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Soft Watch at The Moment of First Explosion (Salvador Dali,1954)

Introduction

Asynchronous Systems
a no global, periodic and common clock
a no global knowledge

but rather:
o local communication, synchronization
o local computation and flow control
o multiple implementation styles
- Handshake protocol, e.g., 2-phase, 4-phase
- Data encoding, e.g., bundled, dual-rail
- Signaling logic, e.g., level, transition, pulse

- Circuit family, e.g., Click, GasP, Set-Reset,
Mousetrap, RSFQ

- Technology, e.g., CMOS, Superconducting
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Focus of Dissertation

Goal 1:

Use circuit-neutral Link-Joint networks
o to embrace the many
- protocols, data encodings, signaling logics
- circuit families and fabrics
o in one design, test, and debug approach

Link-Joint How?
network o hide family differences from interfaces
Embrace the many . .. . .
handshake protocols o facilitate mixing protocol and signaling styles
data storage/coding
circuit families, etc. Beneﬁt-

a clear and uniform design and test interfaces

o flexibility of implementation decisions

o facilitates collaboration and design reuse
Challenge:

o design by hand limits scaling and users
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Focus of Dissertation

Resulting Design-Test Flow: Goal 2:
Ona Embed Link-Joint into an existing flow
o Yale ACT (Asynchronous Circuit Toolkit)
o to increase scaling and users
ACT Program How?

abstraction, composition
behavioral exploration

| Application |
do fic, event-based

| D!

o Shallow embedding as middle layer:

Link-Joint compilation . for free design and test exploration
network ) - independent of ACT
) refinement i
g;‘l’;°s°|‘(’)'r;';f/‘§;$n"é - with full re-use of ACT front and back ends
circuit families, etc. gates + o Circuit-neutral Compilation:
timing

- from algorithmic ACT programs
- to circuit-neutral Link-Joint networks
o Targeted Refinement (stepwise):

ACT Circuit

timing analysis, logical effort,
technology mapping, layout, etc.

Fabric - from Link-Joint networks
integrated circuit (CMOS/SFQ) ) )
- to ACT circuits
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= Links and Joints

April 25,2024

Outline
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Links and Joints

Link-Joint Model:

= circuit-neutral model

= embraces and combines multiple
o protocols, data encodings, signaling logics
o circuit families and fabrics

= communication
= state storage GO
= state test access

LINKs

Link-Joint network:
= alternates Links and Joints

Link:
JOINT = shares and stores state

= computation = connects two Joints

= flow control Joint:

= go-nogo test control .
go-nog = acts based on Link states

= changes states in (one or more) Links

Built-in initialization and test via:
= external access to Link states
= external go-control of Joint actions
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Links and Joints: protocol and model

LINK

4P| turn |datas|datag. [€P

Protocol:

= follows good conversation practice
o Joints take turns updating the Link state
o Link tracks whose turn it is

port A port B

JOINT
ports guarded commands that
= execute atomically
= in mutual exclusion
= when guard is valid

April 25, 2024

Link:

= has two ports to attach Joints: A, B

= has three state variables
o turn points to A if A has the turn, else to B
o datay,g stores >0 data bits from Ato B
o datag,, stores >0 data bits from B to A

Joint:
= Joint port connects to Link port A or B
= port must have turn to change Link state
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Links and Joints: protocol and model

Joint COPY Link L1

Link L2

L1.turn ==

in t
7\> ou—Aﬂil—g myturn(in)

myturn(out)

L2.turn ==

(a) go myW(out) L2.dataAtoB
myturn(in, out) A go myR(in) L1.dataAtoB
- yourturn(in) | Ll.turn := A
myW (out) == myR(in) ; yourturn(out) L2.turn := B
ourturn(in, out
(b) y (in, out) ©

* terminology:
« myturn(p) : TRUE if p has permission to change the Link state

Outline

* myR(p) : Link data that p can read
* myW(p) : Link data that p can write
 yourturn(p) : relinquish permission
* go : external signal for initialization and test
* atomicity:
Link states update all at once when the command terminates
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Flexible Compilation
Design-Test Flow: Strategy:
Ona o Syntax-directed translation
Application | o based on ACT (Asynchronous Circuit Toolkit)
domain-specific, event-based compiler
ACT Program

Source: ACT programs
- data-flow parts in ACT sub-language:
Link-Joint @Comp"aﬂon dataflow
network - control-flow parts in ACT sub-language:
5;?:;3;255?:; Communicating Hardware Processes

circuit families, etc.

abstraction, composition
behavioral exploration

Target: circuit-neutral Link-Joint networks

ACT Circuit
timing analysis, logical effort, Cha“enge:
technology mapping, layout, etc. .
o not compiler
Fabric

, - like Philips, Manchester, Caltech, Yale
integrated circuit (CMOS/SFQ)

o but Link-Joint library elements compiled into
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= Design
- Compilation
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Outline
= Design

- Compilation: CHP example
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Compilation: CHP

onebuf

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[ L?x ; R!x ]
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Compilation: CHP

startup

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[ L?x ; RIx ]

}

defproc

FIFO2_controlflow
(chan?(int) L;
chan!(int) R)

onebuf b0, bi;

Compilation: CHP

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[L?x 5 Rix ]

¥

defproc

FIFO2_controlflow
(chan?(int) L;
chan!(int) R)

{
onebuf b@, bl;
bo.L=L ;
b@.R=b1.L ;
b1l.R=R

April 25, 2024
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be.L=L ;
be.R=bl.L ;
b1l.R=R
}
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Outline
= Design

- Compilation: Library elements
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Compilation: library elements

Variable icon:

r

Variable control flow:

Variable basic Link-Joint network:

go r

1 internal memory

Variable guarded command specification:
= myturn(r) A myturn(x) A go —
myW (r) := myR(x); yourturn(r)

= myturn(w) A myturn(x) A go -
myW (x) := myR(w) ; yourturn(w)

Compilation: library elements

Transfer icon:

out

Transfer control flow:

April 25, 2024

Transfer basic Link-Joint network:

go out

internal finite state machine

Transfer guarded command specification:

= myturn(c, in, out, x)A go A myR(x)[0] —»
yourturn(in, x)

= myturn(c, in, out, x)a go AmyR(x)[1] >
myW (out): = myR(in) ; yourturn(out,x)

= myturn(c, in, out,x)a go A myR(x)[2] >
yourturn(c, x)
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= Design
- Refinement
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Flexible Refinement

Design-Test Flow:
Ona

Application

t-b:

ACT Program

abstraction, composition
behavioral exploration

Link-Joint

protocol refinement
data storage/coding
circuit families, etc.

ACT Circuit

timing analysis, logical effort,
technology mapping, layout, etc.

Fabric
integrated circuit (CMOS/SFQ)

April 25, 2024

Strategy:

o stepwise decisions for design and test
Source:

o circuit-neutral Link-Joint networks
Target:

o Link-Joint networks

o gate-level circuits

network .
@refinement Cha”enge'

o preserve relation to program
Link-Joint Network Refinement examples:

- protocol e.g., 2-phase and 4-phase

- signaling e.g., level, transition, and pulse logic

- data encodings e.g., bundled and dual-rail data

- data storage e.g., where and where not

- test e.g., throughput counters, variables to control and observe
- selection e.g., arbitrated, priority-ordered, round-robin
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Outline

= Design

- Refinement: Data storage refinement example

slide 20
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Refinement: to store data — or not

ACT program fragments:
- chp{..p?x1!y1l..}
- chp{..ply2?x2..}
- bidirectional channel: p
- variables: x1, x2, y1, y2

Path behavior:
- Link stores data for later part
- VAR y1 stores data for p

Goal:
« Avoid data storage in-between ¢

ply,?x%y

Refinement: to store data — or not

ACT program fragments:
«chp{..p?x1lyl..}
- chp{..ply2?x2..}
- bidirectional channel: p
- variables: x1, x2, y1, y2

Path behavior:
- Link stores data for later part
- VAR y1 stores data for p

Goal:
- Avoid data storage in-between
Solution 1:
- keep internal storage (VAR)
- store data FROM chan I:l
- no storage otherwise  [5<] Ply,?Xy
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Outline
= Design
- Refinement: Selection implementation refinement example
slide 23
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Refinement: which selection?

Non-deterministic selection:

Implementation 1: with arbitration

guarded command specification: guarded command specification:
myturn(c, g, S1. - Sm, X)A go — myturn(c, sg, S1.. Sm, X)A go —
myR (x)[0] = yourturn(g, x) myR(x)[0] - yourturn(sg, x)
myR (x)[1] AmyR(g)[i] = yourturn(sj+1,x) myR(x)[1] AmyR(sg)[i] = yourturn(si41,x)
myR (x)[2] = yourturn(c, x) myR (x)[2] = yourturn(c, x)
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Refinement: which selection?

Implementation 2: with round-robin

guarded command specification:
myturn(c, g,7,S1..Sm, X)A go —
myR (x)[0] = yourturn(g, x)
myR(x)[1] AmyR(r)[k] A g[k] = yourturn(syg1,7,%)
myR(x)[1] AmyR(r)[k] A (g[0] V..V g[m —1]) A =g[k] = yourturn(r)
myR (x)[2] - yourturn(c, x)
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Outline

= Design

- Refinement: Mapping to circuits
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Refinement: which circuit family?

Click Link:
2-phase + bundled data

with data storage: without data storage:
myturn(A) <_°G(__)D_> myturn(8) myturn(A) <—0G(_‘—)D—> myturn(8)
req ack
flipFF flipFF
<] > turn turn
AN AN AN AN
yourturn(A) >y | yourturn(B) ; | yourturn(A) > L« yourturn(B)
. . . .
myR(A) 7m 7 myR(B) myR(A) 7m X 7 myR(B)
myW(A) myW(B) myW(A) /’ /' myW(B)
n m
data data
datas dataga . AtoB BtoA
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Refinement: which circuit family?

GasP Link:
2-phase + bundled data

Set-Reset Link:

2-phase + bundled data
myturn(A) <—o<} - myturn(8)

1
myturn(A) (—oq——> mytun(8) |
DHKL VDD vop y DLKH state
Y sl lz turn y (A) ESRE )
o

[; turn
vss Vvss

yourturn(A)
myR(A) /'m ’n myR(B)
myW(A) myW(B) dataAtoB dataBtoA i
i datayp datage !
! ]
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Refinement: which protocol?

COPY Joint:

2-phase protocol

COPY Joint:

4-phase protocol

- ' 1
| myturn(in) myturn(out) } | myturn(in) myturn(out) |
i Pl i
i GO P GO i
H - ready2go |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| yourturn(in) yourturn(out) } | yourturn(in) yourturn(out) }
i P i
1 1 1 1
i P i
1 myR(in) myWout) 1| myR(in) myW(out) |
L b L b
i I B o
VPVt [N T
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Outline

= Test and Debug
- Uniform Test Approach
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Test and Debug

defproc FIFO(){
chan(int<8>) bl; chan(int<8>) b2;
chan(int<8>) b3; ...
dataflow { bl -> b2; b2 -> b3;
b3 -> ba;
}
}

To test algorithmic programs

* so many lines — so few exports

use

* interactive code debug

* to read/write states and set breakpoints
« for single- and multi-step tests

To test Link-Joint networks

* so many Links, Joints - so few external ports
use

« Link variables and Joint go signals

* to access states and enable/disable actions
« for single-step and multi-step tests

To test hardware
* so many wires — so few pins

2| use

* scan
 to read/write states and go
* with a small number of pins
* MrGO to permit and prohibit actions
« for single- and multi-step tests
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Test and Debug

Existing:

o 1-to-1 relation between Link-Joint states/go and circuit-level scan
Goal:

o Extend this relation to the ACT program level

o Develop tests at the program level, and translate down

Outline

= Test and Debug

- Uniform Test Approach: Structural Test example
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Structural test: e
Greatest Common Divisor ‘L Link-Joint network

Program

defproc gcd2
(chan?(int) X,Y; chan!(int) 0)
{
int x, y;
chp {
*[pcl: X?x, Y?y;
pc2: *[y > x ->
log(“Guard 1”);
pc3: y 1=y - X
[Ix>y >
log(“Guard 27);
pcd: x 1= X -y
IH
log(“Out of loop”);
pc5: 0O!x
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Structural test: Greatest Common Divisor
Simulated with ACTSIM,

Program a language simulator in the Yale ACT tool suite
defproc gcd2 ACTSIM Scr|pt ACTSIM Output
(chan?(int) X,Y; chan!(int) 0) 1. watch x y [ e] <[env]> y := 25 (x19)
{. 2. breakpt x [ @] <[env]> x := 7 (@x7)

e s 3. breakpt y | [NOIIGSIIGUSRANINEHOSER
chp

f[pcl: Xx, YIy; 4. goto pc2 [18] <> y := 18 (@x12)

pe2t *[y > x -> Z- se: y ;5 [18] <> *** breakpoint y
« »y. set x [10] <[env]> y := 7 (@x7)
log(“Guard 1”); 7. cycle
pc3: y i=y - x 8. goto pc2 [10] <[env]> x := 25 (@x19)
[1x>y - 9. sety7 [10] <> Guard 2 chosen
log(“Guard 2”); 10. set x 25 [20] <> x := 18 (@x12)
pc4: x 1= X -y 11. cycle [20] <> *** breakpoint x
1 12. cycle [30] <> Guard 2 chosen
« Y .
log(“Out of loop”); 13. goto pc2 [40] <> x := 11 (OxB)
. 0!
pcs: Olx 14.sety 7 [40] <> *** breakpoint x
] 15. set x 7 [40] <[env]> x := 7 (Ox7)
! 16 eycle (401 & out of loop
}
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Structural test: Greatest Common Divisor ()

Verilog testbench

1. initial begin
2. $dumpvars();

3. // Guard 1: y > x

4. // Disable all Joint actions.

5. go[18:1] = {18{1'be}}; #10

6. // Goto pc2, which is L13B.

7. L13.reg_Amyturn = 0;

8. L13.reg_Bmyturn = 1;

9. // Set VAR y & VAR x to guard 1 true

10. J1.st_ABin = 25; // Var y
11. J4.st_ABin = 7; // Var x

12. // Enable Joints for guard selection Y —
13. go[15] = 1'bl; // SEL J15

14. go[18] = 1'bl; // E J1@

15. go[5:4] = 2'bl1; // RMUX x J5, VAR x J4
16. go[2:1] = 2'b11; // RMUX y J2, VAR y J1

17. // Run long enough
18. #220
19. // Check selection of statement 1 at L17B.
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Connecting test at all

abstraction levels

Outline

= Showcase

- Mixing Protocols and Families
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Control-Observation Program Link-Joint network ) .
e am——- Hand over key information
. .reg_Amyturn = 0;
start point goto pc2 L13.reg_Bmyturn = 1;
— . o start:
start values sety 25 J1.st_ABin = 25; .
Guard setx 7 Jd.st ABin=7; - where does the operation start
1 A
stop point breakpt y Jn - what are the (key) initial values
stop Guard1is | iatement 1 at L17A a stop:
observation chosen’
) L13.reg_Amytum = 0; - where does the operation stop
start point goto pc2 113 regiBmylurn - 1f
Bk . - what are the (key) end values
start values sety 7 J1.st_ ABin=7;
Guard setx 25 J4.st_ABin = 25;
2
stop point breakpt x J13 Expand Va|ueS Iater
stop “Guard 2 is
observation chosen” statement 2 at L22A o start-stop values:
start point goto pc2 Hg:zg—gmﬁ:: o - come from test pattern generation
sety 7 I SUABIn=T: - based on hardware fault models
| startvalues setx 7 J4.StABIn=7: :
Exit S : o can be detailed later
top point breakpt 7
Stop poin reakptx . for hardware fault coverage
t . .
obs;r?lgtion Out of loop startup at L13A
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Mixing Circuit Families
| 1 1 I
| LINK I JOINT 1 LINK |
| Set-Reset COPY I Click 1
| 2-phase level I 2phase level | 2-phase level :
1
le « g myturn(in) myturn(out) y 1
<€ >
1 myturn(a) 1 1 ack my(um(B)I
I 1 1 1
I 1 | |
1 1 | 1
| yourturn(A) 1 1 1
& S.
| T€ - > 1
1 Iyourlurn(ln) yourturn(ou yourturn(®) |
| 1 1
! ! myR(B) !
| myw(A) L o 1 MR myW(outy Y 1
I W T 1
| 1 1
1A dataeg B | 1A datapes B 1
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Mixing Circuit Families

LINK
Micropipeline
transition signaling
yourturn(A)

myW(A)

JOINT
COPY
transition
signaling

LINK

Mousetrap
transition signaling

Mixing Protocols

LINK

LINK

yourturn(B)

(_—(—

GO_ "
.Mr a
[T\ J
tin tout
GO L
- yourturn(A)|
~1
myW(A)
7 L

1

1 T
4-2-phase Set-Reset | COPY 2-4-phase Click

1

myR(B) myR(B)
n
myturn(A) myturn(B) myturn(A) myturn(B);
A B A B
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Mixing Signaling Logics
1 1
LINK JOINT LINK i JOINT !
transition (A) COPY 2-phase level (A) COPY
2-phase level (B) 2-phase level transition (B) transition

April 25, 2024

f
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Outline
= Conclusion, Contributions and Future Work
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Conclusion
“Make it easy to insert asynchrony appropriate for each design part”

Created: Ona

Resulting Design-Test Flow: i
o Design and test flow for asynchronous systems

Ona
z o based on:
| écppllcation N “l . Link-Joint model — as middle layer
\ ) - Yale ACT design flow — above and below

ACT Program 5 G
abstraction, composition

behavioral exploration o embrace the many asynchronous styles

Link-Joint compilation o scale applications and users
network ) Benefits:
X refinement
ot o General and flexible design, test, and debug
circult families, etc. gates + o Supportive of collaboration
timin . . . .
ACT Circuit < Implementation styles investigated include:
timing analysis, logical effort, a 2- and 4-phase protocols
technology mapping, layout, etc.
o bundled and dual-rail data encodings
Fabric " o ’
integrated cireuit (CMOS/SFQ) o level- and pulse- and transition- signaling logics
o Click, GasP, Set-Reset, Mousetrap, Micropipelines
and Superconducting families
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Future Work

+ Deep embedding of Links and Joints into Yale’s Asynchronous
Circuit Toolkit (ACT)

+ Compiler optimizations for Communicating Hardware Processes

(CHP) programs (work in progress at Yale)
+ Comprehensive test extension into hardware test coverage

» Model equivalence between abstraction levels
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My Contributions

U Link-Joint shared variable semantics and Link-Joint port connection

QO Compilation of ACT programs into Link-Joint networks
— Adaption of Yale’'s CHP2PRS compiler to generate Link-Joint networks

QO Implementation of Link-Joint network refinements

0 Unified test and debug translation between abstraction levels
— Extension of existing relation from Links and Joints, and circuit scan to programs
— New commands for ACTSIM: skip-comm, gc-retry, goto

Q Identified that initialization determines active-passive/push-pull protocol settings
— Link variable turn makes old notions for active-passive and push-pull irrelevant
Q Verilog behavioral modules for Links and Joints

— Implementation and validation of Link-Joint networks and their refinements

— Python program to automate generation of the Verilog modules and associated
testbench
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THANK YOU!
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Compilation: library elements

e .. .
myturn(c, ey... ey, x)n go AmyR(x)[0] = myturn(c, sy..smx)A go AmyR(x)[i] = myturn(c, ;.. smx)A go AmyR(x)[0] =
yourturn(ey.. e, x) yourturn(si4q,x) yourturn(sy.. Sy, x)
myturn(c, ey.. ey, X)A go AmyR(x)[1] = myturn(c, sy.. Sy, X)A go AmyR(x)[m] = myturn(c, sy..Sm, X)A go AmyR(x)[1] —
myW(c) = f(myR(ey..en)); yourturn(c, x) yourturn(c, x)
yourturn(c, x)
trunk trunk trunk trunk trunk trunk

Jq x
A
. L b By v by
myturn(b;, trunk, x)a go AmyR(x)[0] = mytwrn(by, trunk, x)a go AmyR(x)[0] = myturn(by, trunk, x)a go AmyR(x)[0] =
yourturn(trunk, x) myW (trunk) = myR (b,); myW (trunk) = myR (b,);
myturn(b;, trunk,x)n go AmyR(x)[1] = yourturn(trunk, x) yourturn(trunk, x)
myw (by) := myR (trunk); myturn(b;, trunk, x)n go AmyR(x)[1] = myturn(b;, trunk,x)a go AmyR(x)[1] =
yourturn(b, x) yourturn(by, x) myw (b;) = myR(trunk);

yourturn(b;, x)
April 25, 2024
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Compilation: library elements

P

S
@ myturn(c,s)a go —

yourturn(s)

\\ evaluate non-probe expressions (get latest values of the variables)
myturn(c, ev,.. evy, epy.. epm, X)A go AmyR(x)[0]
— yourturn(ev,..evy,x)
\\ wait until some guard is TRUE before taking probe snapshots
myturn(c, ey.. e, epy..epm, X)n go AmyR(x)[1] A (F'[1]v..v f'[k])
= yourturn(ep..epy, x)
\\ return stable evaluation results
myturn(c, e,..en, epy..epm, X)n go AmyR(x)[2]
- myW(c) = {f[1)..flk]}; yourturn(c,x)

April 25, 2024

myturn(P,Q)a go =
myW (P) := myR(Q); myW (Q)
yourturn(trunk, x)
#P = {myR(Q), myturn(Q)}
#Q = {myR(P), myturn(P)}

myR(P);

probe

probe

\\ arbitrate for one FSM cycle
myturn(r,x)a go AmyR(x)[0] — yourturn(x)
\\ return stable probe snapshot
myturn(r,x)a go AmyR(x)[1]
- myW (r) = (0 if granty,probe if grantyepe); yourturn(r,x)
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