Design and Test of
Asynchronous Systems using
the Link and Joint model

Dissertation Defense Presentation
April 25, 2024

Ebele Esimai

Asynchronous Research Center
Department Of Computer Science
Portland State University

Acknowledgements

Advisor: Marly Roncken

Committee:
Dr. Mark P. Jones Dr. Andrew Tolmach
Dr. Xiaoyu Song Dr. Gary Delp

Collaborators:

Rajit Manohar, Yale University

Warren Hunt, University of Texas at Austin

Gary Delp and Mayo Clinic Special Purpose Processor Development Group Team
Ilvan Sutherland and Asynchronous Research Center Team

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 1

Soft Watch at The Moment of First Explosion (Salvador Dali,1954)

Introduction

Asynchronous Systems
a no global, periodic and common clock
a no global knowledge

but rather:
o local communication, synchronization
o local computation and flow control
o multiple implementation styles
- Handshake protocol, e.g., 2-phase, 4-phase
- Data encoding, e.g., bundled, dual-rail
- Signaling logic, e.g., level, transition, pulse

- Circuit family, e.g., Click, GasP, Set-Reset,
Mousetrap, RSFQ

- Technology, e.g., CMOS, Superconducting

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 2

Focus of Dissertation

Goal 1:

Use circuit-neutral Link-Joint networks
o to embrace the many
- protocols, data encodings, signaling logics
- circuit families and fabrics
o in one design, test, and debug approach

Link-Joint How?
network o hide family differences from interfaces
Embrace the many
handshake protocols o facilitate mixing protocol and signaling styles
data storage/coding
circuit families, etc. Beneﬁt-

a clear and uniform design and test interfaces

o flexibility of implementation decisions

o facilitates collaboration and design reuse
Challenge:

o design by hand limits scaling and users

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 3

Focus of Dissertation

Resulting Design-Test Flow: Goal 2:
Ona Embed Link-Joint into an existing flow
o Yale ACT (Asynchronous Circuit Toolkit)
o to increase scaling and users
ACT Program How?

abstraction, composition
behavioral exploration

| Application |
do fic, event-based

| D!

o Shallow embedding as middle layer:

Link-Joint compilation . for free design and test exploration
network) - independent of ACT
) refinement i
g;‘l’;°s°|‘(’)'r;';f/‘§;$n"é - with full re-use of ACT front and back ends
circuit families, etc. gates + o Circuit-neutral Compilation:
timing

- from algorithmic ACT programs
- to circuit-neutral Link-Joint networks
o Targeted Refinement (stepwise):

ACT Circuit

timing analysis, logical effort,
technology mapping, layout, etc.

Fabric - from Link-Joint networks
integrated circuit (CMOS/SFQ)))
- to ACT circuits
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 4

= Links and Joints

April 25,2024

Outline

PhD Dissertation Defense, Ebele Esimai slide 5

Links and Joints

Link-Joint Model:

= circuit-neutral model

= embraces and combines multiple
o protocols, data encodings, signaling logics
o circuit families and fabrics

= communication
= state storage GO
= state test access

LINKs

Link-Joint network:
= alternates Links and Joints

Link:
JOINT = shares and stores state

= computation = connects two Joints

= flow control Joint:

= go-nogo test control .
go-nog = acts based on Link states

= changes states in (one or more) Links

Built-in initialization and test via:
= external access to Link states
= external go-control of Joint actions

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 6

Links and Joints: protocol and model

LINK

4P| turn |datas|datag. [€P

Protocol:

= follows good conversation practice
o Joints take turns updating the Link state
o Link tracks whose turn it is

port A port B

JOINT
ports guarded commands that
= execute atomically
= in mutual exclusion
= when guard is valid

April 25, 2024

Link:

= has two ports to attach Joints: A, B

= has three state variables
o turn points to A if A has the turn, else to B
o datay,g stores >0 data bits from Ato B
o datag,, stores >0 data bits from B to A

Joint:
= Joint port connects to Link port A or B
= port must have turn to change Link state

PhD Dissertation Defense, Ebele Esimai slide 7

Links and Joints: protocol and model

Joint COPY Link L1

Link L2

L1.turn ==

in t
7\> ou—Aﬂil—g myturn(in)

myturn(out)

L2.turn ==

(a) go myW(out) L2.dataAtoB
myturn(in, out) A go myR(in) L1.dataAtoB
- yourturn(in) | Ll.turn := A
myW (out) == myR(in) ; yourturn(out) L2.turn := B
ourturn(in, out
(b) y (in, out) ©

* terminology:
« myturn(p) : TRUE if p has permission to change the Link state

Outline

* myR(p) : Link data that p can read
* myW(p) : Link data that p can write
 yourturn(p) : relinquish permission
* go : external signal for initialization and test
* atomicity:
Link states update all at once when the command terminates
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 8
Flexible Compilation
Design-Test Flow: Strategy:
Ona o Syntax-directed translation
Application | o based on ACT (Asynchronous Circuit Toolkit)
domain-specific, event-based compiler
ACT Program

Source: ACT programs
- data-flow parts in ACT sub-language:
Link-Joint @Comp"aﬂon dataflow
network - control-flow parts in ACT sub-language:
5;?:;3;255?:; Communicating Hardware Processes

circuit families, etc.

abstraction, composition
behavioral exploration

Target: circuit-neutral Link-Joint networks

ACT Circuit
timing analysis, logical effort, Cha“enge:
technology mapping, layout, etc. .
o not compiler
Fabric

, - like Philips, Manchester, Caltech, Yale
integrated circuit (CMOS/SFQ)

o but Link-Joint library elements compiled into

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 10

= Design
- Compilation
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 9
Outline
= Design

- Compilation: CHP example

April 25, 2024 PhD Dissertation Defense, Ebele Esimai

slide 11

Compilation: CHP

onebuf

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[L?x ; R!x]

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 12

Compilation: CHP

startup

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[L?x ; RIx]

}

defproc

FIFO2_controlflow
(chan?(int) L;
chan!(int) R)

onebuf b0, bi;

Compilation: CHP

defproc onebuf
(chan?(int) L;
chan!(int) R)
{
int x ;
chp {
*[L?x 5 Rix]

¥

defproc

FIFO2_controlflow
(chan?(int) L;
chan!(int) R)

{
onebuf b@, bl;
bo.L=L ;
b@.R=b1.L ;
b1l.R=R

April 25, 2024

PhD Dissertation Defense, Ebele Esimai slide 14

be.L=L ;
be.R=bl.L ;
b1l.R=R
}
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 13
Outline
= Design

- Compilation: Library elements

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 15

Compilation: library elements

Variable icon:

r

Variable control flow:

Variable basic Link-Joint network:

go r

1 internal memory

Variable guarded command specification:
= myturn(r) A myturn(x) A go —
myW (r) := myR(x); yourturn(r)

= myturn(w) A myturn(x) A go -
myW (x) := myR(w) ; yourturn(w)

Compilation: library elements

Transfer icon:

out

Transfer control flow:

April 25, 2024

Transfer basic Link-Joint network:

go out

internal finite state machine

Transfer guarded command specification:

= myturn(c, in, out, x)A go A myR(x)[0] —»
yourturn(in, x)

= myturn(c, in, out, x)a go AmyR(x)[1] >
myW (out): = myR(in) ; yourturn(out,x)

= myturn(c, in, out,x)a go A myR(x)[2] >
yourturn(c, x)

PhD Dissertation Defense, Ebele Esimai slide 17

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 16
= Design
- Refinement
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 18

Flexible Refinement

Design-Test Flow:
Ona

Application

t-b:

ACT Program

abstraction, composition
behavioral exploration

Link-Joint

protocol refinement
data storage/coding
circuit families, etc.

ACT Circuit

timing analysis, logical effort,
technology mapping, layout, etc.

Fabric
integrated circuit (CMOS/SFQ)

April 25, 2024

Strategy:

o stepwise decisions for design and test
Source:

o circuit-neutral Link-Joint networks
Target:

o Link-Joint networks

o gate-level circuits

network .
@refinement Cha”enge'

o preserve relation to program
Link-Joint Network Refinement examples:

- protocol e.g., 2-phase and 4-phase

- signaling e.g., level, transition, and pulse logic

- data encodings e.g., bundled and dual-rail data

- data storage e.g., where and where not

- test e.g., throughput counters, variables to control and observe
- selection e.g., arbitrated, priority-ordered, round-robin

PhD Dissertation Defense, Ebele Esimai slide 19

Outline

= Design

- Refinement: Data storage refinement example

slide 20

April 25, 2024 PhD Dissertation Defense, Ebele Esimai

Refinement: to store data — or not

ACT program fragments:
- chp{..p?x1!y1l..}
- chp{..ply2?x2..}
- bidirectional channel: p
- variables: x1, x2, y1, y2

Path behavior:
- Link stores data for later part
- VAR y1 stores data for p

Goal:
« Avoid data storage in-between ¢

ply,?x%y

Refinement: to store data — or not

ACT program fragments:
«chp{..p?x1lyl..}
- chp{..ply2?x2..}
- bidirectional channel: p
- variables: x1, x2, y1, y2

Path behavior:
- Link stores data for later part
- VAR y1 stores data for p

Goal:
- Avoid data storage in-between
Solution 1:
- keep internal storage (VAR)
- store data FROM chan I:l
- no storage otherwise [5<] Ply,?Xy

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 21
Outline
= Design
- Refinement: Selection implementation refinement example
slide 23

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 22

April 25, 2024 PhD Dissertation Defense, Ebele Esimai

Refinement: which selection?

Non-deterministic selection:

Implementation 1: with arbitration

guarded command specification: guarded command specification:
myturn(c, g, S1. - Sm, X)A go — myturn(c, sg, S1.. Sm, X)A go —
myR (x)[0] = yourturn(g, x) myR(x)[0] - yourturn(sg, x)
myR (x)[1] AmyR(g)[i] = yourturn(sj+1,x) myR(x)[1] AmyR(sg)[i] = yourturn(si41,x)
myR (x)[2] = yourturn(c, x) myR (x)[2] = yourturn(c, x)

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 24

Refinement: which selection?

Implementation 2: with round-robin

guarded command specification:
myturn(c, g,7,S1..Sm, X)A go —
myR (x)[0] = yourturn(g, x)
myR(x)[1] AmyR(r)[k] A g[k] = yourturn(syg1,7,%)
myR(x)[1] AmyR(r)[k] A (g[0] V..V g[m —1]) A =g[k] = yourturn(r)
myR (x)[2] - yourturn(c, x)

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 25

Outline

= Design

- Refinement: Mapping to circuits

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 26

Refinement: which circuit family?

Click Link:
2-phase + bundled data

with data storage: without data storage:
myturn(A) <_°G(__)D_> myturn(8) myturn(A) <—0G(_‘—)D—> myturn(8)
req ack
flipFF flipFF
<] > turn turn
AN AN AN AN
yourturn(A) >y | yourturn(B) ; | yourturn(A) > L« yourturn(B)
. . . .
myR(A) 7m 7 myR(B) myR(A) 7m X 7 myR(B)
myW(A) myW(B) myW(A) /’ /' myW(B)
n m
data data
datas dataga . AtoB BtoA
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 27

Refinement: which circuit family?

GasP Link:
2-phase + bundled data

Set-Reset Link:

2-phase + bundled data
myturn(A) <—o<} - myturn(8)

1
myturn(A) (—oq——> mytun(8) |
DHKL VDD vop y DLKH state
Y sl lz turn y (A) ESRE)
o

[; turn
vss Vvss

yourturn(A)
myR(A) /'m ’n myR(B)
myW(A) myW(B) dataAtoB dataBtoA i
i datayp datage !
!]
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 28

Refinement: which protocol?

COPY Joint:

2-phase protocol

COPY Joint:

4-phase protocol

- ' 1
| myturn(in) myturn(out) } | myturn(in) myturn(out) |
i Pl i
i GO P GO i
H - ready2go |
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
| yourturn(in) yourturn(out) } | yourturn(in) yourturn(out) }
i P i
1 1 1 1
i P i
1 myR(in) myWout) 1| myR(in) myW(out) |
L b L b
i I B o
VPVt [N T
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 29

Outline

= Test and Debug
- Uniform Test Approach

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 30

Test and Debug

defproc FIFO(){
chan(int<8>) bl; chan(int<8>) b2;
chan(int<8>) b3; ...
dataflow { bl -> b2; b2 -> b3;
b3 -> ba;
}
}

To test algorithmic programs

* so many lines — so few exports

use

* interactive code debug

* to read/write states and set breakpoints
« for single- and multi-step tests

To test Link-Joint networks

* so many Links, Joints - so few external ports
use

« Link variables and Joint go signals

* to access states and enable/disable actions
« for single-step and multi-step tests

To test hardware
* so many wires — so few pins

2| use

* scan
 to read/write states and go
* with a small number of pins
* MrGO to permit and prohibit actions
« for single- and multi-step tests

April 25, 2024 PhD Dissertation Defense, Ebele Esimai

slide 31

Test and Debug

Existing:

o 1-to-1 relation between Link-Joint states/go and circuit-level scan
Goal:

o Extend this relation to the ACT program level

o Develop tests at the program level, and translate down

Outline

= Test and Debug

- Uniform Test Approach: Structural Test example

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 33

Structural test: e
Greatest Common Divisor ‘L Link-Joint network

Program

defproc gcd2
(chan?(int) X,Y; chan!(int) 0)
{
int x, y;
chp {
*[pcl: X?x, Y?y;
pc2: *[y > x ->
log(“Guard 1”);
pc3: y 1=y - X
[Ix>y >
log(“Guard 27);
pcd: x 1= X -y
IH
log(“Out of loop”);
pc5: 0O!x

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 34

Structural test: Greatest Common Divisor
Simulated with ACTSIM,

Program a language simulator in the Yale ACT tool suite
defproc gcd2 ACTSIM Scr|pt ACTSIM Output
(chan?(int) X,Y; chan!(int) 0) 1. watch x y [e] <[env]> y := 25 (x19)
{. 2. breakpt x [@] <[env]> x := 7 (@x7)

e s 3. breakpt y | [NOIIGSIIGUSRANINEHOSER
chp

f[pcl: Xx, YIy; 4. goto pc2 [18] <> y := 18 (@x12)

pe2t *[y > x -> Z- se: y ;5 [18] <> *** breakpoint y
« »y. set x [10] <[env]> y := 7 (@x7)
log(“Guard 1”); 7. cycle
pc3: y i=y - x 8. goto pc2 [10] <[env]> x := 25 (@x19)
[1x>y - 9. sety7 [10] <> Guard 2 chosen
log(“Guard 2”); 10. set x 25 [20] <> x := 18 (@x12)
pc4: x 1= X -y 11. cycle [20] <> *** breakpoint x
1 12. cycle [30] <> Guard 2 chosen
« Y .
log(“Out of loop”); 13. goto pc2 [40] <> x := 11 (OxB)
. 0!
pcs: Olx 14.sety 7 [40] <> *** breakpoint x
] 15. set x 7 [40] <[env]> x := 7 (Ox7)
! 16 eycle (401 & out of loop
}

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 35

Structural test: Greatest Common Divisor ()

Verilog testbench

1. initial begin
2. $dumpvars();

3. // Guard 1: y > x

4. // Disable all Joint actions.

5. go[18:1] = {18{1'be}}; #10

6. // Goto pc2, which is L13B.

7. L13.reg_Amyturn = 0;

8. L13.reg_Bmyturn = 1;

9. // Set VAR y & VAR x to guard 1 true

10. J1.st_ABin = 25; // Var y
11. J4.st_ABin = 7; // Var x

12. // Enable Joints for guard selection Y —
13. go[15] = 1'bl; // SEL J15

14. go[18] = 1'bl; // E J1@

15. go[5:4] = 2'bl1; // RMUX x J5, VAR x J4
16. go[2:1] = 2'b11; // RMUX y J2, VAR y J1

17. // Run long enough
18. #220
19. // Check selection of statement 1 at L17B.

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 36

Connecting test at all

abstraction levels

Outline

= Showcase

- Mixing Protocols and Families

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 38

Control-Observation Program Link-Joint network) .
e am——- Hand over key information
. .reg_Amyturn = 0;
start point goto pc2 L13.reg_Bmyturn = 1;
— . o start:
start values sety 25 J1.st_ABin = 25; .
Guard setx 7 Jd.st ABin=7; - where does the operation start
1 A
stop point breakpt y Jn - what are the (key) initial values
stop Guard1is | iatement 1 at L17A a stop:
observation chosen’
) L13.reg_Amytum = 0; - where does the operation stop
start point goto pc2 113 regiBmylurn - 1f
Bk . - what are the (key) end values
start values sety 7 J1.st_ ABin=7;
Guard setx 25 J4.st_ABin = 25;
2
stop point breakpt x J13 Expand Va|ueS Iater
stop “Guard 2 is
observation chosen” statement 2 at L22A o start-stop values:
start point goto pc2 Hg:zg—gmﬁ:: o - come from test pattern generation
sety 7 I SUABIn=T: - based on hardware fault models
| startvalues setx 7 J4.StABIn=7: :
Exit S : o can be detailed later
top point breakpt 7
Stop poin reakptx . for hardware fault coverage
t . .
obs;r?lgtion Out of loop startup at L13A
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 37
Mixing Circuit Families
| 1 1 I
| LINK I JOINT 1 LINK |
| Set-Reset COPY I Click 1
| 2-phase level I 2phase level | 2-phase level :
1
le « g myturn(in) myturn(out) y 1
<€ >
1 myturn(a) 1 1 ack my(um(B)I
I 1 1 1
I 1 | |
1 1 | 1
| yourturn(A) 1 1 1
& S.
| T€ - > 1
1 Iyourlurn(ln) yourturn(ou yourturn(®) |
| 1 1
! ! myR(B) !
| myw(A) L o 1 MR myW(outy Y 1
I W T 1
| 1 1
1A dataeg B | 1A datapes B 1
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 39

Mixing Circuit Families

LINK
Micropipeline
transition signaling
yourturn(A)

myW(A)

JOINT
COPY
transition
signaling

LINK

Mousetrap
transition signaling

Mixing Protocols

LINK

LINK

yourturn(B)

(_—(—

GO_ "
.Mr a
[T\ J
tin tout
GO L
- yourturn(A)|
~1
myW(A)
7 L

1

1 T
4-2-phase Set-Reset | COPY 2-4-phase Click

1

myR(B) myR(B)
n
myturn(A) myturn(B) myturn(A) myturn(B);
A B A B
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 40
Mixing Signaling Logics
1 1
LINK JOINT LINK i JOINT !
transition (A) COPY 2-phase level (A) COPY
2-phase level (B) 2-phase level transition (B) transition

April 25, 2024

f
nd

L2 B

PhD Dissertation Defense, Ebele Esimai

slide 42

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 41
Outline
= Conclusion, Contributions and Future Work
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 43

Conclusion
“Make it easy to insert asynchrony appropriate for each design part”

Created: Ona

Resulting Design-Test Flow: i
o Design and test flow for asynchronous systems

Ona
z o based on:
| écppllcation N “l . Link-Joint model — as middle layer
\) - Yale ACT design flow — above and below

ACT Program 5 G
abstraction, composition

behavioral exploration o embrace the many asynchronous styles

Link-Joint compilation o scale applications and users
network) Benefits:
X refinement
ot o General and flexible design, test, and debug
circult families, etc. gates + o Supportive of collaboration
timin
ACT Circuit < Implementation styles investigated include:
timing analysis, logical effort, a 2- and 4-phase protocols
technology mapping, layout, etc.
o bundled and dual-rail data encodings
Fabric " o ’
integrated cireuit (CMOS/SFQ) o level- and pulse- and transition- signaling logics
o Click, GasP, Set-Reset, Mousetrap, Micropipelines
and Superconducting families
April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 44

Future Work

+ Deep embedding of Links and Joints into Yale’s Asynchronous
Circuit Toolkit (ACT)

+ Compiler optimizations for Communicating Hardware Processes

(CHP) programs (work in progress at Yale)
+ Comprehensive test extension into hardware test coverage

» Model equivalence between abstraction levels

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 45

My Contributions

U Link-Joint shared variable semantics and Link-Joint port connection

QO Compilation of ACT programs into Link-Joint networks
— Adaption of Yale’'s CHP2PRS compiler to generate Link-Joint networks

QO Implementation of Link-Joint network refinements

0 Unified test and debug translation between abstraction levels
— Extension of existing relation from Links and Joints, and circuit scan to programs
— New commands for ACTSIM: skip-comm, gc-retry, goto

Q Identified that initialization determines active-passive/push-pull protocol settings
— Link variable turn makes old notions for active-passive and push-pull irrelevant
Q Verilog behavioral modules for Links and Joints

— Implementation and validation of Link-Joint networks and their refinements

— Python program to automate generation of the Verilog modules and associated
testbench

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 46

Publications

Ebelechukwu Esimai and Marly Roncken

Flexible Compilation and Refinement of Asynchronous Circuits,

2023 28th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), Beijing,
China, 2023, pp. 109-119

Marly Roncken, Ebelechukwu Esimai, Vivek Ramanathan, Warren A. Hunt and Ivan Sutherland
State Access for RSFQ Test and Analysis,
|EEE Transactions on Applied Superconductivity, vol. 33, no. 5, pp. 1-7, Aug. 2023

Ebelechukwu Esimai and Marly Roncken
Flexible Active-Passive and Push-Pull Protocols,
|EEE Embedded Systems Letters, vol. 14, no. 3, pp. 139-142, Sept. 2022

Marly Roncken, Ivan Sutherland, and Ebelechukwu Esimai,

Micropipelines United, in A. Brown and A. Yakovlev (eds)

We're going to Need a Bigger Computer - Essays dedicated to Steve Furber on the occasion of his
retirement. At Last, University of Manchester Press Unit, 12 January 2024.

ASYNC 2022 Summer School: 3-day online seminar

Rajit Manohar (Yale University), Benjamin Hill (Intel), Montek Singh (University of North Carolina at

Chapel Hill), Marly Roncken, Ebelechukwu Esimai, and Ivan Sutherland (Portland State University).
The Portland State presentations cover: Links and Joints (1) behavioral design (2) gate-level design.

April 25, 2024 PhD Dissertation Defense, Ebele Esimai slide 47

THANK YOU!

April 25, 2024

PhD Dissertation Defense, Ebele Esimai slide 48

Compilation: library elements

e .. .
myturn(c, ey... ey, x)n go AmyR(x)[0] = myturn(c, sy..smx)A go AmyR(x)[i] = myturn(c, ;.. smx)A go AmyR(x)[0] =
yourturn(ey.. e, x) yourturn(si4q,x) yourturn(sy.. Sy, x)
myturn(c, ey.. ey, X)A go AmyR(x)[1] = myturn(c, sy.. Sy, X)A go AmyR(x)[m] = myturn(c, sy..Sm, X)A go AmyR(x)[1] —
myW(c) = f(myR(ey..en)); yourturn(c, x) yourturn(c, x)
yourturn(c, x)
trunk trunk trunk trunk trunk trunk

Jq x
A
. L b By v by
myturn(b;, trunk, x)a go AmyR(x)[0] = mytwrn(by, trunk, x)a go AmyR(x)[0] = myturn(by, trunk, x)a go AmyR(x)[0] =
yourturn(trunk, x) myW (trunk) = myR (b,); myW (trunk) = myR (b,);
myturn(b;, trunk,x)n go AmyR(x)[1] = yourturn(trunk, x) yourturn(trunk, x)
myw (by) := myR (trunk); myturn(b;, trunk, x)n go AmyR(x)[1] = myturn(b;, trunk,x)a go AmyR(x)[1] =
yourturn(b, x) yourturn(by, x) myw (b;) = myR(trunk);

yourturn(b;, x)
April 25, 2024

PhD Dissertation Defense, Ebele Esimai slide 49

Compilation: library elements

P

S
@ myturn(c,s)a go —

yourturn(s)

\\ evaluate non-probe expressions (get latest values of the variables)
myturn(c, ev,.. evy, epy.. epm, X)A go AmyR(x)[0]
— yourturn(ev,..evy,x)
\\ wait until some guard is TRUE before taking probe snapshots
myturn(c, ey.. e, epy..epm, X)n go AmyR(x)[1] A (F'[1]v..v f'[k])
= yourturn(ep..epy, x)
\\ return stable evaluation results
myturn(c, e,..en, epy..epm, X)n go AmyR(x)[2]
- myW(c) = {f[1)..flk]}; yourturn(c,x)

April 25, 2024

myturn(P,Q)a go =
myW (P) := myR(Q); myW (Q)
yourturn(trunk, x)
#P = {myR(Q), myturn(Q)}
#Q = {myR(P), myturn(P)}

myR(P);

probe

probe

\\ arbitrate for one FSM cycle
myturn(r,x)a go AmyR(x)[0] — yourturn(x)
\\ return stable probe snapshot
myturn(r,x)a go AmyR(x)[1]
- myW (r) = (0 if granty,probe if grantyepe); yourturn(r,x)

PhD Dissertation Defense, Ebele Esimai slide 50

