey to denote an unspecified protocol setting. The

Link-Joint model combines basic parts into larger designs and ultimately into systems,

independent of initial states these may assume. With this flexibility, the FIFO design
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of Figure 3.9 can start in any of four different initial configurations (Figure 3.10).

Figure 3.10: The simple FIFO in figure 3.9 with four different initial active-passive
protocol setting configuration. Note that Links L1 and L2 each have one active (•)
and one passive (◦) port.

In addition, there is no need for distinct push or pull Link specifications. Instead,

we can achieve any desired initial protocol configuration by initializing the Links’ turn

variables. Therefore, Link ports that initially have the turn and start the communi-

cation are active ports, while Link ports initially lacking the turn are passive ports in

the configured Link. Had we used “fixed protocol settings,” Figure 3.3 would require

two separate module definitions to define Links, Figure 3.4 would require four indi-

vidual module definitions to define Joint COPY, and Figure 3.9 would require not one

but four different FIFO designs, each with a different active-passive setting. Thus,

with flexible protocol settings, a design requires fewer models and fewer library ele-

ments, which results in fewer parts to verify, validate, simulate, compile, implement,

test, and debug.

Figures 3.11 and 3.12 show a snippet of the execution (three stages in an inter-
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Figure 3.11: Snippet of execution from the initial active-passive configuration in
Figure 3.10(a). With this initial configuration, only Joint SRC can act because it
has the turn on Link L1, while Joint COPY and Joint SNK wait until they have all
the turns required for them to act (top). Joint SRC acts by writing over the data in
Link L1 with new data, 2, and relinquishing its turn on L1 (middle). Joint COPY
(middle) now stops waiting because it has all the Link turns necessary to act. It acts
by copying L1’s data value, 2, to L2 and relinquishing both Link turns (bottom).
Joint SNK finally has the turn on Link L2, so it can read and print out data value
on Link L2.

Figure 3.12: Snippet of execution from the initial active-passive configuration in
Figure 3.10(b). With this initial configuration, only Joint SNK can act because it
has the turn on Link L2, while Joint COPY and Joint SRC wait until they have all
the turns required for them to act (top). After Joint SNK has read and printed L2’s
data value, 0, and relinquished its turn on L2 (middle), Joint COPY now has all the
Link turns necessary for it to act. It acts by copying L1’s data value, 1, to L2 and by
relinquishing its turn on Link L1 and its turn on Link L2 (bottom). Joint SRC finally
has the turn on Link L1 so it can write a new data value on Link L1 in the next step.
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leaving “run”) with the first two initial configurations, Figure 3.10(a) and (b), and

describe the operation of the FIFOs using red-colored pins, as introduced earlier in

Figure 3.6, to track which Link port has the turn. Remember: the port with the

pin has the turn. Figures 3.13 and 3.14 show the execution of the other two initial

configurations.

Initialization has consequences. For this simple FIFO example, each initial active-

passive configuration (Figure 3.10) produced a different output trace at Joint SNK.

The differences in initialization may not matter so much for this FIFO but can be cru-

cial. For instance, differences in initialization are crucial when measuring throughput

versus occupancy of ring FIFOs or when characterizing the performance of a proto-

col, circuit, or manufacturing process. See Chapter 6 for more details on throughput

analysis. Moreover, being able to initialize each Link’s turn and data variables gives

the designer flexibility for exploring behavior for regular execution of the design and

irregular behavior in test and debug instances.

Links and Joints provide a general model that facilitates design reuse. Flexible

binding of settings as well as of choice of protocol and even circuit family gives Link-

Joint systems enjoyable simplicity in design, design process, and even test, debug,

and analysis [16].
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Figure 3.13: Snippet of execution from the initial active-passive configuration in
Figure 3.10(c). With this initial configuration, Joint COPY has all the Link turns
necessary to act. It acts by copying Link L1’s data, 1, to Link L2 and relinquishing
both Link turns (middle). Now, both Joint SRC and SNK can act because they each
have the turn on L1 and L2, respectively (middle). Though SRC acts before SNK
here, they may act in either order or at once.

Figure 3.14: Snippet of execution from the initial active-passive configuration in
Figure 3.10(d). With this initial configuration, both Joint SRC and SNK can act
because they each have the turn on L1 and L2, respectively (top). Joint COPY
waits until SNK has printed L2’s data value, 1, and has relinquished its turn on L2
(middle). COPY also waits until SRC has written a new data value, 2, into Link L1
and relinquished its turn on L1 (bottom). Though SNK acts before SRC here, they
may act in either order or at once.
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3.4 Executable model in Verilog

The formal specification of the Link-Joint network with the shared variable model

and guarded commands is an excellent way to reason about the network. However,

to validate the design’s behavior for regular operation or test and debug, we need

a representation that can be simulated. We developed Verilog behavioral modules

to capture the formal semantics. We chose Verilog because it is very popular with

hardware designers, and its module interface and connection reflect how we implement

Links and Joints at the circuit level [59]. Therefore, Verilog continues to suit our

simulation and validation needs as we make the Link-Joint network less abstract by

refining it with more protocol, data encoding, or circuit implementation details; see

Chapter 5.

In Verilog, modules are typically self-contained descriptions that encapsulate cer-

tain functionalities. Modules encapsulate design hierarchy and communicate with

other modules through a set of declared input, output, and bidirectional pins1. Our

shared variable model appears differently in Verilog because Verilog uses

a communication interface rather than shared variables. Link variables are

now local to the Link module and can be changed by the Link based on requests from

its two Link ports.

Figure 3.15 gives a Verilog behavioral module of a Link. It has multiple pins

to emulate the connection to the Link variables (line 2 of Figure 3.15). It has pins

Amyturn,Ayourturn,Bmyturn, and Byourturn to connect to Link variable turn.

Wires at pins Amyturn and Bmyturn carry signals from the Link to the Joints (or

environment) at ports A and B, respectively, to indicate whose turn it is on the Link.

Only one of these signals is high (TRUE or logic 1) at a time.

1Pins are originally called ports in Verilog, but in this dissertation, we call them pins to avoid
confusion with ports in the Link-Joint model.
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1 /* Link Description */

2 module Link (Amyturn , Ayourturn , Bmyturn , Byourturn , ABin ,

ABout , BAin , BAout , init_turn , init_AB , init_BA);

3 parameter bw = 32;

4 input Ayourturn , Byourturn , init_turn;

5 input [bw -1:0] ABin , BAin , init_AB , init_BA;

6 output Amyturn , Bmyturn;

7 output [bw -1:0] ABout , BAout;

8 reg reg_Amyturn , reg_Bmyturn;

9 reg [bw -1:0] reg_ABout , reg_BAout;

10
11 assign Amyturn = reg_Amyturn;

12 assign Bmyturn = reg_Bmyturn;

13 assign ABout = reg_ABout;

14 assign BAout = reg_BAout;

15
16 initial begin

17 reg_Amyturn = !init_turn;

18 reg_Bmyturn = init_turn;

19 reg_ABout = init_AB;

20 reg_BAout = init_BA;

21 end

22
23 always @(posedge Ayourturn) begin

24 #10 reg_ABout = ABin;

25 reg_Amyturn = 1’b0;

26 reg_Bmyturn = 1’b1;

27 end

28
29 always @(posedge Byourturn) begin

30 #10 reg_BAout = BAin;

31 reg_Bmyturn = 1’b0;

32 reg_Amyturn = 1’b1;

33 end

34 endmodule

Figure 3.15: Verilog behavioral module for a Link. Note that Verilog is a timed model,
therefore we inject time-ticks (#10) to ensure all the changes have been made before
the next action. This implementation is used only for simulation and validation. In
Chapter 7, circuit implementations have their cell library and gate-level timing.
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Wires at pins Ayourturn and Byourturn carry signals from the Joints (or envi-

ronment) at ports A and B, respectively, to the Link to inform the Link that it is

done with the turn and the turn can be given to the Link’s other port. Wires at pins

ABin,ABout,BAin, and BAout carry data in and out of the Link. Pin init turn

is used to set which port has the turn initially, while pins init AB and init BA are

used to give initial values to the data stored in the Link.

The Verilog registers reg Amyturn and reg Bmyturn, declared on line 8 of Figure

3.15, store the internal state of the Link’s turn variable. As the network executes,

these registers drive the wires at pins Amyturn and Bmyturn.

The registers reg ABout and reg BAout, declared on line 9 of Figure 3.15, store

data variables, dataAtoB and dataBtoA respectively. When the Joint at Link port A

writes data, (myW (A)), the data come into the Link module over pin ABin on line 2

and get stored in reg ABout before the turn is given back (lines 24-26 of Figure 3.15).

Likewise, writes from Link port B, (myW (B)), come into the Link module over the

BAin pin and get stored in reg BAout before the turn is given back (lines 29-31 of

Figure 3.15).

Read requests from Link port A, (myR(A)), get their data from the Link module

over pin BAout, which is driven by reg BAout on line 14 of Figure 3.15. Likewise,

read requests from Link port B, (myR(B)), get their data from the Link module over

pin ABout, which is driven by reg ABout on line 13 of Figure 3.15.

Figure 3.16 gives a Verilog behavioral module of a Joint COPY. Its pins model the

interface for interaction with its connected Links. When high, the input wire at pin

in myturn notifies the Joint that it has the turn on the Link connected at port in;

likewise for the input wire at pin out myturn. The Joint uses the output wires at

pins in yourturn and out yourturn to notify the Links at ports in and out that it is

relinquishing each turn. Pin in myR gets the data coming from the Link connected
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at port in to the Joint, and out myR pin carries out the data leaving the Joint to the

Link connected at port out.

The guarded command of Joint COPY applies directly. Its guard in the shared

variable model (Figure 3.4) is the if condition checked on line 19 of Figure 3.16

Verilog module. After the copy action, reg out myW = in myR on line 20, the Joint

indicates that it relinquishes the turn to the Links at ports in and out as accomplished

on lines 21-24 of Figure 3.16. Recall that the execution of the commands must appear

1 module COPY (in_myturn , in_yourturn , in_myR , out_myturn ,

out_yourturn , out_myW , go);

2 parameter bw = 32;

3 input in_myturn , out_myturn , go;

4 input [bw -1:0] in_myR;

5 output in_yourturn , out_yourturn;

6 output [bw -1:0] out_myW;

7 reg reg_in_yourturn , reg_out_yourturn;

8 reg [bw -1:0] reg_out_myW;

9
10 assign in_yourturn = reg_in_yourturn;

11 assign out_yourturn = reg_out_yourturn;

12 assign out_myW = reg_out_myW;

13
14 initial begin

15 reg_in_yourturn = 1’b0;

16 reg_out_yourturn = 1’b0;

17 end

18 always @(in_myturn or out_myturn or go) begin

19 if (in_myturn && out_myturn && go) begin

20 #10 reg_out_myW = in_myR;

21 reg_in_yourturn = 1’b1;

22 reg_out_yourturn = 1’b1;

23 #10 reg_in_yourturn = 1’b0;

24 reg_out_yourturn = 1’b0;

25 end

26 end

27 endmodule

Figure 3.16: Verilog behavioral module for Joint COPY.
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as a single atomic action. Hence, lines 21-24 of Figure 3.16 must run as one atomic

action. This atomicity is achieved by the matching #10 delays on lines 24 and 30 in

Figure 3.15 and line 23 in Figure 3.16. Note that the registers in the Joint module

are Verilog artifacts and have nothing to do with the state.

We have created a library of abstract behavioral modules in Verilog for a Link

and various Joints. Using this library, we can create a behavioral module for Link-

Joint networks by instantiating the modules in the library. Figure 3.17 gives the

instantiation and simulation sequence for the simple FIFO in Figure 3.9.

The Verilog testbench in Figure 3.17 shows the connections between the Link in-

stances and instances of Joints COPY, SRC, and SNK. Figure 3.18 shows the wave-

forms from running the testbench in Figure 3.17.

3.5 Chapter Contributions

While the Link-Joint paradigm predates this dissertation and the research effort is

joint work with my supervisor, the following key contributions are largely mine.

• I extended the original partially defined semantics of Links and Joints to a fully

defined (though not yet fully formal) model based on shared Link variables

and Joint guarded commands. This extension includes the notion of ports as

physical Link-Joint connections and guarded command terms.

• I identified that initialization determines protocol settings such as active-passive

and push-pull in Link-Joint networks, in contrast to previous knowledge. Flexi-

ble initialization rather than static circuitry determines who communicates first.

• I developed and implemented a Link and Joint abstract behavioral module

library in Verilog.
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1 module FIFO;

2 reg [2:0] go;

3 // declare wire connections with more than 1 bit

4 wire [7:0] L1_ABin , L2_ABin , L1_ABout , L2_ABout;

5
6 initial begin // simulation sequence

7 $dumpvars ();
8 go [2:0] = 3’b000;

9 #10 go [2:0] = 3’b111;

10 #60

11 $finish ();
12 end

13
14 SRC #(. init_value (1)) J1

15 (. myturn(L1_Ame), .yourturn(L1_Ayou), .myW(L1_ABin), .

go(go[0]));

16 Link L1

17 (. Amyturn(L1_Ame), .Ayourturn(L1_Ayou), .Bmyturn(

L1_Bme), .Byourturn(L1_Byou), .ABin(L1_ABin), .ABout(

L1_ABout), .BAin(X), .BAout(X), .init_turn (1’b0), .

init_AB (1), .init_BA(X));

18 COPY J2

19 (. in_myturn(L1_Bme), .in_yourturn(L1_Byou), .in_myR(

L1_ABout), .out_myturn(L2_Ame), .out_yourturn(L2_Ayou),

.out_myW(L2_ABin), .go(go[1]));

20 Link L2

21 (. Amyturn(L2_Ame), .Ayourturn(L2_Ayou), .Bmyturn(

L2_Bme), .Byourturn(L2_Byou), .ABin(L2_ABin), .ABout(

L2_ABout), .BAin(X), .BAout(X), .init_turn (1’b0), .

init_AB (0), .init_BA(X));

22 SNK J3

23 (. myturn(L2_Bme), .yourturn(L2_Byou), .myR(L2_ABout),

.go(go[2]));

24 endmodule

Figure 3.17: A Verilog testbench for a simple FIFO (Figure 3.9). We have initialized
the active-passive setting in this testbench to match Figure 3.10(a), such that the
execution of Link L1 starts at Link port A (L1.init turn(1′b0)) and Link L2 starts at
Link port A (L2.init turn(1′b0)). We can start with any active-passive initial setting
by giving a value to pin init turn of each Link.
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Figure 3.18: Waveforms for simulating Verilog testbench in Figure 3.17. The wave-
forms reflect the snippet of execution shown in Figure 3.11, showing that Joint SNK
consumed data values generated by Joint SRC while the initial values 1 (in Link L1)
and 0 (in Link L2) are overwritten.
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Chapter 4: Compilation

The Link-Joint specification is sufficiently abstract to accommodate a variety of circuit

implementations with different protocols, signaling logic, data representations, circuit

families, and fabrication means. Before this dissertation, Link-Joint designs were

hand-constructed. Links and Joints lacked an easy-to-use front-end design entry

point, which has limited their usage and user base. There was also no tractable way

to design and test large systems.

To address these issues, this chapter details a front-end solution for Links and

Joints, which we presented and published in a paper [17] at the 2023 ASYNC con-

ference. Our solution follows the same strategy as both past [2–6, 49, 50, 72] and

present [1, 32, 33] works as discussed in Section 2.3, which use Syntax-directed

Translation to compile designs specified in a high-level programming language into

a network of handshake circuits connected by channels. The handshake protocol and

circuit family are determined before compilation in each referenced work.

Our solution uses syntax-directed translation to compile designs spelled out as

programs (ACT programs) into Link-Joint networks; see Figure 4.1. Our method

differs in that we bind implementation decisions as late as possible because our tar-

gets are circuit-neutral Link-Joint networks. Because we compile programs not into

networks of channels and handshake circuits but into networks of Links and Joints,

our key challenge – and a significant part of the work – was developing a new target

representative of handshake circuits in terms of Links and Joints.

This chapter introduces the languages in our source programs and the target

Link-Joint library elements. We demonstrate our compilation with examples.
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Figure 4.1: Compilation as a focus in our design flow, O. nà.

4.1 Source Programs

Transforming the design process into a programming activity makes designing with

Links and Joints more accessible, even though Links and Joints are already an ab-

straction. We express our designs in languages that support message passing for

synchronization and communication. As mentioned in Section 1.1.1, our front-end

solution branches off Yale’s Asynchronous Circuit Toolkit (ACT) — an electronic de-

sign automation framework [1,32,33]. To get to Link-Joint networks, we compile ACT

programs with data-flow parts written in ACT sublanguage dataflow and control-flow

parts in CHP (Communicating Hardware Processes) [32].

4.1.1 The Communicating Hardware Processes (CHP) Sublanguage

CHP [42] is based on a combination of Hoare’s Communicating Sequential Processes

(CSP) [23] and Dijkstra’s guarded command language [15]. CHP supports state-
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ments, communication constructs, composition operators, conditional execution, and

iteration. The documentation [34] gives the full details on the CHP language. Here

is a summary of the CHP statements used in this dissertation and their notation:

S := skip no-op

| v := E assign E’s result to v

| A ! E send E’s result via A

| A ? v receive value for v via A

| #A probe channel A

| S1 ; S2 sequential composition

| S1 , S2 internal parallel composition

| [G1 → S1 [ ] . . . [ ]Gn → Sn] deterministic select

| [G1 → S1 [ ] . . . [ ]Gn → Sn [ ] deterministic select with

else → Sn+1] explicit else case

| [|G1 → S1 [ ] . . . [ ]Gn → Sn|] nondeterministic select

| [|G1 → S1 [ ] . . . [ ]Gn → Sn [ ] nondeterministic select with

else → Sn+1|] explicit else case

| ∗[G1 → S1 [ ] . . . [ ]Gn → Sn] deterministic loop

We use v to denote a variable and A to denote a channel. We use S, S1, S2, Sn

to denote statements, E to denote expressions, and G1, Gn to denote guards. The

expression syntax in CHP is similar to expressions in the C language. The expressions

include numerical or Boolean expressions using arithmetic, comparison, Boolean, logi-

cal and bit operators, and function calls on expressions. Guards are expressions with a

Boolean result. For communication and synchronization, CHP has send(!), receive(?),

and probe(#) constructs over channels. A probe is an explicit Boolean signal that

reports if the communication partner at the other end of the point-to-point channel is

ready to communicate. Unlike a probe, which senses but remains uncommitted, send
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and receive wait until a communication partner “shows up.” CHP expressions may

use probes. Currently, probes are permitted only in guard expressions of selection

statements. CHP statements are executed in sequence or parallel.

When a guard is TRUE in deterministic and nondeterministic select statements,

the corresponding statement may be executed. A selection is deterministic because

the program uses the deterministic select syntax to assert that, at most, one guard

can become TRUE per selection [34]. In a nondeterministic select statement, multiple

guards may become TRUE. If no guard is TRUE in the select statement execution,

the program waits until a guard becomes TRUE before execution continues. To avoid

being stuck, one can add an else case to the statement. For example, a deterministic

guarded command of the form [G1 → S1 [ ] . . . [ ]Gn → Sn [ ] else → Sn+1] executes

Sn+1 if all guards are FALSE. Unlike CSP, where guards may have send or receive

constructs but not probes, CHP guards in select statements may have probes, but not

sends or receives. Loops can have multiple guards; however, the program exits the

loop when none of its guards is TRUE. In CHP loop statements, probes can NOT be

used in the guards; probes are not guaranteed to be stable. In particular, a probe that

evaluates to TRUE remains TRUE, but a probe that is FALSE can become TRUE

during guard evaluation.

4.1.2 The Dataflow Sublanguage

Dataflow is a data-oriented language for creating pipelined or streaming asynchronous

circuits. It exclusively uses expressions with channels as the basic terms for defining

the dataflow computations and network connections [36,70]. A dataflow program has

the form

dataflow {S1; . . . ; Sn}
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where S1 and Sn are dataflow statements and “;” is just a statement separator. These

statements run in parallel. Dataflow statements are mostly in the following forms:

• Function Statement: This statement computes a given function on data

from input channels and passes the results to an output channel. For example,

dataflow {A ∗ B → C} repeatedly reads and multiplies each data item from

channels A and B and writes the result to channel C.

• Conditional Split Statement: This statement sends data from one input

channel to one of several output channels based on a condition. For exam-

ple, dataflow { {c} I → O0, O1, . . . , On}, sends data from input channel I to

output channel Oj if the condition c evaluates to the index value j.

• Conditional Merge Statement: This statement routes data from one of

several input channels to one output channel based on a condition. For example,

dataflow { {c} I0, I1, . . . , Ik → O}, sends data from channel Ij to channel O

if the condition c evaluates to index value j.

Recall that Joints compute while Links store, but with Dataflow, the primitives

(statements) both compute and store while the channels are solely for transporting

data. Therefore, channels differ from Links. The Link-Joint model is versatile enough

to represent both control- and data-oriented programs.

4.2 Link-Joint Library Elements

Our compilation process starts with source programs with either CHP or dataflow

parts and ends in Link-Joint networks. As mentioned in the introduction of this

chapter, one of the key challenges with our compilation is developing target Link-

Joint elements.
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A Link has minimal variation in its specification, only changes in its data widths

and initial (active versus passive) port settings. In contrast, there are multiple types

of Joints based on their functionality and flow control. We have broadly classified the

types of Joints based on the part they commonly play in the network. These include:

1. Computation Class, which includes Joints involved in computation in control-

oriented programs such as variables (Joint VAR), expressions (Joint E), and

data transfers such as assignments (Joint TRF).

2. Shared Resources Class, which includes Joints for sharing structures, mul-

tiplexers (Joints RMUX, WMUX, MUX), and Joints for sequencing Joint exe-

cution commands (Joint FSM).

3. Flow Control Class, which includes Joints that manage the flow of control

in the compiled Link-Joint network, such as sequencers (Joint SEQ), parallel

compositors (Joint PAR), loops (Joint REP), and selections (Joint SEL).

4. Communication Class, which includes Joints for synchronization and com-

munication such as channels (Joint CHAN) and probe expression evaluations

(Joints Ewaitcycle, Waitcycle)

5. Dataflow Class, which includes Joints for dataflow or streaming operations

such as Joints COPY, SRC, and SNK.

The following subsections give further details on the classified Joints, showing their

representation and guarded command specifications. We mark the flow control for

each Joint with fat line-arrows colored in red, blue, and purple to separate paths

in the Joint figures. Also, note that the ports for each Joint are colored black or

white to indicate the default initialization of Link states for normal operation in

the compiled ACT-CHP program context. It is important to be reminded that this
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default initialization of the active-passive or push-pull setting is not frozen. The

flexible initialization property, discussed in Section 3.3 of the Link-Joint model, still

remains valid.

4.2.1 Computation Class - Joints VAR, E, TRF

This class focuses on Joints involved in data operations in control-oriented programs.

Joint VAR: VAR in Figure 4.2 represents an n-bit program variable, n ≥ 0. VAR

has a basic Joint var with read and write ports r, w for mutual exclusive use. Because

there is no storage in Joints, we store the variable’s value in Link L1 connected to

internal VAR port x. VAR has two guarded commands, one for read and one for write.

Neither relinquishes the turn on x, which we can set externally in L1 for initialization

and test purposes.

myturn(r, x) ∧ go → myW(r) :=myR(x) ; yourturn(r)
myturn(w, x) ∧ go → myW(x) :=myR(w) ; yourturn(w)

Figure 4.2: Joint VAR library element. Note that VAR is the representation in a
Link-Joint network, while var is the basic Joint inside VAR showing all the internal
connections. The red fat line-arrows mark the flow of control in Joint VAR.

Joint E: Joint E (xpression) evaluates expressions in communication statements,

assignments, and probe-less guards of guarded command statements. It has startup

and output port c, ports e1 to em for connecting expression variables v1 to vm (see

Figure 4.3). Like the data transfer Joint TRF in the next paragraph, an internal
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FSM – connected at port x of Joint E – is used to sequence two commands. The

evaluation of the expression uses f (myR(e1..em )) where f is the computation and

myR(ei) substitutes vi in f . Like in Figure 4.2, the fat line-arrows mark the flow of

control in Joint E. We use red and blue to separate overlapping line-arrows.

myturn(c,e1..em ,x)∧ go∧myR(x)[0] → yourturn(e1..em ,x)
myturn(c,e1..em ,x)∧ go∧myR(x)[1] → myW(c) := f (myR(e1..em ));

yourturn(c,x)

Figure 4.3: Joint E library element.

Joint TRF: This is the data transfer Joint. Data transfer is not restricted to CHP

assignments (v := E) alone. Also, data communications over CHP channels are data

transfers. A receive communication (A?v) saves the data transferred over the channel

into a variable, and a send communication (A!E) transfers the result of a computed

expression over the channel. As a result, the TRF in Figure 4.4 is generated as part

of both a CHP assignment and a CHP communication statement.

TRF has a basic Joint trf, and ports c, in, out. When prompted by c, TRF first

requests n bits of data, n ≥ 0, from variables or channels connected to port in, which

it then “transfers” to variables or channels connected to port out, before reporting

completion at c. This sequence is controlled by 1-hot 3-bit string myR(x), generated

by a Finite State Machine (FSM) connected to internal TRF port x and discussed

next in Section 4.2.2.
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myturn(c, in, out, x) ∧ go →
myR(x)[0] → yourturn(in, x)
myR(x)[1] → myW(out) :=myR(in) ; yourturn(out, x)
myR(x)[2] → yourturn(c, x)

Figure 4.4: Joint TRF library element.

4.2.2 Shared Resources Class - Joints RMUX, WMUX, MUX, FSM

This class of Joints includes Joints for sharing structures such as variables and chan-

nels and Joints for sequencing Joint execution commands.

Finite State Machine (FSM): FSM sequences actions in other Joints. The FSM

in Figure 4.4 shares and stores flow control information for Joint TRF, which it

maintains as a 1-hot bit string. Joint TRF, specified in Section 4.2.1, uses the 1-hot

bit position to decide which command to execute. With three guarded commands,

TRF requires a 3-bit FSM string. After each TRF execution, the FSM right-rotates

the bits by one position around the string. Likewise, for any Joint that uses the FSM,

its number of guarded commands determines the bit width of the FSM string.

To simplify the connection at port x of the Joint that uses the FSM, the FSM

has two basic Joints, fork and rrot, a unidirectional Link L1 from fork port out to

TRF port x, and a bidirectional Link L2 between fork port inout and rrot port io.

We can initialize the FSM so that (1) the leftmost bit of the string stored in L2 in

the direction from rrot to fork is 1-hot, and (2) fork has the turn on both its ports
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and is ready to execute its command.

Joint fork copies the FSM string from L2 to L1 and L2. Its executions alternate

with those of TRF and rrot. Joint rrot right-rotates the FSM string and returns the

result to fork.

(fork): myturn(inout, out) ∧ go →

myW(inout, out) :=myR(inout) ; yourturn(inout, out)

(rrot): myturn(io)∧ go → myW(io) := rrot(myR(io)) ; yourturn(io)

Joints RMUX, WMUX, MUX: Multiplexing Joints provide access to a shared

resource, e.g., a variable or channel, from different locations in the program. RMUX

provides read access and WMUX provides write access, while MUX provides both. A

multiplexing Joint — for read access (Figure 4.5), write access (Figure 4.6), or both

(Figure 4.7) — has branch ports b1 to bm, one per access location, a shared access

port trunk, and internal FSM port x to sequence its two guarded commands, using

index i, 1 ≤ i ≤ m. Note that a mutual exclusive constraint exists on themyturn(bi)s.

Also note that RMUX and WMUX are special cases of MUX with zero-width data

in the write and read direction, respectively.

myturn(bi , trunk, x) ∧ go →
myR(x)[0] → yourturn(trunk, x)
myR(x)[1] → myW(bi) :=myR(trunk) ; yourturn(bi , x)

Figure 4.5: Joint RMUX library element.
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myturn(bi , trunk, x) ∧ go →
myR(x)[0] → myW(trunk) :=myR(bi) ; yourturn(trunk, x)
myR(x)[1] → yourturn(bi , x)

Figure 4.6: Joint WMUX library element.

myturn(bi , trunk, x) ∧ go →
myR(x)[0] → myW(trunk) :=myR(bi) ; yourturn(trunk, x)
myR(x)[1] → myW(bi) :=myR(trunk) ; yourturn(bi , x)

Figure 4.7: Joint MUX library element.

4.2.3 Flow Control Class - Joints SEQ, PAR, REP, SEL

This class of Joints manages the flow of control in the compiled Link-Joint network.

These Joints generate events that trigger activity in other Joints.

Joint SEQ: SEQ in Figure 4.8 represents sequential composition of statements. It

has basic Joint seq, startup port c, and ports s1 to sm for the m, m ≥ 1, program

statements it sequences when prompted by c. It uses an m+1-bit internal FSM port

x — see Section 4.2.2 — to sequence its commands, using index i, 0 ≤ i < m.
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myturn(c, s1..sm , x)∧ go∧myR(x)[i] → yourturn(si+1,x)
myturn(c, s1..sm , x)∧ go∧myR(x)[m] → yourturn(c, x)

Figure 4.8: Joint SEQ library element.

Joint PAR: PAR in Figure 4.9 represents parallel composition. It has a basic Joint

par, startup port c, ports s1 to sm for program statements it executes in parallel, and

internal FSM port x to sequence its operations. PAR has two guarded commands.

myturn(c,s1..sm ,x)∧ go∧myR(x)[0] → yourturn(s1..sm ,x)
myturn(c,s1..sm ,x)∧ go∧myR(x)[1] → yourturn(c, x)

Figure 4.9: Joint PAR library element.

Joint REP: REP in Figure 4.10 represents infinite repetition. It has startup port

c and port s for the statement it repeats. REP has one guarded command that never

relinquishes the turn on c.
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myturn(c, s) ∧ go → yourturn(s)

Figure 4.10: Joint REP library element.

Joints SELdet and SELnondet : SELdet and SELnondet perform deterministic and

nondeterministic selection, respectively, based on a collection of all the guards in the

select statement. The guards are represented as a bit list of Booleans arriving at port

g. In deterministic selection, only one guard can be TRUE at execution, but more

than one guard can be TRUE in nondeterministic selection. The implementation

of Joint SELnondet determines which of the TRUE guards’ statements are executed.

This decision can be based on round-robin, arbitration, or other selection methods.

We explore guard selection implementation as a refinement in Chapter 5. Because

the nondeterministic selection of guarded commands is built into the guarded com-

mand semantics [15], both deterministic and nondeterministic selections have the

same guarded commands.

Our library element adheres to the CHP specification for SELECT without an else

case — if none of the guards evaluate to TRUE, the program deadlocks, preventing

any further progress. SELdet and SELnondet each have basic Joints seldet and selnondet

(presented in Figure 4.11 as sel), with startup port c, ports s1 to sm for the program

statements it may select, and internal FSM port x to sequence its operations.
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myturn(c, g, s1..sm , x) ∧ go →
myR(x)[0] → yourturn(g, x)
myR(x)[1] ∧ myR(g)[i] → yourturn(si+1 , x)
myR(x)[2] → yourturn(c, x)

Figure 4.11: Joint SEL library element representing SELdet and SELnondet.

4.2.4 Communication Class - Joints CHAN, Ewaitcycle, WAITcycle

This class features Joints for synchronization and communication. Joint CHAN rep-

resents a CHP channel. The other Joints in this class facilitate using probes in ex-

pressions. Probes are permitted only in guard expressions of selection statements.

Joint CHAN: Because Joints are storage-free, we represent CHP channels as Joints

— not as Links. This makes perfect sense because channels synchronize parallel

processes, and Joints excel at bringing together multiple participants by synchronizing

them. Joint CHAN in Figure 4.12 represents a channel with two ports, P and Q, for

connecting two communicating processes that exchange n1 data bits from P to Q, n2

data bits from Q to P, where n1, n2 ≥ 0.

Each process may probe the channel to sense if its partner is ready to communi-

cate. Probe signals #P, #Q can be read and written directly without a communi-

cation protocol. A process can probe communication readiness, using 1 bit, and the

data sent by its partner —n2 bits for #P, n1 for #Q. Joint CHAN has one guarded

command. As indicated earlier in Figure 4.2, the fat line-arrows colored red mark
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myturn(P, Q) ∧ go →
myW(P) :=myR(Q) ; myW(Q) :=myR(P) ; yourturn(P, Q)

#P ≡ {myR(Q),myturn(Q)} #Q ≡ {myR(P ),myturn(P )}

Figure 4.12: Joint CHAN library element.

the control flow in Joint CHAN. Note that the line-arrows look the same as for Joint

VAR in Figure 4.2, even though VAR sequences the flow of control for r and w, while

CHAN synchronizes the control flows for P and Q. The line-arrows serve as a visual

aid but do not replace a Joint’s guarded command specification.

Joint Ewaitcycle : Joint Ewaitcycle is a special expression Joint for a nondeterministic

select statement whose guards have probes. Joint Ewaitcycle outputs a Boolean bit

list of size k representing the k number of guards in the nondeterministic select

statement, where k ≥ 0. Probes change dynamically – whenever a process is ready to

communicate. Therefore, Joint Ewaitcycle waits until some guard is TRUE, which may

require waiting for a probe to be TRUE. When some guard is TRUE, Joint Ewaitcycle

requests for probe snapshots. A probe snapshot is a stable value of a probe captured

and provided by Joint WAITcycle (discussed in the next paragraph) when requested.

Probe snapshots are necessary to give probes a specific time window to report if the

probe would participate in the selection. Probe snapshots provide a stable evaluation

of the guards for selection by Joint SEL.
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Ewaitcycle, with startup port c, uses an internal 3-bit FSM port x to sequence

three guarded commands, see Figure 4.13. Probes come into Joint Ewaitcycle as raw

signals with the formal names p1, . . ., pm. The raw signals come directly from a Joint

CHAN ’s probe signal (#P or #Q of Figure 4.12). The stable probe snapshots come

in as protocol signals myR(epi) at port epi, with index i, 0 ≤ i < m. Likewise, other

non-probed expressions (variables) come in as myR(evj) at port evj, with index j,

0 ≤ j < n.

But where pi and myR(evj) are evaluated early, myR(epi) are evaluated after the

\\ evaluate non-probe expressions (get latest values of the variables)
myturn(c, ev1,. . . evn, ep1,. . . epm, x) ∧ go ∧ myR(x)[0] →

yourturn(ev1,. . . evn, x)

\\ wait until some guard is TRUE before taking probe snapshots
myturn(c, e1,. . . en, ep1,. . . epm, x) ∧ go ∧ myR(x)[1] ∧

(f ′[1] ∨ . . . ∨ f ′[k]) → yourturn(ep1,. . . epm, x)

\\return stable evaluation results
myturn(c, e1,. . . en, ep1,. . . epm, x) ∧ go ∧ myR(x)[2] →

myW(c) := {f [1], . . . , f [k]}; yourturn(c,x)

Figure 4.13: Joint Ewaitcycle library element. The specification uses f ′[i] to denote the
evaluation of the ith guard expression, where 1 ≤ i ≤ k, using the variables and the
raw probe signals, p1, . . ., pm, for probes #p1 to #pm in the guards. The specifica-
tion uses f [i] to denote the evaluation of expressions using stable probe snapshots,
myR(ep1), . . ., myR(epm), for probes #p1 to #pm in the guards. This figure omits
the bit widths for p1 to pm, ep1 to epm, and ev1 to evn to reduce visual busyness.
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early evaluations have produced at least one Boolean guard bit that is TRUE. This

early versus late evaluation is clearly visible in the guarded command specification in

Figure 4.13.

Joint WAITcycle : Joint WAITcycle provides a stable probe snapshot. WAITcycle,

with startup port r, uses an internal arbiter and 2-bit FSM port x to arbitrate the raw

probe input against myturn(x) for a duration of one FSM cycle. WAITcycle returns a

communicate readiness bit and the probe data, hence the entire probe. Its guarded

command specification uses mutual exclusive arbiter results (grantprobe, grantx) =

arbiter (probe[0],myturn(x)), where probe[0] is the communication readiness Boolean

bit of the probe. For example, #P = {myR(Q),myturn(Q)} for probe #P in Figure

4.12.

\\arbitrate for one FSM cycle
myturn(r , x) ∧ go ∧ myR(x)[0] → yourturn(x)

\\return stable probe snapshot
myturn(r , x) ∧ go ∧ myR(x)[1] → myW(r) := (0 if grantx, probe if grantprobe) ;

yourturn(r , x)

Figure 4.14: Joint WAITcycle library element.

4.2.5 Dataflow Class - Joints COPY, SRC, SNK, FORK, RROT

This class of Joints is our implementation of dataflow or streaming nodes. These

Joints are dependent on the functionality applied to streaming data. Joints COPY,
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SRC, and SNK introduced in Sections 3.2 and 3.3 are examples of dataflow Joints,

as are Joints fork and rrot used in Joint FSM in Section 4.2.2. However, this is not

an exhaustive list of Joints in the dataflow class.

4.3 Compilation to Links and Joints

In our design flow, O. nà, the compilation approach to Link-Joint networks uses syntax-

directed translation. With syntax-directed translation, our compiler walks through

a program’s parse tree and emits a Joint (or a small Link-Joint network) for each

program construct. It also emits Links to connect each Joint to other constructs

while storing the state between them.

We can compile either dataflow or CHP programs. To Illustrate the compilation

to Links and Joints, we use an example, a two-stage first-in-first-out (FIFO)

buffer. This linear FIFO buffer can store zero, one, or two data items. In Figures

4.15 and 4.16, we give two program versions of this design — an ACT dataflow

program version and an ACT hierarchical control-flow version — and their compiled

Link-Joint networks.

The ACT dataflow program version, FIFO2 dataflow in Figure 4.15, has one

input channel, L, one output channel, R, and an internal channel, M. The pro-

gram copies data coming over L to M and copies data coming over M to R. Our

compilation for dataflow programs follows a “store before use” principle for the

streaming channels while the channel computations become Joints. We compile this

FIFO2 dataflow program as follows.

a) We translate program statement L → M to Link Ld1 to store the data coming

in on program channel L, and Joint Jd1 whose input port, in, connects to Ld1

and who copies Ld1’s data to its output port, out, for program channel M.
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Figure 4.15: An ACT dataflow program for a two-stage FIFO buffer (top) with its
corresponding compiled Link-Joint network (bottom). Data flow from left to right,
coming in at Channel L and leaving at Channel R. The red line-arrows mark the flow
of control in the Link-Joint network.

b) Similarly for M → R, we generate Link Ld2, to store the data for M before

Joint Jd2 uses Ld2’s data by copying the data to its output port out for program

channel R.

The ACT hierarchical control-flow version, in Figure 4.16, has a top-level program,

FIFO2 controlflow, with two onebuf instances, b0 and b1, that operate in parallel

and communicate to external channels L and R and to each other. We compile

FIFO2 controlflow into:

a) onebuf Link-Joint network instances for processes b0 and b1 (the grey boxes

in Figure 4.16),

b) PAR Joint J7 to execute b0 and b1 in parallel, and

c) CHAN Joint J8 to combine b0.R and b1.L into a single channel for internal

communication between b0 and b1.

Each onebuf process, programmed in CHP, can store zero or one data item. We
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compile onebuf, ∗[L?x ; R!x], by following its syntactic structure as shown by the

Joints in the grey box in Figure 4.16.

a) We start with repetition “* ”, and generate a repeat Joint: REP Joint J1.

b) The repeated program fragment, L?x ; R!x, is sequential, as indicated by the

Figure 4.16: An ACT hierarchical CHP program for a two-stage FIFO with its cor-
responding compiled Link-Joint network. Data flow from left to right, coming in at
channel L and leaving at channel R. Red and blue line-arrows mark the flow of control
through the network.
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sequence operator “ ; ”, and so we generate a sequence Joint, SEQ Joint J2, and

connect it to REP using Link L2.

c) The first of the two sequenced program statements, L?x, is a communication

input over onebuf channel L, which requires synchronization with a commu-

nication output over L by a parallel process. The value sent by the parallel

process is stored in onebuf variable x. We compile L?x to (1) TRF Joint J3,

(2) VAR Joint J4 for x, (3) Links L4 and L5 to connect L to x via Joint TRF,

and (4) Link L3 to connect this translation to SEQ port s1.

d) The second program statement, R!x, is a communication output over onebuf

channel R, which compiles to (1) TRF Joint J5, (2) E Joint J6 for output

expression “x,” (3) Links L7, L8, L9 to connect variable x to E and b0.R via

Joint TRF, and (4) Link L6 to connect this translation to SEQ port s2.

Note that for illustration, we have shown the generated Link-Joint networks graph-

ically in Figures 4.15 and 4.16. However, our compiler generates maps of Links and

Joints for each design, including any detail it obtains from the program parse tree

that may be useful for our design exploration and refinement. Figure 4.17 shows a

summarized output from the compiler for FIFO2 controlflow in Figure 4.16. These

maps serve as inputs to our in-house Verilog generator tool, which produces a Verilog

module (like Figure 3.17) and instantiates Link modules and Joint modules based on

the maps of Links and Joints generated. We fill out a testbench using the Verilog

module and simulate the Link-Joint network in Verilog.
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1 /* ***************************************************** */

2 /* Process <proc_name , [(CHP_name , actual_portname)]> */

3 Process < onebuf , [(c, 7A),(L, 10B),(R, 13B)]>

4
5 /*Link < l_id , bw_varA2B , bw_varB2A , j_A , j_B , CHP_chan >*/

6 Link < 1, 0, 0, -1, 1, c >

7 Link < 2, 0, 0, 1, 2, >

8 Link < 3, 0, 0, 2, 3, >

9 Link < 4, 0, 32, 3, -1, L >

10 Link < 5, 32, 0, 3, 4, >

11 Link < 6, 0, 0, 2, 5, >

12 Link < 7, 0, 32, 5, 6, >

13 Link < 8, 0, 32, 6, 4, >

14 Link < 9, 32, 0, 5, -1, R >

15
16 /* Joint < j_id , type , map_port_names , {extra_info} >*/

17 Joint < 1, Rep , [(c,1B) ,(s,2A)], {...} >

18 Joint < 2, Seq , [(c,2B) ,(s_1 ,3A) ,(s_2 ,6A)], {...} >

19 Joint < 3, Trf , [(c,3B) ,(in ,4A) ,(out ,5A)], {...} >

20 Joint < 4, Var , [(r,8B) ,(w,5B)], {CHP_var: ‘x’, bw: 32,

...} >

21 Joint < 5, Trf , [(c,6B) ,(in ,7A) ,(out ,9A)], {...} >

22 Joint < 6, E , [(c,7B) ,(e_1 ,8A)], {expr: ‘x’, var2port :(x

,e_1), bw:32, ...} >

23
24 /* ***************************************************** */

25 /* Process <proc_name , [(CHP_name , actual_portname)]> */

26 Process < FIFO2 , [(L, 8.L),(R, 7.R),(c, 5A)]>

27
28 /*Link < l_id , bw_varA2B , bw_varB2A , j_A , j_B , CHP_chan >*/

29 Link < 1, 0, 0, -1, 4, c >

30
31 /* Joint < j_id , type , map_port_names , {extra_info} >*/

32 Joint < 1, onebuf <>, [], {CHP_inst: ‘b0 ’, port_alias: [(.L

,L) ,(.R,8.P) ,(.c,7.s_1)], ...} >

33 Joint < 2, onebuf <>, [], {CHP_inst: ‘b1 ’, port_alias: [(.L

,8.Q) ,(.R,R) ,(.c,7. s_2)], ...} >

34 Joint < 8, Chan , [(P,1.R) ,(Q,2.L)], {...} >

35 Joint < 7, Par , [(c,1B) ,(s_1 ,1.c) ,(s_2 ,2.c)], {...} >

Figure 4.17: Our compiler generated output for the two-stage FIFO example in Figure
4.16, only including network topology information and excluding other details.
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4.3.1 ACT Compiler Modifications

As mentioned in the introduction of this chapter, we compile ACT programs into

Link-Joint networks. The Yale ACT ecosystem has a tool, CHP2PRS [33], that

compiles CHP programs into Production Rule Set (PRS) netlists. PRS [40] is a

gate-level specification language. We chose to adapt the tool, reprogramming the

compiler to produce Link-Joint networks instead. We kept the parser and syntax

checker but modified some compilation rules and internal data structures. We kept

the implementation of the compiler simple and avoided premature optimizations to

keep the Link-Joint network simple, functional, and general.

Some implementation decisions made for our compiler include:

1. Restrict computation to Joints and push out storage into connected Links.

2. Do not expand expressions. Instead of emitting a Link-Joint network for the

parse tree of an expression, emit a Joint that computes the entire expression

with Link or probe connections to any variables or probes used in the expression.

3. Refrain from making premature design choices during compilation. For exam-

ple, we assume all Links store data and make the decision to omit data storage

at a later refinement stage.

4. In relation to item 3, compile self-assignments, like x := x + 1, without the

traditional introduction of auxiliary variables and assignments. Instead, in our

later refinement process, we ensure that there is intermediate storage on the

assignment path between ports r and w of Joint VAR for x, to separate the old

and new value of x for the duration of the assignment.

5. For CHP program constructs with conditional expressions (guards) like SE-

LECT and LOOP statements, combine all the guards into a single expression.
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The result of the single expression is a bit vector containing the Boolean values

of the corresponding guards.

6. For hierarchical programs, generate explicit Links and Joints to connect parallel

processes in the program. For example, Figure 4.16 shows that Joints PAR and

CHAN and corresponding Links are generated to connect the two instances of

process onebuf, b0 and b1.

7. Refrain from indicating the network’s communication protocols and data rep-

resentation.

8. Remove redundant components in the network after the translation is done.

9. Provide mutual exclusive multiplexed access to shared resources such as vari-

ables and channels.

10. Remember initial state information for the regular operation of the compiled

components, but avoid baking it into the compiled Link-Joint network to allow

different initialization settings for other evaluation purposes – see Section 3.3.

We can summarize the compilation rules based on the CHP grammar and our

compiler implementation decisions as follows. Note that we use functions such as

genLink(), to emit a Link, emit Joint(), to emit a specific Joint type, connect mux(),

to connect to a multiplexer of a variable or channel. Joints for CHP statements and

expressions have startup links to give control that triggers an action in the Joint.
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4.3.2 Compiler Optimization

Typical syntax-directed compilation is quite transparent, giving the designer full de-

sign control. Therefore, the generated circuit is only as efficient as the program given

at the beginning of the design process. Brunvand [4], in his design flow, made cir-

cuit improvements (optimizations) a post-compilation step. The Tangram design flow

provided post-compilation steps for peephole optimizations [49].

Our compilation is equally transparent. The compiler in O. nà supports post-

compilation steps to further optimize compiled Link-Joint networks and gate-level

circuits. Recall that our philosophy is to make design decisions as late as possible.

O. nà is already set up with a step-wise post-compilation refinement process (Chapter

5) for lower-level design decisions. Typical optimizations that are better addressed
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after compilation are local or peephole optimizations on the Link-Joint netlist and

peephole optimizations at the circuit level.

Simulation, test, and debug at the language level can provide valuable informa-

tion for pre-compilation program-level optimizations. Likewise, simulation, test, and

debug at a combination of language and Link-Joint levels can give further details

for post-compilation refinements and peephole optimizations at the Link-Joint and

circuit levels. Chapter 5 provides more details on this topic.

4.4 Chapter Contributions

Though the compilation approach and part of the Yale CHP2PRS compiler existed

before our research, our work focuses on translating high-level programs into Links

and Joints. The work on the compiler in O. nà and the Link-Joint library elements are

joint efforts between my supervisor and me. The following contributions are largely

mine:

• I re-engineered the CHP2PRS compiler to generate circuit-neutral Link-Joint

networks from CHP programs instead of gate-level PRS netlists. This modifi-

cation comprised the creation of additional data structures, including those for

Links and Joints, maintenance of these structures during compilation, and some

differences in the compilation scheme. This re-engineering effort contributed to

an entire refactoring of the CHP2PRS codebase [33]. In addition, I showed how

to translate ACT dataflow programs into Link-Joint networks.

• I specified the Link-Joint library elements with the shared variable semantics.

Most of the elements had guarded command specifications using the previous

Links and Joints semantics as seen in [60, 62]. The new specifications now (1)

fully incorporate Links, (2) completely define a Joint’s internal flow control using
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the generic FSM model of Section 4.2.2 and (3) support hierarchical Link-Joint

networks.

• I developed an in-house tool, a Python script that produces a Verilog module

instantiating Link modules and Joint modules from the maps of Links and Joints

generated by the compiler. The script also produces (1) any extra Joint module

that needs to be created on the fly, such as a Joint module for an expression, and

(2) an associated test bench. Currently, we run the Verilog modules on Icarus

Verilog [76], and we view the simulated results as waveforms using GTKwave [7]

– both of which are freely available.
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Chapter 5: Refinement

A Link-Joint network is an abstract representation of a design, but its specification

gives enough detail to exhibit the design’s functionality and asynchronous behavior.

Instead of deciding all circuit-related implementation choices before compiling as done

in related design flows [1–6,32,33,49,50,72], we layer these choices as refinements of

the Link-Joint network. Refinement is a process of step-wise decisions about imple-

mentation options for a Link-Joint network. Starting with a circuit-neutral Link-Joint

network, the refinement process ends with a circuit; see Figure 5.1.

This chapter showcases Link-Joint network refinement examples, some gate-level

implementations, and details on how we preserve the relation of each refinement to

the original program. Some refinement details discussed in this chapter were pre-

sented and published in a paper [17] at the 2023 ASYNC conference. Our refinement

process aligns with the Link-Joint property of binding decisions as late as possible.

Refinement provides the opportunity to explore the variety of implementation styles

available. This opportunity is essential because most designers are prone to sticking

with implementation choices based on their familiarity and experience.

Links and Joints make refinement easy and feasible because many implementation

choices are local to either Links or Joints and are usually independent of the final

asynchronous circuit family or fabric used. This chapter does not recommend an ideal

mix or set of refinements because that choice would depend on the design’s specific

requirements and constraints. Instead, this chapter showcases the Link-Joint model

as a vehicle for exploring and executing choices made.



75

Figure 5.1: Refinement as a focus in the O. nà design flow.

5.1 Asynchronous Design Styles

Asynchronous circuits come in different styles due to various design considerations,

trade-offs, specialized applications, evolution, and innovation. These variations are

dependent on implementation decisions made in the design process. We consider these

decisions as a large buffet of options open to the circuit designer to use and explore.

Some refinement options considered in the context of this dissertation include the

following:

1. Handshakes, e.g., 2-phase and 4-phase

2. Signaling logic, e.g., level logic, pulse logic, transition logic

3. Data encoding, e.g., bundled (single-rail) or dual-rail data encoding

4. Guard selection in nondeterminism, e.g., round robin, arbitration

5. Data storage, e.g., where and where not to store
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6. Test extensions, e.g., throughput counters, state to control and observe

7. Asynchronous circuit family, e.g., Click, Set-Reset, GasP, RSFQ, Mousetrap,

Micropipelines

Some of the above options have been explained in Sections 2.1 and 2.2, while others

will be discussed as they are used in the rest of this dissertation.

5.2 Refinement Examples

The following subsections provide specific examples of refining Link-Joint networks.

Note that there may be several refinement steps before generating gate-level descrip-

tions. Each intermediate refinement remains a Link-Joint network until it reaches the

gate level.

5.2.1 Data Storage Refinement: To Store or Not to Store

Parallel operations, especially quasi-delay-insensitive ones, require data to be stored

between the sender and the receiver. The default representation of Links stores all

transported data bits. This choice can be expensive in terms of delay, area, and

power when there are many data bits. Therefore, this section explores data storage

elimination refinement to save circuit area and power while maintaining the delay-

insensitivity of the data exchange.

To illustrate, we use the bidirectional communication in Figure 5.2, compiled

from the parallel program fragments chp{...p?x1!y1...} and chp{...p!y2?x2...}, which

exchange y1, y2 values and store these locally in x2, x1. The fat line arrows in the

figure mark the control flow in the compiled communication statement for the leftmost

process. CHP translations often lead to a path behavior where an earlier Link stores
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Figure 5.2: Link-Joint network representing two parallel program fragments that
exchange data between both sides.

data for a later Link in the path [62]. In this example, the internal Link in Joint VAR

stores the value of y1, which is not used until the data exchange at CHAN p; thus,

the Links between them do not need to store the value of y1. With this behavior,

all Links between data holders and users can simply transport data values without

storing them.

We present three solutions to address the data storage elimination for the example

in figure 5.2. Both sides of the communication follow similar execution paths.

Solution 1: Keep the internal storage in both Joint VAR y1 and Joint VAR y2;

store values received after data exchange by Joint CHAN p in Links L3P and L3Q;

and eliminate other (non-internal) data storage otherwise. Links in this solution use

2-phase handshaking. We depict the execution path of the example with this solution

strategy in Figure 5.3 with thick red and blue lines.

The execution path for the left side of this solution starts at port c of J1P , continues

via J2P to port r of J3P to read the value of program variable y1, which it sends via J2P
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Figure 5.3: Link-Joint network showing the first refinement solution for example
in Figure 5.2. We use rectangles with a cross for Links without data storage and
rectangles colored yellow for Links that store data coming from CHAN, L3Q and L3P .

and J1P to CHAN port p, where it stalls until the communication partner at port q is

ready to exchange its value of y2 for the value of y1. When ready, the path continues

by storing the received y2 value into the L3P storage location for data from J1. The

execution path for the right side is symmetric to that of the left.

After the data exchange by CHAN, the values of y1 and y2 are stored in Links

L3Q and L3P respectively. Therefore, each process, specifically Joints J1P and J1Q,

can independently and at their own pace transfer the received values and now locally

store them into VAR x1 Joint J4P and VAR x2 Joint J4Q. By storing exchanged data

in Links L3P and L3Q, we ensure that the original values are not overwritten by the

start of a new communication.

Note that storing the data values and relinquishing both Link turns for L3P and

L3Q altogether take one atomic CHAN action. This atomic CHAN action enables

both partners to finish their execution paths independently without retarding each

other. The guarded command specification for Joint TRF used here extends that
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of Joint TRF in Section 4.2.1 and Figure 4.4 as follows:

myturn(c, in, io , out, x) ∧ go →

myR(x)[0] → yourturn(in, x)

myR(x)[1] → myW (io) := myR(in); yourturn(io, x)

myR(x)[2] → myW (out) := myR(io); yourturn(out, x)

myR(x)[3] → yourturn(c, x)

Solution 2: Store only internal Link data for both Joint VAR y1 and Joint VAR

y2, and eliminate data storage in all other (non-internal) Links. With this solution

strategy, VAR y1 must hold its data, without the value changing, until the peer

process has copied the value into VAR x2 Joint J4Q. We depict the corresponding

execution path with thick red and blue lines in Figure 5.4.

Execution in this refinement solution follows the same path in Figure 5.3 except

the execution of the process on the left is not independent of the execution on the

right. The right process must stall any task following p!y2?x2 until the now L3P

Figure 5.4: Link-Joint network showing the second refinement solution, for example,
in Figure 5.2. We use rectangles with a cross for Links without data storage, including
L3Q and L3P .
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un-stored y2 value is written into J4P (for x1) and likewise the left process must stall

any task following p?x1!y1 until the now L3Q un-stored y1 value is written into J4Q

(for x2). The control flow of the processes now includes an extra TRF to CHAN trip

after writing VAR x1 and VAR x2 respectively, to report that the data have been

written, and the communication peer can thus stop holding that data. Relinquishing

both turns for L3P and L3Q during the second trip is an atomic CHAN action, after

which both partners can continue the rest of their executions independently.

The execution path extension in Figure 5.4 leads to a 4-phase handshake over Links

L3P and L3Q. Because each process holds the data it sends to CHAN throughout the

communication, we can implement each 4-phase communication as twin 2-phase com-

munications. The persistence of data, from the moment data arrive to communication

completion at each TRF port c, extends the earlier TRF specification in Figure 5.3

as follows:

myturn(c, in, io, out, x) ∧ go →

myR(x)[0] → yourturn(in, x)

myR(x)[1] → myW(io) := myR(in); yourturn(io, x)

myR(x)[2] → myW(out) := myR(io); yourturn(out, x)

myR(x)[3] → yourturn(io, x)

myR(x)[4] → yourturn(c, x)

Solution 3: Like Solution 1, the Links in this refined network use 2-phase hand-

shaking only. Also, like Solution 2, this refined network stores only internal Link

data. However, there are constraints on the network, unlike in solutions 1 and 2. The

corresponding constraints are delay-sensitive and can be expressed as relative timing

constraints [67] within the communication network or its surroundings, as follows.
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• static constraint: From the moment CHAN exchanges data, the leftmost process

and its peer must write the data they receive in VAR x1 and x2, respectively,

before completing their communication parts at TRF port c.

• dynamic constraint: In reality, it suffices that the leftmost process writes x1

before y2 changes reach x1. Though this dynamic constraint may be more

challenging to analyze, it may point to alternative static constraints.

As a guideline for selecting one out of the three refinement solutions: Solution 1

is robust and fast, Solution 2 is robust and small, and Solution 3 is both fast

and small, but timed. Each solution may replace Links with data storage by Links

without, and swap in different TRF Joints, but none of these replacements change

the topology of the compiled Link-Joint network and its syntax-directed relation to the

program!

Note that data storage elimination is an optimization with test consequences.

Chapter 6 will discuss the necessary requirements to control actions and initialize or

observe state. Eliminating data storage in Links reduces opportunities for testing

and debugging. Therefore, this data storage refinement must be done with test and

debug opportunities in mind.

5.2.2 Atomicity Refinement: Fuse or Split Joint Atomicity

Communication protocols and Joints can provide atomicity when and where needed,

for as long as needed. Figures 5.3 and 5.4 demonstrate the “for as long as needed” pro-

vision: the control flow marked by the fat line-arrows shows each network operation

as if it were a single atomic action — which makes sense as the network corresponds

to a single communication statement in the program. This section looks at the other

end of the spectrum: splitting an atomic Joint action into smaller actions. We are
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motivated to split an atomic Joint action to facilitate its circuit implementation.

myturn(in, out1..outm , x)∧ go∧myR(x)[0] → yourturn(in, x)
myturn(in, out1..outm , x)∧ go∧myR(x)[1] →

myW(out1) := f1 (myR(in)) ; . . . ; myW(outm) := fm (myR(in)) ;
yourturn(out1..outm , x)

Figure 5.5: Joint F library element.

Given that each atomic action corresponds to one guarded command in the spec-

ification of the Joint, we will focus on splitting guarded commands. We use Joint

F in Figure 5.5 to demonstrate. F is a “heavy” Joint, with many output assign-

ments in a single guarded command. We can make F “less heavy” by splitting its

assignments into separate guarded commands while maintaining the overall command

sequence. Expressing this requires refining the original Link-Joint semantics specified

in Section 3.2.

First, we split a guarded command into operations performed over the same Link

port. This split produces a set of guarded commands, each with fewer operations

than the original. To maintain the original “fused” command sequence, we add a

guarded command that relinquishes the turns on the Link ports and is executed upon

completion of the guarded commands in the set.

To support this strategy, we extend the original shared variable model [16] speci-

fied in Section 3.2. The Link variable turn now tracks how far along Link port p is in
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its command execution; everything else in the shared variable model stays the same.

We extend the terminology used in the guarded command specifications accordingly.

• Boolean myturn(p) is TRUE if and only if p has the turn but has not yet

completed its command.

• As before, myR(p) and myW(p) are data read and written by p — going from

Link variables to p and vice versa.

• Boolean midturn(p) is TRUE if and only if p has the turn and completed its

command.

• Assignment halfturn(p) changes Link variable turn so that myturn(p) becomes

FALSE and midturn(p) becomes TRUE.

• Assignment yourturn(p) changes turn so myturn(p) and midturn(p) become

FALSE and myturn(ppeer) becomes TRUE, where ppeer is A if p connects to B,

otherwise B.

This refinement leads to 4-phase handshaking on port p with the following state-

action phases: myturn(p) ; halfturn(p) ; midturn(p) ; yourturn(p). Its peer ppeer sees

only state myturn(p) and action yourturn(p) and can freely be 2-phase or 4-phase.

Joint splitting is immaterial to neighboring Joints!

We also extend the terminology for go, the external Boolean signal for initial-

ization, test, and debug, which is part of the guard in a guarded command and is

arbitrated to permit or deny command execution. The arbitration, implicit in the

original specifications, becomes visible when we split a guarded command. Because

a guarded command is atomic, its execution, once started, must be completed. To

model atomic executions of “heavy” guarded commands with a set of multiple “less

heavy” guarded commands, we add the following terms.
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• Boolean mid(go) is TRUE if and only if the arbiter has made a decision and

decided to permit command execution.

• Assignment half(go) makes mid(go) TRUE.

• Assignment your(go) makes mid(go) FALSE.

The resulting Link-Joint model is backward compatible with the original model [16]

in Section 3.2.

Now, we can create and specify a “less heavy” version of Joint F in Figure 5.5. To

do this, we split the two atomic guarded commands of F using the strategy described

in the text below Figure 5.5, and i, j to index the m output Links of F, where

i ̸= j ∧ 1 ≤ i, j ≤ m.

Split 1st guarded command in Figure 5.5 — for myR(x)[0]

myturn(in) ∧ myturn(out1..outm) ∧ myR(x)[0] ∧ (myturn(x) ∨ midturn(x))

∧ (go ∨ mid(go)) → halfturn(in) ; half(go)

myturn(x) ∧ myturn(out1..outm) ∧ myR(x)[0] ∧ (myturn(in) ∨ midturn(in))

∧ (go ∨ mid(go)) → halfturn(x) ; half(go)

midturn(in, x) → yourturn(in, x) ; your(go)

Split 2nd guarded command in Figure 5.5 — for myR(x)[1]

myturn(in) ∧ myturn(outi) ∧ myR(x)[1] ∧ (myturn(x) ∨ midturn(x))

∧ (go ∨ mid(go))
∧j ̸=i

j=1..m (myturn(outj) ∨ midturn(outj))

→ myW(outi) := fi (myR(in)) ; halfturn(outi) ; half(go)

myturn(x) ∧ myturn(in) ∧ myR(x)[1] ∧ (go ∨ mid(go))∧
j=1..m (myturn(in) ∨ midturn(in)) → halfturn(x) ; half(go)

midturn(out1..outm, x) → yourturn(out1..outm, x) ; your(go)

Because the go arbiter is released and each Link turn relinquished upon completion

of all split commands, both the 1st and 2nd guarded command executions are atomic.
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As a result, when the environment stops F by making go FALSE, it stops F safely

— before, between, or after the 1st and 2nd guarded commands.

5.2.3 Nondeterministic Selection Implementation

As discussed in Section 4.2.3, nondeterministic select statements can have more than

one guard TRUE at a time. Our compilation approach does not specify which of the

statements of the TRUE guards is executed nor how the selected guard is determined.

This compiler implementation is because the implementation is up to the designer,

and the guard choice does not impede the correct functional behavior of the Joint

as long as one guard is picked. Through refinement, we can make explicit how the

selected guard is decided.

Some guard selection implementations include arbitration, round-robin, and static

priority. An arbitration implementation requires an arbiter circuit connected to the

guard expressions to determine which TRUE guard to select. However, we can view

myturn(c, sg, s1..sm , x) ∧ go →
myR(x)[0] → yourturn(sg, x)
myR(x)[1] ∧ myR(sg)[i] → yourturn(si+1, x)
myR(x)[2] → yourturn(c, x)

Figure 5.6: Refined Joint SEL library element representing SELnondet with an arbiter
guard selection implementation.
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the implementation abstractly in Figure 5.6. The refined selnondet Joint has all but

one of the same ports as the unrefined selnondet Joint. Instead of having port g, it now

includes port sg connected to the Arbiter, which returns a 1-hot bit vector with the set

bit being at the index, i, for the statement to be executed. A circuit implementation

for a Joint with arbitration on its input links is presented by Roncken et al. in [62].

The round-robin nondeterministic guard selection implementation is given in Fig-

ure 5.7. The refined selnondet Joint has all the same ports as the unrefined Joint,

including a new port r for tracking the round. The round tracking is controlled by

a 1−hot m−bit vector generated by an FSM connected to port r and similar to the

FSM in Section 4.2.2. For each round k, it checks if the current round has a TRUE

guard. If it does, it executes the corresponding statement. Otherwise, it goes to

the next round but keeps the state at port x the same. After executing the chosen

statement, the Joint resets the state at port x but keeps the state of k at its last

1−hot vector.

myturn(c, g, r, s1..sm , x) ∧ go →
myR(x)[0] → yourturn(g, x)
myR(x)[1] ∧ myR(r)[k] ∧ g[k] → yourturn(sk+1,r,x)
myR(x)[1] ∧ myR(r)[k] ∧ (g[0] ∨ . . .∨ g[m-1]) ∧¬ g[k] → yourturn(r)
myR(x)[2] → yourturn(c, x)

Figure 5.7: Refined Joint SEL library element representing SELnondet with a round-
robin guard selection implementation.
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(sel)
myturn(c, g, r, rst, s1..sm , x) ∧ go →

myR(x)[0] → yourturn(g, x)
myR(x)[1] ∧ myR(r)[k] ∧ g[k] → myW(r) := 1; yourturn(sk+1, r, x)
myR(x)[1] ∧ myR(r)[k] ∧ (g[0] ∨ . . . ∨ g[m-1]) ∧¬ g[k]

→ myW(r) := 0; yourturn(r)
myR(x)[2] → yourturn(c, x)

(fork)
myturn(inout, out, rst) ∧ go →

myR(r) → myW(inout, out) :=myR(rst); yourturn(inout, out)
¬myR(r) → myW(inout, out) :=myR(inout); yourturn(inout, out)

Figure 5.8: Refined Joint SEL library element representing SELnondet with a static
or fixed priority guard selection implementation. Data width m, 1 for data between
Joints fork and sel indicates that m bits go from Joint fork to Joint sel and 1 bit
from Joint sel to Joint fork.

The static or fixed priority nondeterministic guard selection implementation in

Figure 5.8 can be a specialization of the round-robin implementation given in Figure

5.7. The static priority implementation requires resetting the state of k to a starting

1−hot m−bit vector. The port list of the refined selnondet Joint remains the same as

that of the round-robin implementation. However, there is a difference in the guarded

command specification. The Joint now has to direct Joint fork to reset the 1−hot

m−bit vector after choosing a TRUE guard. We make Link L1 bidirectional and add

an internal Link L3 to Joint fork to store the starting 1−hot m−bit vector needed at

reset. This allows us to initialize the Link-Joint rrot-fork network differently. Rather
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than initializing the starting vector in Link L2, as in Figure 5.7, we make myR(out):=

1, triggering Joint fork to get the starting vector from Link L3.

5.3 Abstract Gate-level Implementations

This section presents Link-Joint abstract gate-level implementations. Abstract in this

context means we are not providing the timing constraints required for the regular

operation of these circuits. The implementations are done in asynchronous families:

Click [50], Set-Reset [60], and GasP [68]. Other families follow later. RSFQ [27, 57]

is introduced and discussed in Chapter 6, while Micropipelines [69] and Mousetrap

[65] are presented in Chapter 8. At the gate level, data and turn pass back and

forth between Link ports A and B by raising and lowering interface signals while

maintaining the atomicity of guarded commands. The implementations given in the

following subsections are done in Verilog and follow the approach we introduce further

in Chapter 7.

5.3.1 2-phase level-signaling bundled data Link circuits

We present Link circuits for 2-phase level-signaling bundled data circuit implemen-

tations done in three circuit families: Click, Set-Reset, and GasP. These circuits are

equivalent to the Link circuits presented in 2015 [60] but use the semantics presented

in Chapter 3. The relation between guarded command specifications and circuit

implementations for 2-phase port communication is as follows.

• The Boolean specification terms myturn(p), myR(p), myW(p) become circuit

signals myturn(p), myR(p), and myW(p).

• The specification assignment term yourturn(p) has circuit representation
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yourturn(p)↑; ((myturn(p)↓ ; yourturn(p)↓), myturn(ppeer)↑) —where ppeer is A

if p connects to Link port B, otherwise B.

(a) with data storage (b) without data storage

Figure 5.9: A Link with a 2-phase level-signaling bundled-data protocol in the Click
asynchronous family

Figure 5.9 shows a Link in the Click asynchronous family using a 2-phase level-

signaling bundled data protocol with data storage (a) and without data storage (b).

We relate the circuit implementation with the semantics of Links in Section 3.1 as

follows:

• The turn variable corresponds to two flipFF flipflops. At each pass (through

a low to high yourturn(p) signal trigger), Click inverts the state of one of its

flipFF to change internal signals, req or ack, and both its XOR and XNOR

outputs, which causes myturn(p) to go low and myturn(ppeer) to go high, giving

the turn to ppeer.

• The bottom part of the figure has data latches representing Link variables

dataAtoB and dataBtoA. When yourturn(p) is high, it triggers the data latch
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to store and transfer myW(p) so that myR(ppeer) can read it. Also note that

by eliminating data storage, with regards to the data storage refinement in

Section 5.2.1, Figure 5.9(a) is refined to Figure 5.9(b).

Figure 5.10 shows a Link in the Set-Reset(SR) asynchronous family operating

with a 2-phase level-signaling bundled data protocol with data storage. The data

part of the Link is the same as the Click Link. However, the logic for the turn

variable differs. This implementation uses an SR latch. A high yourturn(A) signal

sets the SR latch, while a high yourturn(B) signal resets the SR latch. Obviously,

both signals must be high in mutual exclusion — an assumption we can specify as a

timing constraint. Chapter 7 discusses our usage of timing constraints in detail. The

internal state of the SR latch generates signals, myturn(A) and myturn(B).

Figure 5.10: A Link with a 2-phase level-signaling bundled-data protocol and data
storage in the Set-Reset asynchronous family.

A GasP Link is presented in Figure 5.11. The data part is the same as Click

and Set-Reset Links. The logic for the turn variable uses a faster SR latch split

into two transistor-level circuits, Drive-High-Keep-Low (DHKL) andDrive-Low-Keep-

High (DLKH). Both circuits drive the same statewire, sw. The DHKL circuit on the
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Figure 5.11: A Link with a 2-phase level-signaling bundled-data protocol and data
storage in the GasP asynchronous family.

left drives sw high and keeps it low. Because it knows when it will drive sw high,

it also knows when to turn the low keeper OFF to avoid a drive fight. Likewise, the

DLKH circuit on the right works the other way: it drives sw low and keeps it high.

Figure 5.12 shows the signal waveforms timed from left to right, with interface

signal names in black and internal names in blue. The light-red vertical bars mark

the activities from rising to falling yourturn(A) and yourturn(B) signals, which act

as local latch and flipflop “clocks.” The yellow-colored boxes in the data waveforms

indicate when data must be valid. The yellow boxes for myW(A) and myW(B)

mark “clock” versus data setup and hold times, relevant when the Link has data

storage. Note that myR(A) and myR(B) must be valid until the Link has stored

(Figure 5.9(a)) or transferred (Figure 5.9(b)) the corresponding results — myW(A)

for myR(A), myW(B) for myR(B).

Crucially, and integral to Links and Joints [60], differences in how each circuit

family implements this protocol are in-visible at the interface: same protocol, same
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Figure 5.12: Waveforms showing the pattern of interface signals, internal signals,
and data validity for a bidirectional Link with a 2-phase level-signaling bundled-data
protocol and data storage. The internal signals req and ack are for Click, state for
Set-Reset and sw for the GasP asynchronous family.

interface!

5.3.2 Circuit implementations of Joint COPY

Joint COPY in Figure 3.4 is a Link-Joint library element that copies data from its

port in to port out when it has the turn on both ports in and out, and go-permission.

Its gate implementation can either be 2-phase or 4-phase based on the protocol used

by the Links at its ports in and out.

Circuit implementation for Joint COPY in Figure 5.13(a) uses a 2-phase commu-

nication protocol while that in Figure 5.13(b) uses a 4-phase communication protocol.

For Joint COPY to act, either circuit uses a MrGO circuit element [43, 60] to arbi-

trate between action denial (¬go) or action permission (ready2go). Note that MrGO

requires arbitration ONLY when ready2go is high, and GO is low because then it

must decide whether to stop the computation by doing nothing or continue the com-

putation by then making the yourturns high. Permission, if granted, persists until
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(a) 2-phase protocol (b) 4-phase protocol

Figure 5.13: Joint COPY gate implementation.

internal signal ready2go goes low.

The main difference between the 2-phase and 4-phase implementations is the

logic that drives the Joint’s action permission, ready2go. In the 2-phase version Fig-

ure 5.13(a), it takes one of the input signals — in this case, either ¬myturn(in)

or ¬myturn(out)— to lower ready2go because the circuit implementation uses an

AND gate. In the 4-phase version Figure 5.13(b), it takes all the ¬myturn sig-

nals of the ports that participate in the action — in this case, both ¬myturn(in)

and ¬myturn(out)— to lower ready2go because the circuit implementation uses a

C -element. A C -element is a special state-holding asynchronous circuit element,

whose output when low remains low until all its inputs are high, and when high, re-

mains high until all inputs are low [66]. Note that C -elements in 4-phase Joints wait

until all turn inputs have changed before allowing the Link ports to relinquish their

turn.

In the datapath for Joint COPY, we connect myR(in) to myW(out) because the

data computation is a copy function. Note that in the cases of other data computa-

tions, signal ready2go may be delayed to match the time for the data computation.
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As is typical for level-signaling bundled-data, matching half the computation delay

suffices because ready2go is used twice per action.

Figure 5.14: A Link with 4-phase level-signaling bundled-data protocol and data
storage in Click (a), GasP (b), and Set-Reset (c) asynchronous families.

5.3.3 4-phase level-signaling bundled data Link circuits

We present Link circuits for 4-phase level-signaling bundled data circuit versions of

the Links in Section 5.3.1. Figure 5.14 shows the 4-phase level-signaling bundled data

implementations in asynchronous families: Click (a), GasP (b), and Set-Reset (c).

The relation between guarded command specifications and circuit implementa-

tions for 4-phase port communication with respect to the guarded command terms
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defined in Section 5.2.2 are as follows:

• The terms myturn(p), myR(p), myW(p) become circuit signals myturn(p),

myR(p), and myW(p).

• Term midturn(p) becomes ¬myturn(p) ∧ yourturn(p).

• Term halfturn(p) become signal transitions yourturn(p) ↑; myturn(p) ↓.

• Term yourturn(p) becomes signal transitions yourturn(p) ↓; myturn(ppeer) ↑,

where ppeer is A if port p connects to Link port B, and otherwise B.

The Click 4-phase level-signaling bundled data Link in Figure 5.14(a) uses four

flipFF gates to accomplish the turn variable operations in the circuit. While the

equivalent GasP Link in Figure 5.14(b) uses two DHKL and two DLKH gates to

accomplish the turn variable operations in the circuit and the Set-Reset Link in

Figure 5.14(c) uses two SR gates to accomplish the turn variable operations in the

circuit. Set-Reset and GasP require a low pulse generator (LP), which is unnecessary

in Click due to the use of flipflops.

The circuits in Figure 5.14 split 4-phase communication data into early and late

data. This data split is a straightforward extension of the refinement in Section 5.2.2.

Figure 5.15 depicts the data validity for a unidirectional 4-phase Link with commu-

nication data split into early and late. The waveforms start with the turn at port A

and relinquish the turn from A to B then B to A, as indicated by the two light-red

vertical bars.

At best, myW(A)early is valid before yourturn(A) goes high in the Joint connected

to this Link’s port A, making myR(B)early valid as soon as yourturn(A) goes high.

Worst-case, myR(B)late is valid towards the end of the 4-phase communication on
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Figure 5.15: Data validity for a unidirectional 4-phase Link with communication data
split into early and late. myW (A)average and myR(B)average reflect the average data
validity without data splitting.

the Joint connected to this Link’s port A, that is, when yourturn(A) goes low. On

average, data on myR(B) become valid somewhere in between.

A designer may exploit knowledge about early, average, and late validity of data

in multiple ways. For instance, making data bits that the receiving Joint uses in its

flow control available early on may save time for delay matching. By suppressing

hazards, late data may provide a better power and energy profile. Overlapping early

and late bits may support just-in-time delay matching [21].

5.4 Chapter Contributions

The research effort for our refinement process from Link-Joint networks into abstract

gate-level implementations is joint work with my supervisor. These are largely mine:

• I implemented and validated the various refinement examples in Verilog.

• I specified the abstract gate implementations for the 2-phase level-signaling

bundled data Link-Joint circuits with the formalization presented in Chapter 3.
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This formalization keeps in line with the circuits shown in [60].

• I implemented and validated circuit implementations for 2-phase, 4-phase, level-

signaling, and bundled-data protocols in Verilog. We implemented more asyn-

chronous circuit families than those presented in this chapter. RSFQ follows in

Chapter 6 and Micropipelines and Mousetrap follow in Chapter 8.



98

Chapter 6: Test, Debug, and Initialization

We consider testing an activity to be carried out throughout the entire design process.

In this dissertation, we are interested in connecting test and debug mechanisms at

all levels of abstraction in our design flow instead of concentrating only on gate-level

testing. This chapter illustrates our implementation of a uniform test approach in

which we model and relate abstract test points at higher levels to test points at the

gate level where standard asynchronous testing methods [25, 54–56, 64, 79] are used.

We seek to connect test points at different abstraction levels to reduce test complexity

in hardware. We are not just interested in testing the logical functionality of the entire

design but also in guiding how testing is done on the hardware. This approach enables

us to harmonize design with test and debug, starting at the program (high level) and

flowing down to lower design levels, that is, to Link-Joint networks and ultimately to

Link-Joint circuit implementations and chips.

As depicted in Figure 6.1, our test approach blends software interactive code

debugging with integrated test and debug in the Link-Joint model [60, 61] and with

DfT techniques such as scan test [10] used at the circuit and chip level. Our approach

extends the test and debug solution built into the Link-Joint model [60]. This chapter

starts by summarizing the test solution provided in the Link-Joint model in Section

6.1 and then details our extension to uniformly apply the test solution to all the

different abstraction levels in our design flow. Sections 6.2 and 6.3 demonstrate

how this uniform test and debug approach applies to functional as well as structural

testing.
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Figure 6.1: Our uniform test approach harmonizes program interactive code debug,
Link-Joint action-state control, and circuit and chip level Design-for-Test (DfT) tech-
niques such as scan test.

6.1 Existing State-Action Test and Debug Approach

Testing solutions often confuse state and action parts, making it difficult to separate

them to minimize test access costs or refine and reuse test solutions for debugging [60].

The test and debug of asynchronous circuits is usually challenging because their states

and actions are not global but distributed over space and time. This distribution

makes it challenging to identify test points, that is, places to observe or alter state

and places to pause or start system actions. Roncken et al. built a testing solution

into the Link-Joint model. By ensuring a separation of states (in Links) and actions

(in Joints), they “naturalized” test and debug access and tied both to the scan DfT

method [43,60].

At the Link-Joint level, Roncken et al. [43,60] clarified that starting and stopping
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system actions is done at the Joints and, when stopped, state variables stored by

Links can be read and written. Therefore, the test points at this abstraction level

include Link variables for initialization and observation and go-control to pause and

start Joint actions. For example, Figure 6.2 shows a Link-Joint network for a two-

stage FIFO. Through external access shown as green arrows in the figure, we observe

and initialize Link variables, turn and data, in Links L1 and L2. Also, through go-

permission, shown also with a green arrow, we can control the permission of actions

in the network at Joint J1.

Figure 6.2: A Link-Joint network for a one-stage FIFO with one Joint, COPY, and
two Links. The green arrows depict the external access to Link states and go-control
on the Joint.

Roncken et al. connected this external state-action control to the gate level. The

Link-Joint model provides well-defined boundaries and clear interfaces, which are also

identifiable at the circuit level. The circuit uses shift registers to scan in and out state

and uses a special circuit element, MrGO, to control the permission of actions in the

circuits [60, 61]. Figure 6.3 shows a Set-Reset 2-phase bundled-data one-stage FIFO.

Scan chains shift bits in and out of the circuit serially, as Figure 6.4 illustrates. We

can observe and initialize the turn variable by reading and writing the SR latches

colored green in Figure 6.3 and the data variables by reading and writing the data

latches, L, also colored green in the figure. We permit or prohibit the Joint’s action
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by writing a bit value of 1 (TRUE) or 0 (FALSE) to the Joint’s GO signal.

Figure 6.3: A circuit for a one-stage FIFO using a 2-phase bundled-data protocol
in the Set-Reset asynchronous circuit family. The latches colored green have scan
access, and the MrGO gate decides whether to permit or prohibit the action of the
Joint based on the myturn inputs and the external GO signal.

Figure 6.4: The one-to-one relation between Link variables and Joint go-control and
circuit-level scan chains. The scan chains shift data in and out serially but may use
parallel read and write from and to the Link-Joint circuit implementation.
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6.1.1 Connecting the Existing Test Solution to the Program Level

Much like for any other programming activity, the ability to interactively set and

observe states, as well as single- or multi-step through code, offers benefits for test

and debug. Testing at the program level provides designers with quick insights into

the behavior of the design. Combining this software debug approach with the Link-

Joint network and circuit’s test control and observation features shown in Figures 6.2

and 6.3 provides a uniform test approach for the entire design flow.

First, we identify Link-Joint corresponding state-action test access points at the

program level: variables for initialization and observation and breakpoints to pause

and start the program execution. Figure 6.5 gives a program, a control-flow version,

for a one-stage FIFO, as seen in Figure 4.16 of Chapter 4. The onebuf process

accepts data over input channel L and returns a copy of the data over output channel

R. Variable x is internal to process onebuf and represents the data. So, initializing

and observing the data requires test access to x. To pause and start process onebuf

so that we can initialize and observe x requires breakpoints in the program for onebuf.

We can set a breakpoint on x, pausing the program whenever x is assigned a value

by either the program or the external test environment.

1 defproc onebuf(chan?(int) L; chan!(int) R) {

2 int x;

3 chp {

4 *[ L?x; R!x ]

5 }

6 }

Figure 6.5: A CHP program for a one-stage FIFO buffer from Figure 4.16.

To run our high-level ACT programs, we use a simulator called ACTSIM [33],

a part of the Yale ACT toolkit. ACTSIM can simulate ACT programs with any
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sublanguage supported in the ACT toolkit. It provides GNU debugger-like features,

such as watch, set, breakpt, step, advance, and cycle, which are helpful for testing and

debugging our source programs. With ACTSIM, we can single-step through the pro-

gram, observe variables, and control their values. Note that, unlike other debuggers

where breakpoints are at code locations, in ACTSIM, breakpoints are currently on

variables. Therefore, the simulator stops whenever the variable used as a breakpoint

is assigned.

Our approach offers uniform access to tests across different abstraction levels. We

can create test sequences at a high level that can be refined while designing. Test

sequences are short test bursts with local reinitialization. A test sequence typically

starts with prohibiting all actions, then initializing data and setting breakpoints. The

test sequence proceeds by letting the design run for some time, for a specific number of

execution cycles, or until breakpoints prevent further progress. At the end of the run,

the test reports the states of observed variables. The specifics of the test sequences

become more detailed as we move down the design flow (refinement). We can make

very specific test sequences, not just for the entire design but also for smaller portions

of the design, by knowing the boundary points, specifying the breakpoints that define

the design portion, and ensuring that data neither enter nor exit at these boundaries.

Using test points, initialization becomes straightforward and flexible. Utilizing

our flexible initialization support, as explained in Section 3.3, we can derive any

starting state by setting desired values for the program and debug variables. Flexible

initialization becomes even more accessible with the introduction of program location

labels, which allow jumping to arbitrary program locations, which are the program

equivalent to the turn variables in the Link-Joint model. An example of the use of

program labels follows in Section 6.3.
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6.2 Functional Testing – Asynchronous Ring FIFO example

Functional testing in this context refers to determining the correctness of functional

behavior, including performance such as throughput and energy consumption. We

check the design’s performance for specific data, checkpoints, and time execution

windows. In this section, we illustrate a throughput test approach by defining our

test points and test sequence at the program level and translating both to the Link-

Joint level and circuit level.

In this section, we use the ring FIFO design as the base for discussing the through-

put test. In this example, throughput relates to how often data items pass a given

location in the ring FIFO. We use a ring FIFO with a storage capacity of up to four

data items. It operates by exchanging data for space. The ring FIFO can be inactive

either for lack of data, when it stores zero data items, or for lack of space, when it

stores four data items. It can also become inactive when we do not permit it to act.

When active, the ring circulates data at full-native speed.

6.2.1 Program Level

The ring FIFO is a data-oriented design and, thus, can be specified using the dataflow

language in ACT. As of the time of writing this dissertation, dataflow programs

are not natively simulated in ACTSIM; instead, they have to be converted to their

functionality equivalent version in CHP, which is made possible by the tool, dflowmap,

in the ACT toolkit [33].

Figure 6.6 shows the dataflow program for the ring FIFO and the associated sim-

ulated CHP version. Recall from Chapter 4 that channels are not Links! They are

purely for communication and synchronization and do not store data. The func Copy

process receives data from its input channel, in, and stores the data in variable x
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Figure 6.6: ACT program for an asynchronous ring FIFO with a storage capacity
of up to four 4-bit data items. The left panel shows the ring FIFO specified as a
dataflow program. The right-side panel shows a functionally equivalent translation
by dflowmap [33] to which we added test augmentations (in yellow).

before sending the value of x out over the output channel, out. To aid debugging and

initialization, we have augmented the CHP program with some test extensions high-

lighted in yellow. These include log statements, variable cnt to track the throughput,

and variable init to indicate the order of actions in the process.

The test points here are variable x, to observe and initialize data, variable cnt, to

observe throughput, and variable init, to control the sequence of send and receive ac-

tions in each func Copy process instance, b1-b4. Using ACTSIM, we can simulate the

FIFO functionality and throughput using test sequences that combine the following

ingredients:

• initialize the ring with varying number of data items
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• advance the simulation for some time period or execution cycles

• stop at breakpoints and observe watched variables and channels

• optionally reinitialize the variables and continue from breakpoints

• advance again or continue until there is no more progress to be made

These test points and test sequences are the basis for tests in the next abstraction

level. We translate test points and test sequences to the corresponding structures at

Link-Joint and circuit levels.

6.2.2 Link-Joint Level

Figure 6.7 shows the Link-Joint network for the ring FIFO and the external test

access for debug and initialization. To reuse the test strategy that we developed at

Figure 6.7: The Link-Joint network for an asynchronous ring FIFO with a storage
capacity of up to four data items and its external test access.
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the program level, we translate our program-level test points to Link-Joint level test

points. Because of the state-action separation in the Link-Joint model, the storage

from process func Copy is pushed out into the Links, leaving just the copy action to

the Joints.

For each data variable x in the program’s func Copy process instances COPY1

though COPY4, we now observe and initialize data variable dataAtoB in Links L1

through L4. For debug variables init in COPY1 through COPY4, we now initialize

the turn variables in Links L1 through L4. Simulation cycle advancement remains

the same, but to start and stop the execution, we now enable and disable go signals,

go1 through go4 in Joints J1 through J4.

Because throughput counters are common test features, variable cnt is a special

DfT structure responsible for its own counting logic and state information. The Joint’s

action triggers it, but it is not part of the Joint proper and doesn’t interfere with the

action and performance of the Joint [61]. Therefore, Figure 6.7 shows the counter

outside Joint J4, which is the counter that we monitor to determine the throughput.

6.2.3 Ring FIFO Throughput Simulation

As mentioned in Section 6.1.1, we use ACTSIM for program-level simulation. Having

defined our test points and test sequence, we set up the simulation to run for 1000

execution steps, after which we read the value of the throughput counter, COPY4.cnt.

We use the same test setup at the Link-Joint level but simulate this in Verilog.

Figures 6.8 and 6.9 show the initialization and simulation of the ring FIFO as an

ACTSIM script and a Verilog testbench, respectively. Both figures depict simulations

with two data items in the ring and execute for 1000 execution steps.

To analyze and characterize the performance of the ring FIFO for both the pro-
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1 watch b1 b2 b3 b4 COPY4.cnt

2 set COPY1.init 1

3 set COPY2.init 0

4 set COPY3.init 1

5 set COPY4.init 0

6 set COPY1.x0 1

7 set COPY3.x0 3

8 advance 1000

9 mget COPY1.x0 COPY2.x0 COPY3.x0 COPY4.x0 COPY4.cnt

Figure 6.8: Sample ACTSIM script to initialize and simulate the ring FIFO at the
program level, using the CHP program in the right panel of Figure 6.6.

gram and Link-Joint network, we use Canopy graphs [20, 77]. A Canopy graph is

a tool used in the analysis of asynchronous pipelines to model and optimize system

performance. It provides a visual representation of the system’s architecture, allowing

for the identification of potential bottlenecks and the assessment of slack-matching

opportunities.

Figure 6.10 shows a Canopy graph relating throughput to occupancy in the ring.

The throughput count in the graph is the number of data items that cross the counter

during 1000 execution steps in their respective simulation environment, while the

occupancy count is the number of distinct data items in the ring during the simulation.

The throughput of a pipeline – a ring in this case – is affected by the total number

of data items in the ring and also by the total number of stages without a data item,

“spaces” [20].

Consequently, the ring FIFO’s throughput count is zero when there are zero or

four valid data items in the ring. The throughput count is zero because with zero

valid data items, there is nothing to exchange, and with four valid data items, the

ring is FULL, and there is no space to copy the data into. The throughput of the

ring with one data item (one FULL) is limited to the amount of time it takes for the

single data item to move through the ring completely. Similarly, a ring with three
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1 module testbench;

2 reg go1 , go2 , go3 , go4;

3 wire [3:0] L1_ABin , L2_ABin , L3_ABin , L4_ABin , L1_ABout ,

L2_ABout , L3_ABout ,L4_ABout;

4 initial begin

5 $dumpvars ();
6 go1 = 0; go2 = 0; go3 = 0; go4 = 0;

7 #10

8 go4 = 1; go1 = 1; go2 = 1; go3 = 1;

9 #990

10 $finish ();
11 end

12
13 Link L1 (. Amyturn(L1_Ame), .Ayourturn(L1_Ayou), .Bmyturn(

L1_Bme), .Byourturn(L1_Byou), .ABin(L1_ABin), .ABout(

L1_ABout), .init_turn (1’b1), .init_AB(4’d1));

14 Link L2 (. Amyturn(L2_Ame), .Ayourturn(L2_Ayou), .Bmyturn(

L2_Bme), .Byourturn(L2_Byou), .ABin(L2_ABin), .ABout(

L2_ABout), .init_turn (1’b0), .init_AB(X));

15 Link L3 (. Amyturn(L3_Ame), .Ayourturn(L3_Ayou), .Bmyturn(

L3_Bme), .Byourturn(L3_Byou), .ABin(L3_ABin), .ABout(

L3_ABout), .init_turn (1’b1), .init_AB(4’d3));

16 Link L4 (. Amyturn(L4_Ame), .Ayourturn(L4_Ayou), .Bmyturn(

L4_Bme), .Byourturn(L4_Byou), .ABin(L4_ABin), .ABout(

L4_ABout), .init_turn (1’b0), .init_AB(X));

17
18 COPY J1 (. in_myturn(L1_Bme), .in_yourturn(L1_Byou), .

in_myR(L1_ABout), .out_myturn(L2_Ame), .out_yourturn(

L2_Ayou), .out_myW(L2_ABin), .go(go1));

19 COPY J2 (. in_myturn(L2_Bme), .in_yourturn(L2_Byou), .

in_myR(L2_ABout), .out_myturn(L3_Ame), .out_yourturn(

L3_Ayou), .out_myW(L3_ABin), .go(go2));

20 COPY J3 (. in_myturn(L3_Bme), .in_yourturn(L3_Byou), .

in_myR(L3_ABout), .out_myturn(L4_Ame), .out_yourturn(

L4_Ayou), .out_myW(L4_ABin), .go(go3));

21 COPY J4 (. in_myturn(L4_Bme), .in_yourturn(L4_Byou), .

in_myR(L4_ABout), .out_myturn(L1_Ame), .out_yourturn(

L1_Ayou), .out_myW(L1_ABin), .go(go4));

22 endmodule

Figure 6.9: Sample Verilog testbench to initialize and simulate the ring FIFO at Link-
Joint level, using the Link-Joint network in Figure 6.7. The Links and Joints in this
testbench are instances of the Verilog modules presented in Figures 3.15 and 3.16.
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Figure 6.10: Canopy graph showing the simulated throughput of the ring FIFO with
varying numbers of data items at different abstraction levels.

data items (one EMPTY) shows the same throughput behavior. Though there are

more items in the ring, the throughput is limited to the time that “space” moves

through the ring so the data items can progress forward. In the case where the ring

FIFO is half-FULL or half-EMPTY, the FIFO has optimal throughput and is twice

the frequency of the quarter-FULL or quarter-EMPTY ring FIFO.

The actual values for the throughput counts for either program or Link-Joint

networks do not quite matter. What is essential is that the throughput pattern stays

the same regardless of the abstraction level. The Link-Joint network may appear

slower than the program because it includes static delay injected for the Verilog

simulation. What is important to note is that both canopy graphs look like canopies

or tents and show positive throughput for all ring occupancies between EMPTY (0)

and FULL (4). Generally, outside of this example, by using canopy graphs, engineers

can analyze and optimize the performance of asynchronous systems more efficiently,

which is crucial for improving the overall speed and reliability of computing systems.
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6.2.4 Circuit Level

The ring FIFO can be and has been implemented in multiple asynchronous fami-

lies [57, 62]. This section implements our ring FIFO example in a superconducting

technology using the RSFQ asynchronous circuit family. Figure 6.11 shows a 2-phase

bundled-data pulse-logic RSFQ implementation of a Link and Joint COPY. This sec-

tion summarizes the detailed description of our Link-Joint RSFQ implementation

given in [57].

RSFQ Links use D2 latches to store their data. During normal operation for

DATA AtoB, data come into the D2 latch through A[data] and leave through B[data].

However, for initialization, test, and debug, we redirect data for D2 to come from or

go to a scan chain scan[din, shift, dout]. The RSFQ Link implementation uses two

instances of a special RSFQ gate, a nondestructive readout (NDRO) called STATE,

for the turn variable. The two instances are called TURNA and TURNB. Our MrGO

Figure 6.11: A 2-phase bundled-data pulse-logic RSFQ (superconducting family) im-
plementation of a Link and Joint COPY.
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implementation in RSFQ also uses STATE and combines it with a special RSFQ gate

called SYNC. The guarded command specification of STATE and SYNC follow next.

Each term in these guarded commands is a Boolean, and it evaluates to TRUE when

the corresponding signal carries a pulse and to FALSE when there is no pulse.

STATE ( set state, reset state, read state, ans state, s1 )

set state → s1:=true ; set state:=false

reset state → s1:=false ; reset state:=false

read state → ans state:=s1 ; read state:=false

SYNC (R, killR, goneR, ansA, ansB, s1 )

s2 : bool

R → s2:=true ; R:=false

killR → goneR:=s2 ; s2:=false ; killR:=false

s1 ∧ s2 → ansA:=true ; ansB :=true ; s2:=false

In line with our test approach, we translate the Link states we have selected to

observe and initialize to the specific gates for which we need scan access. We also

scan in go-nogo signals to pause or start the circuit using MrGO. In addition, because

test circuitry is built with the design when using the scan DFT test technique, scan

access can be expensive in area and delay. We do not need to access all the states for

useful tests. For instance, we can avoid scanning all but Link L1 ’s data by providing

scan access for both the turn variable and the data variables in L1, while for L2, L3,

and L4, we have scan access only for the turn variable. Data items will be shifted into

the other Links from L1. This reduced scan access approach works independently of

the protocol and circuit family [57,61].



113

Figure 6.12: RSFQ ring FIFO implementation with reduced scan access (top) and an
associated canopy graph showing the simulated throughput (bottom).

6.3 Structural Testing

Apart from end-to-end functional tests on the design, it helps to have guarantees on

the internal structure and behavior of designs. Most faults models for asynchronous

circuits — stuck-at faults and delay faults — are addressed by examining specific
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structures in the circuit [64, 66, 79]. One way of streamlining the generation of tests

for internal structures is to start at the high level by defining test sequences for basic

statements in high-level programs, much like unit testing in the software world [19].

We acknowledge we do not have all the information at the high level to identify poten-

tial issues such as glitches, metastability, and timing violations. However, using the

structure of the program (program statements), we can specify test requirements and

expected behavior for each statement. Test details such as write values, expected read

values, and the number of tests per structure can be refined at the lower abstraction

levels.

To illustrate, we use a basic Greatest Common Divisor (GCD) example based on

the Euclidean Algorithm, as given in Figure 6.13. We augmented the program with

labels, pc1 through pc5, to support the use of goto commands that enable us to jump

to a labeled program location during debug. We also augmented the program with

log statements to print information to the simulation console.

Figure 6.14 shows the Link-Joint network generated for the program in Figure 6.13

1 defproc gcd2(chan?(int) X, Y; chan!(int) O) {

2 int x, y;

3 chp {

4 *[ pc1: X?x, Y?y;

5 pc2: *[ y > x -> log(" Guard 1 chosen ");

6 pc3: y := y - x

7 [] x > y -> log(" Guard 2 chosen ");

8 pc4: x := x - y

9 ];

10 log("Out of loop");

11 pc5: O!x

12 ]

13 }

14 }

Figure 6.13: A CHP program for the Greatest Common Divisor (GCD) algorithm,
augmented with labels and log statements for use in debug and test generation.
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Figure 6.14: A Link-Joint network for the Greatest Common Divisor (GCD)
algorithm, compiled from the CHP program in Figure 6.13, using the compilation
approach explained in Chapter 4.
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excluding the program augmentations added. Note that though either Link ports A

or B can be active or passive as discussed in Section 3.3, in Figure 6.14, we set Link

port A as the active port (•) and Link port B as the passive port (◦) for the test

discussions in the following subsections. The following subsections discuss some basic

statements in the program with their test requirements and test sequences. We do

not discuss all the constructs in the program; instead, through a few statements, we

demonstrate the test strategy.

6.3.1 Assignment

An assignment is a data operation. Therefore, we must ensure that any variable used

in its expression can be read, the evaluation of the expression works, and the value

evaluated is stored in the assigned variable. The GCD program, in Figure 6.13, has

two assignments, x := x− y and y := y− x. The program-level test sequence defined

as the ACTSIM script in the left panel of Figure 6.15 is used to test assignments.

The script gives the output in the right panel.

The script starts with watching changes on variables x and y and indicates the

variables on which to have breakpoints. ACTSIM has a command, goto, that allows

the simulation to jump to a statement at a particular label. At the command goto

pc3, the simulator jumps to the location at program label, pc3. After being set as

the script indicates, the simulator outputs the new values of x and y. The cycle

command instructs the simulator to advance the execution until no progress can be

made. Therefore, the simulation continues by executing y := y−x, displaying the new

value of y, and then halting because of the breakpoint on y. The mget x y command

instructs the simulator to display the current values of x and y. The script continues

with the test sequence for x := x− y.



117

Figure 6.15: Program Assignment test sequence as an ACTSIM script and its output.

The Verilog testbench in Figure 6.16 is refined from the program test in Figure

6.15, and it implements the same test sequence using the Link-Joint structures in

Figure 6.14 corresponding to the program test points. The names Jn (where n is

a number) correspond to the numbered Joints in the Link-Joint network. The test

starts with making all the go-signals low(0) to disable all Joint actions, then proceeds

with terms corresponding to the program testbench.

The statement goto pc3 corresponds in the Verilog testbench to giving the turn to

the start-up port of TRF Joint J11, which is connected to Link port B of Link L17,

and which triggers the expression evaluation, y− x, and assignment, y := y− x. The

set y 25 command corresponds to initializing the data value of Var y, which requires

setting the internal Link in Var y to 25, (J1.st ABin = 25 ). #10 and #200 are static

numbers of cycles the Verilog simulator should take before executing the following

command. The injection of these cycles in our testbench ensures the network has made

all the progress it needs to make before a command from the simulation is executed.

Figure 6.17 shows the Verilog waveform for the assignment Verilog testbench.
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Figure 6.16: Link-Joint Assignment test sequence as a Verilog testbench.

We can plug in different values of x and y to ensure the correct computation

behavior. The purpose of showing the ACTSIM script and the associated Verilog

testbench is to understand how the test sequence gets refined as the abstract level

changes. Starting at the high level makes test and debug easier by knowing where to
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plug in the standard test pattern generation methods at the circuit level and having

a skeletal test sequence that can be expanded to the required level of detail.

Figure 6.17: Waveforms from the simulation of the Assignment Verilog testbench.

6.3.2 Loops and Selection

Loops and selection tests require that all possible cases are reachable and that if none

of the cases are chosen, execution exits the statement (for a loop) or deadlocks (for a

select without an else statement), as required by the behavior of SELECT and LOOP

in CHP (Section 4.1.1). This GCD program has a loop with two cases, from line 5 to

line 9 in Figure 6.13. One case condition is y > x, and the other is x > y. If neither

of these conditions holds, we exit the loop. Otherwise, we loop and test the condition

again.

Figure 6.18 shows the GCD program’s test sequence in ACTSIM (left) and its

output (right) for the select-loop. ACTSIM command goto pc2 gets the simulator

to jump to the start of the loop. From there, we use different values of x and y to
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Figure 6.18: Program Select-Loop test sequence as an ACTSIM script and its output.

test each case. Following the test requirements, we make sure we can reach either

y > x or x > y case statement, loop through the statement after a case is executed,

and fall out of the loop. Figure 6.19 shows the Link-Joint Verilog testbench following

the same test sequence as the program test. Note that in the Link-Joint network

test, it is sufficient to show control reaches the start-up Link of the case statement

to be executed without actually executing it. This is possible using go signals in the

Link-Joint network. Figure 6.20 shows the waveform from simulating the testbench.
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Figure 6.19: Link-Joint Select-Loop test sequence as a Verilog testbench.

Figure 6.20: Waveforms from the simulation of the Select-Loop Verilog testbench.
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6.3.3 Communication

Communication statements are basically data transfers and can be tested like assign-

ments. This section considers their effect in a program with multiple communicat-

ing processes. When testing a single communication process in isolation, the process

deadlocks when it tries to communicate because it lacks a communication peer. Dead-

locking is inevitable if other processes communicating with the process under test are

not simultaneously executed. So, what can we do to test communication commands

in isolation?

At the Link-Joint and circuit level, we can directly unblock the communication by

setting the turn variable or corresponding Link state variable in the circuit externally.

However, that cannot be easily realized in the program simulation. Therefore, we

worked with Rajit Manohar at Yale to create a new ACTSIM command, skip-comm,

to unblock a blocked channel that is waiting for a communication partner. We unblock

by skipping the blocked channel communication.

Figure 6.21 shows a test of output channel O of the GCD process (in Figure

6.13). The goto pc5 command jumps the simulator just before the start of the output

communication. At this point, the state of the channel is idle because it has not yet

started the communication. We now set the value for x. With a cycle command,

Figure 6.21: Program test sequence to test output communication O!x in isolation
with ACTSIM.
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the communication commences and gets blocked while waiting to send the value of x

to another process or environment communicating with it. Because no other process

communicates with process gcd2 in this test, the process deadlocks, and no other

progress can be made. However, we can see the value O wants to send and validate

that it is the correct value of x, 7. With the skip-comm O command, we unblock

the blocked channel O, and a new execution cycle can now begin. The test in Figure

6.21 allows us to test all parts in the output communication O!x that are in the

gcd2 process. All such parts can be tested without any need for collaboration with

a communication partner. Figure 6.22 shows the associated Verilog testbench while

Figure 6.23 shows the waveforms from simulating the testbench.

Figure 6.22: Link-Joint test sequence to test output communication O!x in isolation
as a Verilog testbench.
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Figure 6.23: Waveforms from the simulation of the Verilog testbench in Figure 6.22

6.4 Connecting Our Uniform Test Approach to Hardware Test Methods

Our motivation for the uniform test approach from programs to circuits, illustrated

in Sections 6.2 and 6.3, is to guide how testing is done in hardware. Regardless of

the abstraction level, the uniformity in the test approach ensures that some key ideas

remain the same and can be handed over to manage test complexity:

• start points:(1) where does the operation start, (2) what are the (key) initial

values

• stop points:(1) where does the operation stop, (2) what are the (key) end values

These test points can be tied to the test pattern generation techniques [25, 54–56,

64,79] based on hardware fault models to have targeted tests, which can be detailed

later for hardware fault coverage.

6.5 Chapter Contributions

This test approach started before this dissertation [43,60,61]. However, its extension

for all abstraction levels and the validation and simulation presented in this chapter
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are a joint effort of my supervisor and me. The following contributions are largely

mine.

• I extended the test approach to high-level programs, connecting test points at

Link-Joint and circuit levels to the program level.

• I implemented, simulated, and validated test examples at all abstraction levels.

• While exploring test and debug using ACTSIM, I contributed new commands

to the simulator. These commands include:

1. skip-comm:- unblocks a channel waiting for its partner to communicate

by skipping the communication. Because of this command, we can test a

process in isolation.

2. gc-retry :- retries guards in a deadlocked process after the external test se-

quence changes variables. This command allows the program to recompute

its state based on the changes provided.

3. goto:- jumps to a specified label for a single-threaded state. This command

makes flexible initialization more accessible and simpler at the program

level because the program locations are equivalent to turn variables in the

Link-Joint model. The alternative is to augment the program with debug

variables that represent locations, as we did for the example in Figure 6.6

with the introduction of debug variable init.
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Chapter 7: From Link-Joint Circuits to ACT

The preceding chapters have detailed the different pieces of our design flow, O. nà,

and we have demonstrated the generality and uniformity of our approach, going from

high-level programs in ACT through Link-Joint networks to multiple protocols and

circuit families. This chapter shows how Link-Joint circuit implementations can be

brought back into the ACT ecosystem. First, the chapter summarizes our embedding

of Links and Joints into the ACT ecosystem and details how to get the Link-Joint

circuits back into ACT. Lastly, it shows an example of a gate-level Link-Joint network

design specified and simulated in ACT.

7.1 O. nà — A Shallow Link-Joint Embedding in ACT

The Link-Joint methodology centers around a general and unified abstraction based

on the similarities of protocols and asynchronous families. This dissertation showcases

the methodology by creating a design flow and test approach around Links and Joints.

To achieve this, we utilize elements from ACT — reusing ACT’s application and

programming techniques at the top and ACT’s circuit and fabrication techniques at

the bottom, as illustrated in Figure 7.1. We use ACT because ACT is the most

promising open-source asynchronous tool flow available today. However, the Link-

Joint methodology can be integrated similarly into many asynchronous

design flows to expand the flow’s support for fine-grained mixing and matching of

various protocols and circuit families.

Currently, the embedding of the Link-Joint methodology in ACT is shallow. We

begin in the ACT ecosystem by using the source languages to specify designs as
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Figure 7.1: Our design and test flow, O. nà, is implemented as a shallow embedding
in the ACT ecosystem. All design and test explorations and refinements are done
entirely outside of the ACT ecosystem, denoted by the middle part of the hourglass.

programs. We re-engineered the ACT program compiler to generate a hierarchi-

cal network of Links and Joints. We use Verilog to model and validate Link-Joint

networks and their refinements down to abstract gate-level circuit implementations.

Link-Joint network refinement and validation are done outside the ACT ecosystem,

in a Link-Joint ecosystem by itself, denoted by the middle of the hourglass in Figure

7.1. The shallow embedding developed in this dissertation enabled us to explore dif-

ferent pieces of our design flow, O. nà, with limited interference from and to the ACT

ecosystem. However, to utilize ACT’s fabrication techniques and tools, we need to

convert our gate-level specifications into a format that ACT tools can process.

In the future, we aim to natively integrate Links and Joints within the ACT

ecosystem by creating a full embedding. This integration would offer both flexibility

in asynchronous design and comprehensive design automation.
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7.2 Back into ACT with Gates and Timing

ACT uses Production Rule Set (PRS) [35,40] and timing constraints [1,67] to represent

gate-level digital circuits.

7.2.1 Production Rule Set (PRS)

PRS specifies pull-up and pull-down transistor networks for CMOS gate implemen-

tations. The syntax for PRS is reminiscent of guarded commands [15] and is of the

form, G → S, where G is a Boolean expression and S is a command, typically a signal

change that is executed when the Boolean expression is TRUE.

For example, Figure 7.2 presents a two input AND gate using PRS and Verilog

specifications. The AND gate is combinational. Its two production rules have com-

plementary Boolean guards for the rising and falling transitions on the AND gate

output. ACT automatically generates both production rules when the PRS syntax

uses a double arrow (⇒) instead of a single arrow (→) [35].

1 // PRS Implementation of a two input AND gate

2 defproc and2 (bool A, B; bool Y){

3 prs {

4 A & B => Y+

5 }

6 }

1 // Verilog Implementation of a two input AND gate

2 module and2 (A, B, Y);

3 input A, B;

4 output Y;

5
6 assign #2 Y = A & B;

7 endmodule

Figure 7.2: PRS and Verilog specifications of a two input AND gate.
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Figure 7.3 presents a two input C -element gate in PRS and Verilog. A C -element

is state-holding and has non-complementary guards for the rising and falling transi-

tions on the C -element output. Thus, specifying both the C -element output transi-

tions requires two production rules.

1 // PRS Implementation of a two input C-element gate

2 defproc C2 (bool A, B; bool Y){

3 prs {

4 A & B -> Y+

5 ~A & ~B -> Y-

6 }

7 }

1 // Verilog Implementation of a two input C-element gate

2 module C2 (A, B, Y);

3 input A, B;

4 output Y;

5 reg m1;

6 assign Y = m1;

7 always @(A or B) begin

8 if ((A & B) | (!A & !B)) begin

9 #2 m1 = (A && B);

10 end

11 end

12 endmodule

Figure 7.3: PRS and Verilog specifications of a two input C -element gate.

7.2.2 Timing Constraints

Asynchronous circuits, like synchronous circuits, may be susceptible to delay varia-

tions in signal arrival times and timing hazards [66]. One way to understand timing in

an asynchronous circuit is through signal transitions, that is, rising (+) or falling (−)

transitions within the circuit. These signal transitions are referred to as events. The

order of events in a design can be represented as a signal transition graph showing the

dependency of events. However, not all event orderings are guaranteed by the design.
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In cases where event orderings are not guaranteed, the design must be enhanced with

timing constraints.

The conventional use of timing constraints has the notation e0 : e1 < e2, where

e0, e1, and e2 represent signal transitions. In earlier works [22,47,67], this constraint is

understood as “after event e0, event e1 must happen before event e2.” This dissertation

adopts the ACT notation and interpretation for timing constraints, officially referred

to as timing forks [1, 24, 37, 38]. With the ACT interpretation as a timing fork, the

constraint e0 : e1 < e2 reads as “after event e0, a potential event e1, if any, must

happen before a potential event e2, if any, assuming all potential events happen before

the next e0 event”. Both interpretations see e0 as a point of divergence, e1 as the early

or fast event, and e2 as the late or slow event. A timing fork, such as a+ : b− < c+,

can also be formulated as an error predicate, “if a+ is followed by c+ and then b−,

without any intervening instances of a+, the timing constraint is violated [24,37]”.

Therefore, to ensure correct operation of the final circuit, these timing constraints

need to be statically analyzed during circuit and layout design, and appropriate delays

are to be added at specific locations to address the timing issues [67]. Note that signal

transition graphs can have cycles. Thus, when analyzing timing in designs in ACT

using Cyclone [24], the static timing analyzer available with ACT, it is helpful to

indicate the boundary of the signal transition loop (or cycle). The indication is

through a loop marker called “tick”, which ACT uses during static timing analysis to

differentiate subsequent loop iterations [24,37].

There are inherently timing loops in Link-Joint circuits due to the interaction

between Links and Joints. Between a Joint having a turn on a Link and relinquishing

the turn, there are signal transitions and the signal transitions would occur again as

soon as the Joint has the turn on that Link again and then relinquishes the turn once

again. Using ACT timing convention, we conservatively assume that most timing
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loops pass through the Joint in the Link-Joint circuit, and thus, we “tick”-mark

Link-Joint loops at the signal transitions at each Joint’s MrGO gate. We provide

more details on timing in Link-Joint circuits with an example in the next section.

7.3 Gate-level Link-Joint example in ACT

To illustrate getting a Link-Joint design back into ACT, we use a simple example,

Ring2, which right-rotates data it receives and passes it along within a ring. Figure 7.4

shows a Link-Joint network for Ring2. We have chosen to implement the Links in

Ring2 using the Click circuit family and also chosen 2-phase level-signaling bundled-

data protocols for the design. Figure 7.5 shows the design’s gate-level representation

and highlights the circuit’s signal names. Note that signals alias each other. For

example, L0.B me aliases J0.in me and L0.A you aliases J1.out you.

Figures 7.6 and 7.7 show the PRS specifications of gates hierarchically composed

to form modules of Links and Joints used in this Ring2 example.

Figure 7.4: Link-Joint network for a 2-stage ring, Ring2, with RROT Joints.
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Figure 7.5: Circuit representation of Ring2 design using Click Links and 2-phase
level-signaling bundled-data protocol showing all its signal names.

1 defproc inv (bool A; bool Y){ prs { A => Y- } }

2
3 defproc and2 (bool A, B; bool Y){ prs { A & B => Y+ } }

4
5 defproc xor2 (bool A, B; bool Y)

6 { prs { (A & ~B) | (~A & B) => Y+ } }

7
8 defproc xnor2 (bool A, B; bool Y)

9 { prs { (A & B) | (~A & ~B) => Y+ } }

10
11 defproc MrGO (bool start , in , go; bool out){

12 // MrGO // start is there to avoid initial instability

13 prs { in & go & start -> out+

14 ~in | ~start -> out - }

15 }

Figure 7.6: PRS specifications of gates used in Link and Joint modules in Ring2.
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1 defproc slatch (bool d, en , scan_d , scan_en; bool q){

2 // scan latch // use exclusive high en , scan_en

3 spec { exclhi(en , scan_en) }

4 prs { ( d & en) | ( scan_d & scan_en) -> q+

5 (~d & en) | (~scan_d & scan_en) -> q- }

6 }

7
8 defproc sffHI (bool d, en , scan_d , scan_en; bool q){

9 // scan flipflop // use exclusive high en , scan_en

10 bool master;

11 spec { exclhi(en , scan_en) }

12 prs { d & ~en -> master+

13 ~d & ~en -> master -

14 ( master & en) | ( scan_d & scan_en) -> q+

15 (~master & en) | (~scan_d & scan_en) -> q- }

16 }

17
18 defproc sfffHI (bool en , scan_d , scan_en; bool q){

19 // Click ’s scan flipping FF

20 // use exclusive high en, scan_en

21 bool d;

22 spec { exclhi(en , scan_en) }

23 inv inv_1(q, d);

24 sffHI sffHI_1(d, en, scan_d , scan_en , q);

25 }

Figure 7.7: PRS specifications of gates used in Link and Joint modules in Ring2.

7.3.1 Link Implementation for Ring2

The Links in the Ring2 example uses a 2-phase level-signaling bundled-data Click

implementation. Figure 7.8 gives the ACT-PRS specification with timing constraints

typical for a Click Link. The timing constraints on lines 19 to 20 in Figure 7.9 ensure

mutual exclusivity for turn updates through the xnor2 and xor2 gates (lines 9 and 10)

in the Link. The two timing constraints ensure that upon A you+, both A me− and

B me+ occur, and that upon B you+ both A me+ and B me− occur. We visually

illustrate the timing fork expressions for the Link as paths shown in Figure 7.9.
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1 // A 2-phase level -signaling Link in the Click family

2 // to store and transfer 3-bit data from port A to port B

3 defproc L_Click (bool A_you , A_myW[3], B_you , scan_Ah ,

4 scan_Bh , scan_AmyW [3], scan_en_data , scan_en_control;

5 bool A_me , B_me , B_myR [3]){

6 bool req , r, a, ack;

7 sfffHI sFFA_req(A_you , scan_Ah , scan_en_control , req);

8 sfffHI sFFB_ack(B_you , scan_Bh , scan_en_control , ack);

9 xnor2 xnorA(req , ack , A_me);

10 xor2 xorB(req , ack , B_me);

11
12 // data storage with scan access

13 slatch slatch_0(A_myW[0], A_you , scan_AmyW [0],

scan_en_data , B_myR [0]);

14 slatch slatch_1(A_myW[1], A_you , scan_AmyW [1],

scan_en_data , B_myR [1]);

15 slatch slatch_2(A_myW[2], A_you , scan_AmyW [2],

scan_en_data , B_myR [2]);

16
17 // Link -related timing constraints:

18 spec { // "turn" updates alternate

19 timing A_you+ : A_me - < B_you*+

20 timing B_you+ : B_me - < A_you*+

21 }

22 }

Figure 7.8: ACT-PRS specification for a 2-phase level-signaling bundled-data Click
Link with timing constraints typical for Click circuits.

The timing fork A you+ : A me− < B you ∗+, on line 19 of Figure 7.8, is an

error predicate. This timing fork expression for Link L1 is represented by the red

path (both solid and dotted) in Figure 7.9. Recall that in Section 7.2.2 we discussed

that Link-Joint timing loop boundaries are “tick”-marked at each Joint’s MrGO gate.

Thus, a violation of the timing fork could mean either of two things:

1. For Link L1, the solid red path, which should be fast from A you+ to A me−

is actually too slow, meaning a new B you+ event (from the loop boundary at

Joint J1) is starting before the current A me− event is finished.
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2. For Link L1, the dotted red path, which should be slow from A you+ to B you+

is actually too fast, meaning a new B you+ event (from the loop boundary at

Joint J1) is starting before the current A me− is done.

In both cases, the xnor2 gate from L1 to J0 may receive two input events at the same

time, one from each flipFF. These now non-mutually exclusive but overlapping input

events stall the xnor2 gate, preventing it from changing its output. As a result, Joint

J0 believes that it still has the turn on port out, and so will keep filling out with

“new” data (duplicate copies) from port in. Thus, both outcomes may lead to more

data items in the ring up to the point of filling the ring to the brink and deadlock.

Both issues can be solved with delay insertion.

The second constraint, on line 20 of Figure 7.8, is similar, except that its two

outcomes may lead to fewer data items in the ring up to the point of emptying the

Figure 7.9: Visual depiction of timing forks in the Click Link as paths.
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ring of data and deadlock. This is possible because Joint J1 believes that it still

has the turn on port in, and so will keep providing port in with new data without

forwarding the previous content, leading to data overwriting.

The ∗ on the late events, B you ∗+ and A you ∗+, of the timing fork expressions

indicates that the paths from point-of-divergence A you+ to B you+ (red path) and

from point-of-divergence B you+ to A you+ (blue path) each go through a loop

boundary marker, “tick”, in the Joints.

7.3.2 Joint Implementation for Ring2

The RROT Joints in Ring2 implement a 2-phase level-signaling protocol. Figure 7.10

defines Joint RROT with ACT-PRS specification and timing fork expressions. As

discussed in Section 7.2.2, the Link-Joint timing loop boundaries are “tick”-marked

at each Joint’s MrGO gate. The “tick” is from ready2go+ to fire+, as specified on

line 19 in Figure 7.10.

The timing forks in the Joint ensure that the protocols of the connected Links

remain in sync. Because the RROT Joints in this Ring2 example implement a 2-

phase protocol, thus, they use an AND gate to combine the turns of their connected

Links. Consequently, it is possible that, after fire+, either in me or out me goes low,

resulting in ready2go− and consequently fire− before both Links have responded to

fire+ event. This possibility would lead to an error, as explained next.

The timing fork fire+ : in me− < out me ∗ + on line 21 is an error predicate.

We represent the timing fork of Joint J0 as the red and blue path in Figure 7.11.

The violation of the timing fork could mean either of two things:

1. The solid red path, which should be fast from fire+ to in me− is actually too

slow.
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1 // A 2-phase level signaling Joint to right rotate 3-bit

data

2 // from port in to out

3 defproc J_RROT (bool in_me , in_myR [3], out_me , go , start;

4 bool in_you , out_you , out_myW [3]; bool fire){

5 bool ready2go;

6 and2 and2_1(in_me , out_me , ready2go);

7 MrGO mrgo_1(start , ready2go , go , fire);

8 in_you = fire;

9 out_you = fire;

10
11 // data operation

12 out_myW [0] = in_myR [2];

13 out_myW [1] = in_myR [0];

14 out_myW [2] = in_myR [1];

15
16 // Joint -related timing constraints

17 spec {

18 // time ticks at MrGO , from ready2go+ to fire+

19 timing ready2go+ -> fire+

20 // Link protocols remain in sync

21 timing fire+ : in_me - < out_me *+

22 timing fire+ : out_me - < in_me*+

23 }

24 }

Figure 7.10: ACT specification for a 2-phase level-signaling bundled-data RROT
Joint with timing constraints typical for 2-phase level signaling.

2. The dotted red and blue path, which should be slow from the current fire+

event to a new out me+ event is actually too fast.

These violations mean that port J0.out already finished its tasks in the current com-

putation and initiated its tasks in the next computation prematurely. Both error

outcomes may lead to deadlock or additional data items in the ring. The second

constraint, on line 22 in Figure 7.10, is similar except the error outcomes may lead

to deadlock or missing data items in the ring.
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Figure 7.11: Visual depiction of timing constraints in the RROT Joint.

7.3.3 Link-Joint network Implementation for Ring2

The constraints in Figures 7.8 and 7.10 are local to each process. Due to their similar

error outcomes, it will not come as a surprise that all four constraints in Figures 7.8

and 7.10 can be combined into the following constraint pair for each Link-Joint pair:

fire+ : in me− < B you ∗ + and fire+ : out me− < A you ∗ +. However, the

resulting constraint pair is more restrictive than the four separate constraints and

obscures the role that xnor2 and xor2 gates play in a Click Link, which is why we

opted for four local constraints.

In addition, the entire Ring2 design also requires timing constraints to govern

the interactions among the Links and Joints in the network. Figure 7.12 gives the

ACT-PRS specification for Ring2, a 2-stage ring structure using two Click Links and

two RROT Joints with timing constraints governing the handing over of data in the
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ring. The timing constraints specify the relation between control versus data paths

that start in one Joint and end in the Link following the next Joint. The starting

Joint causes the Link between the two Joints to forward data while the next Joint

causes the next Link to capture that data.

1 //A 2-stage ring structure: L0 ->J0 ->L1 ->J1 ->L0

2 defproc Ring2 (bool scan_Ah [2], scan_Bh [2], scan_AmyW

[2][3] , scan_en_data , scan_en_control [2], go[2], start)

{

3 L_Click L[2];

4 J_RROT J[2];

5 (i:2: // external connections

6 L[i]. scan_Ah = scan_Ah[i];

7 L[i]. scan_Bh = scan_Bh[i];

8 (j:3: L[i]. scan_AmyW[j] = scan_AmyW[i][j];)

9 L[i]. scan_en_data = scan_en_data;

10 L[i]. scan_en_control = scan_en_control[i];

11 J[i].go = go[i];

12 J[i]. start = start;

13 // internal connections

14 L[i].A_me = J[i=0?1:i-1]. out_me;

15 L[i]. A_you = J[i=0?1:i-1]. out_you;

16 L[i].B_me = J[i].in_me;

17 L[i]. B_you = J[i]. in_you;

18 (j:3: L[i]. A_myW[j] = J[i=0?1:i-1]. out_myW[j];)

19 L[i]. B_myR = J[i]. in_myR;

20 )

21 // ring related timing constraints:

22 (i:2:

23 (j:3:

24 spec { // lossless data copy and transfer in the

ring

25 timing J[i].fire+ : L[i].A_myW[j] < L[i]. A_you*-

26 }

27 )

28 )

29 }

Figure 7.12: ACT specification for a 2-phase level-signaling bundled-data 2-stage ring
with Joint RROT for 3-bit data with timing constraints typical for handing over data
in the ring.
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The two constraints ensure that no forwarded data are left behind in the computa-

tion path — their computed results are captured in the next Link. Because these are

timing constraints and not functional constraints, there is no need to specify the data

computation. Figure 7.14 at the end of the chapter depicts the timing constraints as

colored paths through the circuit.

We simulated Ring2 with one data element in the ring. To do this, we initialized

Link L[1] to be empty and Link L[0] to be full with data value 3′b001, using the Link

scan interface signals, while disabling the two Joints. Then we enabled the Joints to

allow the ring to right-rotate and circulate the data. After a while, we disabled Joint

Figure 7.13: Simulation waveform Ring2, rotating and circulating one data item,
starting with B myR[2 : 0] = 3′b001 in Link L[0].
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J [0] by lowering its go signal, go[0]. Figure 7.13 shows the corresponding waveforms.

Note the handover of rotated data from L[0].B myR[2 : 0] to L[1].B myR[2 : 0] and

back — right-rotated from low to high bit and around.

The corresponding ACT test with the initialization and run instructions is in

Appendix A, together with an ACT-generated text output file with simulation events

to complement the waveforms in Figure 7.13.

7.3.4 Final Notes on Timing Constraints

Timing constraints apply to all asynchronous circuit families, with some families

having stricter timing constraints than others. Because we are back in the ACT

ecosystem at a low level, we use ACTSIM to simulate our implementations with PRS

and timing forks. Our timing constraint definitions for Links and Joints are based on

work by Allie Hanson [22] and Hoon Park [46, 47]. Hanson’s work focused on timing

constraints for mixed Click and GasP family implementations (to be discussed in the

next section). Park determined the timing constraints for asynchronous Click circuits

using model checking and tied the verified constraints to the Static Timing Analysis

code used then. Verifying and checking the completeness of the timing constraints we

present in our design is outside the scope of this dissertation. However, with ACTSIM,

we can check the soundness of the specified timing constraints dynamically, at run

time.

7.4 Chapter Contributions

This chapter completes the hourglass proposed in Section 1.1.1 — starting and ending

in ACT, with refinements and Link-Joint design and test explorations taking place

in the middle, outside of ACT. My supervisor and I made a joint effort to translate
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our abstract gate implementations in Verilog to PRS specifications. Some timing

constraints for Links and Joints were available in the works of Hanson [22], Mettala

Gilla [43], and Park [47], but these were from early or even prior to Link-Joint designs.

In this chapter, we translated the timing constraints to fit both the new Link-Joint

model as defined in this dissertation and the “tick”-based timing fork formalism used

by ACT. I implemented and validated the circuit implementations.



144

Figure 7.14: Visual depiction of timing paths in the Ring2 design governing data
handover.
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Chapter 8: Mixing and Matching Circuit Implementation Styles

Regardless of the protocol, signaling logic, or asynchronous family, Links and Joints

provide clear boundaries and well-defined interfaces that ignore differences as much

as possible, exploit similarities, and thereby simplify mixing and matching circuit

implementation styles. It is helpful to note that the protocols and circuits are alike

in every intent but seemingly different in detail. With our approach, designers gain

versatility in using different implementation styles at little cost to the overall design

effort.

This dissertation has demonstrated the flexibility and generality of Links and

Joints by exhibiting the Link-Joint methodology’s support for multiple protocols and

circuit families. No one protocol or family is superior to the other; rather, each offers

different benefits and can be used depending on the design’s goal. Therefore, we mix

and match circuit implementation styles to apply the style appropriate for a design

part from all available options.

This chapter showcases striking implementations where we mix these protocols,

signaling logics, and circuit families. We also include into our buffet of circuit im-

plementation styles two transition logic families that are yet to be presented in this

dissertation but are published in our Festschrift contribution for Steve Furber [63] —

Mousetrap [65] and Micropipelines [69].

8.1 Benefits of Various Asynchronous Circuit Implementation Styles

We can briefly summarize some of the finer points of circuit implementation styles

used in this dissertation as follows:
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Families:

1. Click: It is best suited to traditional synchronous evaluation tools for timing

analysis and testing because (like synchronous circuits) all its state is stored in

flip-flops. It interfaces well with level and transition signaling.

2. GasP: It has the highest (control-oriented) throughput due to low logical effort.

It works well with level signaling.

3. Set-Reset: It is a simpler version of GasP but with somewhat higher logical

effort and thus somewhat lower (control-oriented) throughput. It works well

with level signaling.

4. Micropipelines and Mousetrap: They suit dataflow programs. They work well

with transition signaling and suit data-oriented applications (particularly those

with simple control). They have the lowest latency and power because the

control operates per transition (as opposed to two transitions for level signaling).

5. Superconducting: It has the lowest power (including cooling) and the highest

throughput, thanks to superconductivity wires with zero-delay transport.

Signaling:

1. Level signaling: It is like Boolean logic and easy to think through.

2. Transition signaling: It has fewer events (about half the number of events for

control) compared to level signaling but is harder to think through. It requires

xor gates and latches for complex logic to compare and remember transition

type: rising (+) or falling (−).
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3. Pulse signaling: It is like Boolean logic (at a higher level of abstraction: pulse

= TRUE, no-pulse = FALSE). It has fewer events (one pulse versus two level

changes) but comes at the cost of more state than level signaling to remember

pulse or no-pulse.

Data Encoding:

1. Bundled data: This encoding is just as used in synchronous circuits and requires

delay matching.

2. Dual-rail data: This encoding includes its own readiness signal, so there is less

to no need for delay matching. However, it has higher peak power and energy

because each bit changes require two actions, set and reset, each time. It is faster

for data-dependent operations because the data include their own completion.

Protocol:

1. 2-phase: It has higher throughput and lower power because there are fewer

control events per protocol. It is good for routing.

2. 4-phase: It has lower throughput than 2-phase, but fewer timing assumptions.

It is good for complex local interaction.

Note that a typical combination of 4-phase dual-rail CMOS will set data in phase 1

and 2 and reset data in phase 3 and 4. A typical combination of 2-phase dual-rail

RSFQ does not need a data reset phase because the pulse is cleared automatically

[48, 57]. Section 8.6 details the use of RSFQ with dual-rail logic in an example.

Also, a typical combination of 2-phase bundled data CMOS does not need to reset

data. On average, a 4-phase dual-rail CMOS implementation uses four times higher
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energy compared to 2-phase bundled-data CMOS implementation because there are

two times more control events and two times more data changes.

8.2 Example: A Mixed Ring FIFO In Action

Because protocol and asynchronous family implementation decisions are local refine-

ments in our design flow, exploring mixed implementations is relatively straightfor-

ward. Figure 8.1 shows a Link-Joint network for a 6-stage ring FIFO. This FIFO

uses the same interface signals and yet mixes handshaking protocols (2-phase and

4-phase) as well as asynchronous families (Set-Reset and Click).

Figure 8.1: Link-Joint network for a 6-stage mixed ring FIFO, using both 2-phase
and 4-phase protocols as well as Set-Reset and Click circuit families.

We simulated the functional behavior and throughput of the mixed ring FIFO

using the uniform test approach described in Section 6.2. These tests are similar to

the tests for a different-sized ring FIFO in RSFQ discussed in Section 6.2 and in the

GasP implementation of the Weaver chip [61].
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The Canopy graph in Figure 8.2 illustrates the relationship between simulated ring

throughput and the number of data items in the ring. The Canopy graph confirms

that the mixed ring FIFO operates as expected, although it does not demonstrate that

the data are faithfully copied. To assess this, we can refer to the simulated waveforms

in the appendix, Figure B.1, which support both the functionality of the mixed design

in Figure 8.1 and the relationship between throughput and occupancy in Figure 8.2.

Note that detailed 2-phase and 4-phase Link and Joint circuit descriptions can be

found in the earlier Section 5.3. For circuit details on the mixed 2-phase and 4-phase

protocols, see the later Section 8.4.

Figure 8.2: Canopy graph of the 6-stage mixed ring FIFO in Figure 8.1.

8.3 Example: Mixing Asynchronous Circuit Families

Because of the state-action separation in the Link-Joint model, differences in asyn-

chronous circuit family implementations are internal to the Links, while the Joints

are concerned only about the interface signals and protocols. Therefore, we can

swap out Link implementations, which makes mixing and matching different families

straightforward.
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Figure 8.3 shows a mixed implementation of a simple FIFO with a Set-Reset

Link, a COPY Joint, and a Click Link, all using 2-phase level-signaling bundled-

data protocols. The signals at the interface for the Links (myturn(A), yourturn(A),

myW(A), myturn(B), yourturn(B), and myR(B)) remain the same for the different

families. Notably, the Click -specific signals req and ack are internal to the Click Link

on the right and invisible at the Link-Joint interface.

Figure 8.4 shows a transition-signaling bundled-data protocol implementation of

the same design, but this time using a Micropipeline Link (left), a COPY Joint

(middle), and a Mousetrap Link (right). Further details on transition signaling, Mi-

cropipeline, and Mousetrap circuits can be found in our Festschrift contribution for

Steve Furber [63].

Figure 8.3: Mixed circuit implementation with a Set-Reset Link (left), Joint COPY
(middle), and a Click Link (right).
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Figure 8.4: Mixed circuit implementation for transition signaling with aMicropipeline
Link (left), Joint COPY (middle), and a Mousetrap Link (right).

8.4 Example: Mixing Protocols

Joints have the freedom to choose a protocol independently from their peer Joints.

As a result, a Link may use a different protocol at its port A than it uses at its

port B. Figure 8.5 shows three Links in Click, GasP, and Set-Reset using a 2-

phase bundled-data level-signaling protocol at port A and a 4-phase counterpart at

port B. These Links combine the 2-phase and 4-phase protocol versions for the circuit

families presented earlier in Section 5.3 and have been published at the ASYNC 2023

conference [17].

Figure 8.6 mixes a corresponding 4-to-2 phase GasP Link and a 2-to-4 phase Click

Link to connect a 2-phase Joint with a 4-phase Joint. The two Joints were presented

earlier in Section 5.3, Figure 5.13.
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Figure 8.5: Bidirectional Links in circuit families (a) Click, (b) GasP, and (c) Set-
Reset using 2-phase at Link port A, and 4-phase at Link port B.

Figure 8.6: Mixed circuit implementation where a 2-phase Joint (left) and a 4-phase
Joint (right) are connected with a 4-to-2 phase GasP Link and a 2-to-4 phase Click
Link. This Link-Joint FIFO also functions correctly when connected as a ring FIFO.

8.5 Example: Mixing Signaling Logic

We can also mix different signaling logics. Click ’s flipping flipflop, flipFF, introduced

by Ad Peeters et al. [50] is ideal for connecting transition and level signaling. In
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Figures 8.7 and 8.8, we use the flipFF outputs as both a transition signal and a level

signal. For the transition-based part of the design, the flipFF output is a transition,

but the level-based part sees it as a level signal.

Figure 8.7 mixes a transition to 2-phase level signaling Link, L1, and a 2-phase

level to transition signaling Link, L2, to connect a 2-phase level-signaling Joint, J1,

with a 2-phase transition-signaling Joint, J2. Link L1 combines Mousetrap with

Click. Link L2 uses only Click elements. Figure 8.8 is similar, but instead of 2-phase

level signaling, it uses 4-phase level signaling in Joint J1 and the connecting Links.

Each of the two Link-Joint FIFO designs also functions correctly when connected

as a ring FIFO. Both designs were published in our Festschrift contribution for Steve

Furber [63].

Figure 8.7: Mixed circuit implementation where a 2-phase level-signaling Joint (left)
and a transition Joint (right) are connected with a transition to 2-phase level signaling
Link, L1, based on Mousetrap and Click, and a 2-phase level to transition signaling
Link, L2, based on Click.
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Figure 8.8: Mixed circuit implementation where a 4-phase level-signaling Joint (left)
and a transition Joint (right) are connected with a transition to 4-phase level signaling
Link, L1, based on Mousetrap and Click, and a 4-phase level to transition signaling
Link, L2, based on Click.

8.6 Matching Implementations to Links and Joints

Mixing different Link-Joint implementation styles is relatively easy, as the previous

sections demonstrate. But what can we do if the asynchronous implementation is not

formulated in terms of Links and Joints?

This section shows how we match an existing asynchronous design to a version

using the Link-Joint model. The design, shown in Figure 8.9, uses dual-rail data

encoding and superconducting RSFQ pulse logic. It is based on the clocked and

pipelined dual-rail adder example that we published in the Transactions on Applied

Superconductivity [57], but it replaces the clock with an asynchronous protocol. To

replace the clock, the asynchronous protocol includes logic to detect when computed

data (1) are complete, (2) may be propagated to the following pipeline stages, and

(3) may be overwritten.
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Figure 8.9: RSFQ dual-rail design.

The RSFQ logic gates that we use were originally published by Patra et al. [48],

and follow in Figure 8.10. We can express the gate behaviors using pulse logic and

guarded commands, as we did for RSFQ gates STATE and SYNC in Section 6.2.4,

but refrain from doing so here.

Figure 8.10: RSFQ gates used in the dual-rail design in Figure 8.9.
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Intuitively, the gates behave as follows.

• The C-element or rendezvous in Figure 8.10(a) produces a pulse on its output

when both input signals have a pulse. The input pulses can arrive in any order.

While producing the output pulse, the C-element clears its input pulses.

• TheOR gate ormerge in Figure 8.10(b) receives mutually exclusive input pulses.

It produces one output pulse per input pulse (while clearing the input pulse).

• The SPLIT or fork in Figure 8.10(c) provides “fanout” by taking an input pulse

and producing a pulse on each output (while clearing the input pulse).

• The 1 × 2 rendezvous gate in Figure 8.10(d) combines a pulse on its dual-rail

data input pair, i.e., a pulse on either the T or the F input, with a pulse on

its enable input, en. The 1× 2 gate stores its data input until the enable pulse

has arrived. When both the data and an enable pulse have arrived, it copies its

dual-rail input to its dual-rail output pair. While producing the output pair, it

clears the input data and enable pulses.

• The combinational logic (CL) in Figure 8.10(e) represents a dual-rail data com-

putation, such as the bit-wise full adder in [48]. It uses dual-rail input pairs,

with two wires per bit, and produces dual-rail output pairs. We assume that a

CL computation leaves no pulses behind [57].

With this intuitive gate behavior, we can now explain the asynchronous protocol

in Figure 8.9. The CL computation takes dual-rail inputs and generates dual-rail

outputs. The 1×2 gates store any CL computed data, e.g., myW(out1)[T,F], as soon

as these become available. But the 1 × 2 gates propagate stored data only when

there is space to receive that data. The C-element that drives the enable input of

each 1× 2 gate detects if there is space for both data items. There is space when all
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1× 2 gates in the next pipeline stages, which are of the same form, have propagated

their results. The OR gate in Figure 8.9 checks propagation for one 1×2 gate (in the

current pipeline stage). Another OR gate can be added for the other 1× 2 gate, but

this may be unnecessary if the checked 1× 2 gate stores the last generated CL result.

Now that we understand the design at the protocol level, we are able to partition

it into Links and Joints. Joints compute, so CL goes into a Joint. Links store, so

the 1 × 2 gates go into Links. The resulting partition follows in Figure 8.11. For

initialization and test, this Link-Joint partition can be enhanced with a MrGO gate

after the C-element in the Joint and with scan access to the 1× 2 gates in the Links.

Figure 8.11: Link-Joint partition for the design in Figure 8.9.
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8.7 Chapter Contributions

We showcased the ease and generality of mixing and matching different protocols,

signaling logics, and circuit families in the Link-Joint model. Mixing implementations

not only encourages design reuse and streamlines collaboration between designers with

different preferences but also enables designers to choose the best solution for each

design part. The examples shown in this chapter extend the work done on mixing

circuit families for one type of protocol, based on 2-phase level-signaling bundled-

data [43, 60, 62]. We go beyond this by also mixing protocols and signaling logic.

The key takeaway is that mixing implementation styles bridges the implementation

gaps for collaboration and design reuse. Though this chapter is a joint effort of my

supervisor and me, I implemented and validated the circuit implementations.
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Chapter 9: Conclusion and Future Work

The work presented in this dissertation centers around the objective of making it easy

to insert asynchrony appropriate for each design part. In particular, it focused on the

design and test of asynchronous circuits through a general and unified abstraction,

Links and Joints. We built and presented a design and test flow, O. nà, around Links

and Joints, combining design automation with Link-Joint flexibility. Our design flow

is made by embedding the Link-Joint methodology in an existing and well-used design

flow, ACT (Asynchronous Circuit Toolkit). We compile ACT programs with data-

and control-flow to circuit-neutral Link-Joint networks, which are refined into circuits.

The approach presented in this dissertation offers the benefits of flexibility and

generality. By using circuit-neutral Links and Joints, we bind circuit implementa-

tion decisions as late as possible. This approach allows us to go from a single high-level

program to multiple circuit implementations through the same Link-Joint network.

It also serves us in testing and debugging, such that we can create any starting state

and condition for our designs, pause or start system actions, and observe or alter the

state in the design, all from program level to Links and Joints to circuit level, using

a uniform test approach. Implementation decisions can also be isolated; for example,

each Link has the freedom to choose its own circuit family, and each Joint has the

freedom to choose its own communication protocol.

Here is a list of communication protocols, signaling logics, data encodings, and

circuit families this work supports or that we are currently developing:

• 2- and 4-phase protocols, level- and pulse- and transition-signaling logic, bun-

dled and dual-rail data,
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• Click, GasP, Set-Reset, Mousetrap, Micropipelines, RSFQ.

The work in this dissertation accomplished the following.

1. It illustrates how the Link-Joint methodology can be integrated into a design

flow.

2. It showcases the generality and flexibility of the Link-Joint methodology in sup-

porting widely used communication protocols and asynchronous circuit families.

3. It showcases a uniform test and debug strategy that can be translated from one

abstraction level to another.

4. It facilitates and showcases the ease of mixing and matching different imple-

mentation styles so that designers can select the best protocol, signaling logic,

and circuit family for each design part.

Our codebase for O. nà, that is, our compiler codebase, abstract Verilog imple-

mentations for a Link and several Joint types, and gate implementation of Links

and Joints using several protocols and different circuit families, is accessible at:

https://arc.cecs.pdx.edu/code/ [18].

9.1 Future Research Directions

The work in this dissertation has provided a structured route to scalable, accessible,

and easy use of Links and Joints. However, realistic widespread use of the methodol-

ogy still requires more automation and validation. Currently, the embedding of Links

and Joints in the ACT ecosystem is shallow. We believe that having Links and Joints

natively integrated into ACT would benefit both ACT – by increasing the flexibility

and ease of inserting asynchrony appropriate for each design part – and the Link-Joint
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methodology – by increasing its viability and user base through the ACT ecosystem

and making more tools that are available in ACT also available to Links and Joints.

As mentioned in Chapter 4, more language optimization would be beneficial for

more efficient circuits through compilation. Currently, our compilation results are

based on the program’s quality, with optimizations done as refinements on the Link-

Joint network. The Yale ACT research group is presently working on CHP language

optimizations. We believe that as long as the same set of language constructs are

used to specify the program, our compiler can seamlessly work with the optimized

program. However, if new language constructs are introduced, our compiler needs to

be updated.

The test and debug approach presented in this dissertation can be extended further

to support more test generation. In addition, to help designers make more informed

decisions, design, as well as test and debug, would benefit from tool support for

profiling and for graphical visualization of both design and simulations, like those

developed for Balsa [3, 26].

The multiple specification models at different levels of abstraction presented in

this dissertation would benefit from equivalence checking and from validating trans-

lations of higher level specifications to lower level implementations. There are initial

results by Cuong Chau [8] comparing the Link and Joint model to the circuit-level

communication model. More work must be done to tie all the abstraction levels

together formally.
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pdx.edu/code/, 2024.

[19] Geeksforgeeks. Unit Testing – Software Testing. https://www.geeksforgeeks.
org/unit-testing-software-testing, 2023. Accessed: 2024-03-19.

[20] Gennette D Gill. Analysis and Optimization for Pipelined Asynchronous Systems.
PhD thesis, The University of North Carolina at Chapel Hill, 2010.

[21] Dylan Hand, Matheus Trevisan Moreira, Hsin-Ho Huang, Danlei Chen, Frederico
Butzke, Zhichao Li, Matheus Gibiluka, Melvin Breuer, Ney Laert Vilar Calazans,
and Peter A Beerel. Blade – A Timing Violation Resilient Asynchronous Tem-
plate. In 2015 21st IEEE International Symposium on Asynchronous Circuits
and Systems, pages 21–28. IEEE, 2015.

[22] Alexandra Hanson. Facilitating Mixed Self-Timed Circuits. Bachelor’s Thesis,
Portland State University, 2020.

[23] Charles Antony Richard Hoare. Communicating Sequential Processes. Commu-
nications of the ACM, 21(8):666–677, 1978.



164

[24] Wenmian Hua, Yi-Shan Lu, Keshav Pingali, and Rajit Manohar. Cyclone: A
Static Timing and Power Engine for Asynchronous Circuits. In 2020 26th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC),
pages 11–19. IEEE, 2020.

[25] Henrik Hulgaard, Steven M Burns, and Gaetano Borriello. Testing Asynchronous
Circuits: A survey. Integration, 19(3):111–131, 1995.

[26] Lilian Janin. Simulation and Visualisation for Debugging Large Scale Asyn-
chronous Handshake Circuits. PhD thesis, The University of Manchester, United
Kingdom, 2005.

[27] Gleb Krylov. Design Methodologies for Single Flux Quantum VLSI Circuits.
PhD thesis, University of Rochester, 2021.

[28] Konstantin K Likharev and Vasilii K Semenov. RSFQ Logic/Memory Family: A
new Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency Digital
Systems. IEEE Transactions on Applied Superconductivity, 1(1):3–28, 1991.

[29] INMOS Limited. Occam 2 reference manual. Prentice Hall, 1988.

[30] Rasmus Madsen. Desynchronization of digital circuits. Master’s thesis, Technical
University of Denmark, 2011.

[31] M Maezawa, I Kurosawa, M Aoyagi, H Nakagawa, Y Kameda, and T Nanya.
Rapid Single-Flux-Quantum Dual-Rail Logic for Asynchronous Circuits. IEEE
Transactions on Applied Superconductivity, 7(2):2705–2708, 1997.

[32] Rajit Manohar. ACT Hardware Description Language Documentation. https:
//avlsi.csl.yale.edu/act, 2018.

[33] Rajit Manohar. ACT Tools. https://github.com/asyncvlsi/, 2018.

[34] Rajit Manohar. The CHP sublanguage. https://avlsi.csl.yale.edu/act/

doku.php?id=language:langs:chp, 2023.

[35] Rajit Manohar. The PRS sublanguage. https://avlsi.csl.yale.edu/act/

doku.php?id=language:langs:prs, 2023.

[36] Rajit Manohar. The Dataflow sublanguage. https://avlsi.csl.yale.edu/

act/doku.php?id=language:langs:dflow, 2023.

[37] Rajit Manohar. The SPEC sublanguage. https://avlsi.csl.yale.edu/act/

doku.php?id=language:langs:spec, 2024. Timing Constraints and Directives.

[38] Rajit Manohar and Yoram Moses. Timed Signalling Processes. In 2023
28th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 10–19, 2023.



165

[39] Alain J Martin. Compiling Communicating Processes into Delay-Insensitive
VLSI Circuits. Distributed computing, 1:226–234, 1986.

[40] Alain J Martin. Formal Program Transformations for VLSI Circuit Synthesis.
In Edsger W. Dijkstra, editor, Formal Development Programs and Proofs, pages
59–80. Addison Wesley, 1989.

[41] Alain J Martin. Programming in VLSI: From Communicating Processes to Delay-
Insensitive Circuits. In C. A. R. Hoare, editor, Developments in Concurrency
and Communication. Addison Wesley, 1990.

[42] Alain J Martin. Synthesis of Asynchronous VLSI Circuits. California Institute
of Technology, Computer Science Department, 1993.

[43] Swetha Mettala Gilla. Silicon Compilation and Test for Dataflow Implementa-
tions in GasP and Click. PhD thesis, Portland State University, 2018.

[44] Mika Nystroem. Asynchronous Pulse Logic. PhD thesis, California Institute of
Technology, Pasadena, California, US, 2001.

[45] Heechun Park and Taewhan Kim. Hybrid Asynchronous Circuit Generation
Amenable to Conventional EDA Flow. Integration, 64:29–39, 2019.

[46] Hoon Park. Formal Modeling and Verification of Delay-Insensitive Circuits. PhD
thesis, Portland State University, 2015.

[47] Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, and Ivan Sutherland.
Modular Timing Constraints for Delay-Insensitive Systems. Journal of Computer
Science and Technology, 31:77–106, 2016.

[48] Priyadarsan Patra, Stanislav Polonsky, and Donald S Fussell. Delay Insensitive
Logic for RSFQ Superconductor Technology. In Proceedings Third International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
42–53. IEEE, 1997.

[49] Ad Peeters. Single-Rail Handshake Circuits. PhD thesis, Technische Universiteit
Eindhoven, The Netherlands, 1996.

[50] Ad Peeters, Frank Te Beest, Mark De Wit, and Willem Mallon. Click Elements:
An Implementation Style for Data-Driven Compilation. In 2010 IEEE Sympo-
sium on Asynchronous Circuits and Systems, pages 3–14. IEEE, 2010.

[51] Luis A. Plana. Contributions to the Design of Asynchronous Macromodular
Systems. PhD thesis, Columbia University, New York, United States, 1998.



166

[52] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: A Static Data
Flow Structure Editing, Visualisation and Analysis Tool. In Jetty Kleijn and
Alex Yakovlev, editors, Petri Nets and Other Models of Concurrency – ICATPN
2007, pages 505–514, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[53] Marly Roncken. Partial Scan Test for Asynchronous Circuits illustrated on a
DCC Error Corrector. In Proceedings of 1994 IEEE Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 247–256, 1994.

[54] Marly Roncken. Defect-oriented Testability for asynchronous ICs. Proceedings
of the IEEE, 87(2):363–375, 1999.

[55] Marly Roncken, Emile Aarts, and Wim Verhaegh. Optimal Scan for Pipelined
Testing: An Asynchronous Foundation. In Proceedings International Test Con-
ference 1996. Test and Design Validity, pages 215–224, 1996.

[56] Marly Roncken and Eric Bruls. Test Quality of Asynchronous Circuits: A Defect-
Oriented Evaluation. In Proceedings International Test Conference 1996. Test
and Design Validity, pages 205–214. IEEE, 1996.

[57] Marly Roncken, Ebelechukwu Esimai, Vivek Ramanathan, Warren A Hunt, and
Ivan Sutherland. State Access for RSFQ Test and Analysis. IEEE Transactions
on Applied Superconductivity, 33(5):1–7, 2023.

[58] Marly Roncken, Ebelechukwu Esimai, and Ivan Sutherland. Async 2022 summer
school: Links and Joints: behavioral design. https://avlsi.csl.yale.edu/

act/lib/exe/fetch.php?media=summer2022:05_linkjoint1.pdf, 2022.

[59] Marly Roncken, Ebelechukwu Esimai, and Ivan Sutherland. Async
2022 summer school: Links and Joints: gate-level design. https:

//avlsi.csl.yale.edu/act/lib/exe/fetch.php?media=summer2022:

11_linkjoint_part2_async_summerschool_2022_handout_4pp.pdf, 2022.

[60] Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni, Chris
Cowan, and Ivan Sutherland. Naturalized Communication and Testing. In
2015 21st IEEE International Symposium on Asynchronous Circuits and Sys-
tems, pages 77–84. IEEE, 2015.

[61] Marly Roncken and Ivan Sutherland. Design and Test of High-Speed Asyn-
chronous Circuits. In J Di and SC Smith, editors, Asynchronous Circuit Appli-
cations, pages 113–171. Inst. Eng. Technol.(IET), 2020.

[62] Marly Roncken, Ivan Sutherland, Chris Chen, Yong Hei, Warren Hunt, Cuong
Chau, Swetha Mettala Gilla, Hoon Park, Xiaoyu Song, Anping He, and Hong
Chen. How to think about self-timed systems. In 2017 51st Asilomar Conference
on Signals, Systems, and Computers, pages 1597–1604. IEEE, 2017.



167

[63] Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai. Micropipelines
united. In We’re going to Need a Bigger Computer - Essays dedicated to Steve
Furber on the occasion of his retirement. At Last. University of Manchester Press
Unit, 2024.

[64] Feng Shi. Simulating and Testing Asynchronous Circuits. PhD thesis, Yale
University, United States, 2007.

[65] Montek Singh and Steven M Nowick. MOUSETRAP: High-Speed Transition-
Signaling Asynchronous Pipelines. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, 15(6):684–698, 2007.

[66] Jens Sparsø. Introduction to Asynchronous Circuit Design. DTU Compute,
Technical University of Denmark, 2020.

[67] Ken S Stevens, Ran Ginosar, and Shai Rotem. Relative Timing. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 11(1):129–140, 2003.

[68] Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proceed-
ings Seventh International Symposium on Asynchronous Circuits and Systems.
ASYNC 2001, pages 46–53. IEEE, 2001.

[69] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, 1989.

[70] John Teifel and Rajit Manohar. Static Tokens: Using Dataflow to Automate
Concurrent Pipeline Synthesis. In Proceedings of the 10th International Sympo-
sium on Asynchronous Circuits and Systems, 2004., pages 17–27. IEEE, 2004.

[71] CH Van Berkel, Mark B Josephs, and Steven M Nowick. Applications of Asyn-
chronous Circuits. Proceedings of the IEEE, 87(2):223–233, 1999.

[72] Kees van Berkel. Handshake Circuits: an Intermediary between Communicating
Processes and VLSI. PhD thesis, Technical University Eindhoven, The Nether-
lands, 1992.

[73] Kees Van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken, Frits Schalij,
and Ad Peeters. Asynchronous Circuits for Low Power: A DCC Error Corrector.
IEEE Design & Test of Computers, 11(2):22–32, 1994.

[74] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij.
The VLSI-programming language Tangram and its Translation into Handshake
Circuits. In Proceedings of the European Conference on Design Automation.,
pages 384–389. IEEE, 1991.



168

[75] Zhao Wang, Xiao He, and Carl M. Sechen. TonyChopper: A desynchroniza-
tion ackage. In 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 446–453, 2014.

[76] Stephen Williams and the Icarus Verilog Team. Icarus Verilog. http://

iverilog.icarus.com/, 2023. Version 11.0.

[77] Ted E Williams, Mark Horowitz, RL Alverson, and TS Yang. A Self-Timed
Chip for Division. In Stanford Conference on Advanced Research in VLSI, pages
75–96, 1987.

[78] Hui Wu, Weijia Chen, Zhe Su, Shaojun Wei, Anping He, and Hong Chen. A
Method to Transform Synchronous Pipeline Circuits to Bundled-Data Asyn-
chronous Circuits using Commercial EDA Tools. In 2019 IEEE International
Conference on Electron Devices and Solid-State Circuits (EDSSC), pages 1–2,
2019.

[79] Steffen Zeidler. Enabling Functional Tests of Asynchronous Circuits using a Test
Processor Solution. PhD thesis, BTU Cottbus-Senftenberg, 2013.
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Appendix A: Test Setup for Ring2 in Chapter 7

A.1 ACTSIM Simulation Script for Ring2

1 echo "BEGIN SIMULATION"

2 #

3 watch scan_Ah [0] scan_Ah [1]

4 watch scan_Bh [0] scan_Bh [1]

5 watch scan_AmyW [0][0] scan_AmyW [0][1] scan_AmyW [0][2]

6 watch scan_AmyW [1][0] scan_AmyW [1][1] scan_AmyW [1][2]

7 watch scan_en_data

8 watch scan_en_control [0] scan_en_control [1]

9 watch start go[0] go[1]

10 watch J[0]. fire J[1]. fire

11 watch J[0]. ready2go J[1]. ready2go

12 watch L[0]. A_me L[1]. A_me

13 watch L[0]. B_me L[1]. B_me

14 watch L[0]. B_myR [0] L[0]. B_myR [1] L[0]. B_myR [2]

15 watch L[1]. B_myR [0] L[1]. B_myR [1] L[1]. B_myR [2]

16 watch L[0]. req L[0]. ack

17 watch L[1]. req L[1]. ack

18 #

19 vcd_start ring2_output.vcd

20 mode reset

21 #

22 echo "BEGIN INITIALIZE :"

23 echo "disable Joints and reset scan"

24 set start 0

25 set go[0] 0

26 set go[1] 0

27 set scan_en_data 0

28 set scan_en_control [0] 0

29 set scan_en_control [1] 0

30 cycle

31 #

32 echo "go-s now have the arbiter and J[i].fire=0, i=0..1"

33 echo "so it’s OK to make start =1 from now on and to

proceed with scan"

34 #

35 set start 1
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36 set scan_en_data 1

37 set scan_en_control [0] 1

38 set scan_en_control [1] 1

39 cycle

40 #

41 echo "CONTINUE TO INITIALIZE :"

42 echo "make L[0] FULL with data [2:0]=001 , L[1] EMPTY"

43 #

44 set scan_Ah [0] 0

45 set scan_Bh [0] 1

46 set scan_AmyW [0][0] 1

47 set scan_AmyW [0][1] 0

48 set scan_AmyW [0][2] 0

49 #

50 set scan_Ah [1] 0

51 set scan_Bh [1] 0

52 cycle

53 #

54 echo "done with scanning - reset scan_en_data and

scan_en_control"

55 set scan_en_data 0

56 set scan_en_control [0] 0

57 set scan_en_control [1] 0

58 cycle

59 mode run

60 #

61 echo "END INITIALIZE"

62 echo "check that L[0]. A_me=0, L[0]. B_me=1, L[0]. B_myR

[2:0]=001"

63 echo "check that L[1]. A_me=1, L[1]. B_me =0"

64 #

65 echo "START RUN"

66 set go[0] 1

67 set go[1] 1

68 advance 200

69 echo "STOP RUN: disable J[0] after advancing 200 time

steps and peter out"

70 set go[0] 0

71 cycle

72 echo "END RUN"

73 echo "check that L[0]. A_me=0, L[0]. B_me =1"

74 echo "check that L[1]. A_me=1, L[1]. B_me =0"

75 echo "check that data L[0]. B_myR [2:0] to L[1]. B_myR [2:0]"

76 echo "and data the other way shift right each action"

77 #
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78 echo "END SIMULATION"

79 #

80 vcd_stop

A.2 Simulation Output from ACTSIM

1 BEGIN SIMULATION

2 BEGIN INITIALIZE:

3 disable Joints and reset scan

4 [ 0] <[env]> start := 0

5 [ 0] <[env]> go[0] := 0

6 [ 0] <[env]> go[1] := 0

7 [ 0] <[env]> scan_en_data := 0

8 [ 0] <[env]> scan_en_control [0] := 0

9 [ 0] <[env]> scan_en_control [1] := 0

10 [ 10] <J[1]. mrgo_1 > J[1]. fire := 0

11 [ 10] <J[0]. mrgo_1 > J[0]. fire := 0

12 go -s now have the arbiter and J[i].fire=0, i=0..1

13 so it’s OK to make start=1 from now on and to proceed with

scan

14 [ 10] <[env]> start := 1

15 [ 10] <[env]> scan_en_data := 1

16 [ 10] <[env]> scan_en_control [0] := 1

17 [ 10] <[env]> scan_en_control [1] := 1

18 CONTINUE TO INITIALIZE:

19 make L[0] FULL with data [2:0]=001 , L[1] EMPTY

20 [ 10] <[env]> scan_Ah [0] := 0

21 [ 10] <[env]> scan_Bh [0] := 1

22 [ 10] <[env]> scan_AmyW [0][0] := 1

23 [ 10] <[env]> scan_AmyW [0][1] := 0

24 [ 10] <[env]> scan_AmyW [0][2] := 0

25 [ 10] <[env]> scan_Ah [1] := 0

26 [ 10] <[env]> scan_Bh [1] := 0

27 [ 20] <L[0]. sFFA_req.sffHI_1 > L[0]. req

:= 0

28 [ 20] <L[1]. sFFB_ack.sffHI_1 > L[1]. ack

:= 0

29 [ 20] <L[0]. slatch_0 > L[0]. B_myR [0] := 1

30 [ 20] <L[1]. sFFA_req.sffHI_1 > L[1]. req

:= 0

31 [ 20] <L[0]. sFFB_ack.sffHI_1 > L[0]. ack

:= 1
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32 [ 20] <L[0]. slatch_2 > L[0]. B_myR [2] := 0

33 [ 20] <L[0]. slatch_1 > L[0]. B_myR [1] := 0

34 [ 30] <L[0].xorB > L[0]. B_me := 1

35 [ 30] <L[0]. xnorA > L[0]. A_me := 0

36 [ 30] <L[1].xorB > L[1]. B_me := 0

37 [ 30] <L[1]. xnorA > L[1]. A_me := 1

38 [ 40] <J[0]. and2_1 > J[0]. ready2go := 1

39 [ 40] <J[1]. and2_1 > J[1]. ready2go := 0

40 done with scanning - reset scan_en_data and

scan_en_control

41 [ 40] <[env]> scan_en_data := 0

42 [ 40] <[env]> scan_en_control [0] := 0

43 [ 40] <[env]> scan_en_control [1] := 0

44 END INITIALIZE

45 check that L[0]. A_me=0, L[0]. B_me=1, L[0]. B_myR [2:0]=001

46 check that L[1]. A_me=1, L[1]. B_me=0

47 START RUN

48 [ 40] <[env]> go[0] := 1

49 [ 40] <[env]> go[1] := 1

50 [ 50] <J[0]. mrgo_1 > J[0]. fire := 1

51 [ 60] <L[0]. sFFB_ack.sffHI_1 > L[0]. ack

:= 0

52 [ 60] <L[1]. slatch_2 > L[1]. B_myR [2] := 0

53 [ 60] <L[1]. sFFA_req.sffHI_1 > L[1]. req

:= 1

54 [ 60] <L[1]. slatch_0 > L[1]. B_myR [0] := 0

55 [ 60] <L[1]. slatch_1 > L[1]. B_myR [1] := 1

56 [ 70] <L[1].xorB > L[1]. B_me := 1

57 [ 70] <L[1]. xnorA > L[1]. A_me := 0

58 [ 70] <L[0]. xnorA > L[0]. A_me := 1

59 [ 70] <L[0].xorB > L[0]. B_me := 0

60 [ 80] <J[0]. and2_1 > J[0]. ready2go := 0

61 [ 80] <J[1]. and2_1 > J[1]. ready2go := 1

62 [ 90] <J[0]. mrgo_1 > J[0]. fire := 0

63 [ 90] <J[1]. mrgo_1 > J[1]. fire := 1

64 [ 100] <L[1]. sFFB_ack.sffHI_1 > L[1]. ack

:= 1

65 [ 100] <L[0]. slatch_2 > L[0]. B_myR [2] := 1

66 [ 100] <L[0]. slatch_0 > L[0]. B_myR [0] := 0

67 [ 100] <L[0]. sFFA_req.sffHI_1 > L[0]. req

:= 1

68 [ 110] <L[1].xorB > L[1]. B_me := 0

69 [ 110] <L[0].xorB > L[0]. B_me := 1

70 [ 110] <L[0]. xnorA > L[0]. A_me := 0

71 [ 110] <L[1]. xnorA > L[1]. A_me := 1
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72 [ 120] <J[1]. and2_1 > J[1]. ready2go := 0

73 [ 120] <J[0]. and2_1 > J[0]. ready2go := 1

74 [ 130] <J[1]. mrgo_1 > J[1]. fire := 0

75 [ 130] <J[0]. mrgo_1 > J[0]. fire := 1

76 [ 140] <L[1]. slatch_1 > L[1]. B_myR [1] := 0

77 [ 140] <L[1]. sFFA_req.sffHI_1 > L[1]. req

:= 0

78 [ 140] <L[1]. slatch_0 > L[1]. B_myR [0] := 1

79 [ 140] <L[0]. sFFB_ack.sffHI_1 > L[0]. ack

:= 1

80 [ 150] <L[0].xorB > L[0]. B_me := 0

81 [ 150] <L[0]. xnorA > L[0]. A_me := 1

82 [ 150] <L[1]. xnorA > L[1]. A_me := 0

83 [ 150] <L[1].xorB > L[1]. B_me := 1

84 [ 160] <J[0]. and2_1 > J[0]. ready2go := 0

85 [ 160] <J[1]. and2_1 > J[1]. ready2go := 1

86 [ 170] <J[0]. mrgo_1 > J[0]. fire := 0

87 [ 170] <J[1]. mrgo_1 > J[1]. fire := 1

88 [ 180] <L[1]. sFFB_ack.sffHI_1 > L[1]. ack

:= 0

89 [ 180] <L[0]. slatch_2 > L[0]. B_myR [2] := 0

90 [ 180] <L[0]. sFFA_req.sffHI_1 > L[0]. req

:= 0

91 [ 180] <L[0]. slatch_1 > L[0]. B_myR [1] := 1

92 [ 190] <L[0].xorB > L[0]. B_me := 1

93 [ 190] <L[0]. xnorA > L[0]. A_me := 0

94 [ 190] <L[1]. xnorA > L[1]. A_me := 1

95 [ 190] <L[1].xorB > L[1]. B_me := 0

96 [ 200] <J[1]. and2_1 > J[1]. ready2go := 0

97 [ 200] <J[0]. and2_1 > J[0]. ready2go := 1

98 [ 210] <J[1]. mrgo_1 > J[1]. fire := 0

99 [ 210] <J[0]. mrgo_1 > J[0]. fire := 1

100 [ 220] <L[1]. slatch_2 > L[1]. B_myR [2] := 1

101 [ 220] <L[1]. sFFA_req.sffHI_1 > L[1]. req

:= 1

102 [ 220] <L[1]. slatch_0 > L[1]. B_myR [0] := 0

103 [ 220] <L[0]. sFFB_ack.sffHI_1 > L[0]. ack

:= 0

104 [ 230] <L[0].xorB > L[0]. B_me := 0

105 [ 230] <L[0]. xnorA > L[0]. A_me := 1

106 [ 230] <L[1]. xnorA > L[1]. A_me := 0

107 [ 230] <L[1].xorB > L[1]. B_me := 1

108 [ 240] <J[0]. and2_1 > J[0]. ready2go := 0

109 [ 240] <J[1]. and2_1 > J[1]. ready2go := 1
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110 STOP RUN: disable J[0] after advancing 200 time steps and

peter out

111 [ 240] <[env]> go[0] := 0

112 [ 250] <J[0]. mrgo_1 > J[0]. fire := 0

113 [ 250] <J[1]. mrgo_1 > J[1]. fire := 1

114 [ 260] <L[1]. sFFB_ack.sffHI_1 > L[1]. ack

:= 1

115 [ 260] <L[0]. slatch_1 > L[0]. B_myR [1] := 0

116 [ 260] <L[0]. slatch_0 > L[0]. B_myR [0] := 1

117 [ 260] <L[0]. sFFA_req.sffHI_1 > L[0]. req

:= 1

118 [ 270] <L[1].xorB > L[1]. B_me := 0

119 [ 270] <L[0].xorB > L[0]. B_me := 1

120 [ 270] <L[0]. xnorA > L[0]. A_me := 0

121 [ 270] <L[1]. xnorA > L[1]. A_me := 1

122 [ 280] <J[1]. and2_1 > J[1]. ready2go := 0

123 [ 280] <J[0]. and2_1 > J[0]. ready2go := 1

124 [ 290] <J[1]. mrgo_1 > J[1]. fire := 0

125 END RUN

126 check that L[0]. A_me=0, L[0]. B_me=1

127 check that L[1]. A_me=1, L[1]. B_me=0

128 check that data L[0]. B_myR [2:0] to L[1]. B_myR [2:0]

129 and data the other way shift right each action

130 END SIMULATION



176

Appendix B: Waveforms for Mixed Implementation Ring6.

Figure B.1: Waveforms for Simulations of Mixed Implementation Ring FIFO, Ring6.
They support the functionality of the design in Figure 8.1 and the Canopy graph in
Figure 8.2.
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